Screening of High 1,2-Propanediol Production by Lactobacillus buchneri Strains and Their Effects on Fermentation Characteristics and Aerobic Stability of Whole-Plant Corn Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. LAB Strains Activation
2.2. Screening of Lactic Acid Bacteria Strains
2.3. Determination of Acetic Acid and 1,2-Propanediol
2.4. Mini-Silos Preparation
2.5. Analytical Methods
2.6. Statistical Methods and Analysis
3. Results
3.1. Screening of Lactic Acid Bacteria Strains
3.2. Chemical Composition and Epiphytic Microflora of Fresh Whole-Plant Corn before Ensiling
3.3. Chemical Composition of Corn Silages after 90 Days of Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMahon, L.R.; Majak, W.; McAllister, T.A.; Hall, J.W.; Jones, G.A.; Popp, J.D.; Cheng, K.J. Effect of sainfoin on in vitro digestion of fresh alfalfa and bloat in steers. Can. J. Anim. Sci. 1999, 79, 203–212. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Muck, R.E.; Weimer, P.J.; Chen, Y.; Gamburg, M. Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl. Biochem. Biotechnol. 2004, 118, 1–9. [Google Scholar] [CrossRef]
- Silva, L.; Pereira, O.G.; Santos, S.A.; Ribeiro, K.G.; Roseira, J.P.; Agarussi, M.C.N.; Martins, R.M. Effect of Lactobacillus buchneri isolated from tropical corn silage on fermentation and aerobic stability. J. Anim. Sci. 2017, 95, 139. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ni, K.; Pang, H.; Wang, Y.; Cai, Y.; Jin, Q. Identification and antimicrobial activity detection of lactic acid bacteria isolated from corn stover silage. Asian-Austral. J. Anim. Sci. 2015, 28, 620–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.B.; Wilson, D.B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH. J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar] [CrossRef]
- Ruppert, L.D.; Drackley, J.K.; Bremmer, D.R.; Clark, J.H. Effects of tallow in diets based on corn silage or alfalfa silage on digestion and nutrient use by lactating dairy cows. J. Dairy Sci. 2003, 86, 593–609. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, M.; Qin, G.; Tan, Z.; Li, Z.; Wang, Y.; Cai, Y. Identification of lactic acid bacteria isolated from corn stovers. Anim. Sci. J. 2011, 82, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; Elferink, S.O.; Spoelstra, S.F. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 1999, 87, 583–594. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.M.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinschmit, D.H.; Kung, L., Jr. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 2006, 89, 4005–4013. [Google Scholar] [CrossRef]
- Ranjit, N.K.; Taylor, C.C.; Kung, L., Jr. Effect of Lactobacillus buchneri 40788 on the fermentation, aerobic stability and nutritive value of maize silage. Grass Forage Sci. 2002, 57, 73–81. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Kung, L., Jr. The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations. J. Dairy Sci. 2010, 93, 1616–1624. [Google Scholar] [CrossRef]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Filya, I. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 2003, 95, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmit, D.H.; Schmidt, R.J.; Kung, L., Jr. The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2005, 88, 2130–2139. [Google Scholar] [CrossRef] [Green Version]
- Kleinschmit, D.H.; Kung, L., Jr. The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage. J. Dairy Sci. 2006, 89, 3999–4004. [Google Scholar] [CrossRef] [Green Version]
- Basso, F.C.; Bernardes, T.F.; Roth, A.P.D.T.P.; Lodo, B.N.; Berchielli, T.T.; Reis, R.A. Fermentation and aerobic stability of corn silage inoculated with Lactobacillus buchneri. Rev. Bras. Zootecn. 2012, 41, 1789–1794. [Google Scholar] [CrossRef] [Green Version]
- Salvo, P.A.R.; Basso, F.C.; Rabelo, C.H.S.; Oliveira, A.A.; Reis, R.A. Characteristics of corn silages inoculated with Lactobacillus buchneri and L. plantarum. Arc. Zootecn. 2013, 62, 239. [Google Scholar]
- Filya, I. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 2003, 86, 3575–3581. [Google Scholar] [CrossRef] [Green Version]
- Nishino, N.; Yoshida, M.; Shiota, H.; Sakaguchi, E. Accumulation of 1,2-propanediol and enhancement of aerobic stability in whole crop maize silage inoculated with Lactobacillus buchneri. J. Appl. Microbiol. 2003, 94, 800–807. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Rinne, M. Highlights of progress in silage conservation and future perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- Holzer, M.; Danner, H.; Mayrhuber, E.; Braun, R. The aerobic stability of silages influenced by metabolites of lactic acid bacteria. Meded. Rijksuniv. Gent. Fak. Landbouwkd. Toegep. Biol. Wet. 2001, 66, 459–461. [Google Scholar]
- Wambacq, E.; Latré, J.P.; Haesaert, G. The effect of Lactobacillus buchneri inoculation on the aerobic stability and fermentation characteristics of alfalfa-ryegrass, red clover and maize silage. Agric. Food Sci. 2013, 22, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; He, H.; Zhang, S.; Kong, J. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci. Rep. 2017, 7, 13614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.D.; Pereira, O.G.; Silva, T.C.; Leandro, E.S.; Paula, R.A.; Santos, S.A.; Valadares Filho, S.C. Effects of Lactobacillus buchneri isolated from tropical maize silage on fermentation and aerobic stability of maize and sugarcane silages. Grass Forage Sci. 2018, 73, 660–670. [Google Scholar] [CrossRef]
- Muck, R.E.; Dickerson, J.T. Storage temperature effects on proteolysis in alfalfa silage. Trans. ASAE 1998, 31, 1005–1009. [Google Scholar] [CrossRef]
- Robinson, P.H.; Wiseman, J.; Udén, P.; Mateos, G. Some experimental design and statistical criteria for analysis of studies in manuscripts submitted for consideration for publication. Anim. Feed Sci. Technol. 2006, 129, 1–11. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acid in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Thomas, T.A. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1981; p. 123. [Google Scholar]
- AOAC. Official Methods of Analysis; AOAC: Arlington, VA, USA, 2005. [Google Scholar]
- King, C.; McEniry, J.; Richardson, M.; O’Kiely, P. Yield and chemical composition of five common grassland species in response to nitrogen fertiliser application and phenological growth stage. Acta Agric. Scand. 2012, 62, 644–658. [Google Scholar] [CrossRef]
- Reich, L.J.; Kung, L., Jr. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Technol. 2010, 159, 105–109. [Google Scholar] [CrossRef]
- Muck, R.E. A lactic acid bacteria strain to improve aerobic stability of silages. In Research Summaries; U.S. Dairy Forage Research Center: Madison, WI, USA, 1996; pp. 42–43. [Google Scholar]
- Xu, D.; Ding, W.; Ke, W.; Li, F.; Zhang, P.; Guo, X. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Front. Microbiol. 2019, 9, 3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Uegaki, R.; Fujita, Y. Lactic acid bacteria isolated from forage crops and silage fermentation. In Proceedings of the XIX International Grassland Congressgrassland Ecosystems: An Outlook into the 21st Century, Sao Paolo, Brazil, 11–21 February 2001; Gomide, J.A., da Silva, S.C., Mattos, W.R.S., Eds.; FEALQ: Sao Paolo, Brazil, 2001; pp. 777–778. [Google Scholar]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Silva, N.C.; Santos, J.P.; Avila, C.L.S.; Evangelista, A.R.; Casagrande, D.R.; Bernardes, T.F. Evaluation of the effects of two Lactobacillus buchneri strains and sodium benzoate on the characteristics of corn silage in a hot-climate environment. Grassl. Sci. 2014, 60, 169–177. [Google Scholar]
- Liu, Q.; Chen, M.; Zhang, J.; Shi, S.; Cai, Y. Characteristics of isolated lactic acid bacteria and their effectiveness to improve stylo (Stylosanthes guianensis Sw.) silage quality at various temperatures. Anim. Sci. J. 2012, 83, 128–135. [Google Scholar] [CrossRef]
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung, L., Jr. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef]
- Tabacco, E.; Piano, S.; Revello-Chion, A.; Borreani, G. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. J. Dairy Sci. 2011, 94, 5589–5598. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, Z.G.; Ashbell, G.; Hen, Y.; Azrieli, A. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. J. Appl. Biomater. 1993, 75, 512–518. [Google Scholar] [CrossRef]
- Driehuis, F.; Oude Elferink, S.J.W.H.; Van Wikselaar, P.G. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 2001, 56, 330–343. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootecn. 2010, 39, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Oude Elferink, S.J.W.H.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 2001, 67, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Driehuis, F.; Oude Elferink, S.J.W.H.; Van Wikselaar, P.G. Lactobacillus buchneri improves the aerobic stability of laboratory and farm scale whole crop maize silage but does not affect feed intake and milk production of dairy cows. In Proceedings of the 12th International Silage Conference, Uppsala, Sweden, 5–7 July 1999; pp. 264–265. [Google Scholar]
- Weinberg, Z.G.; Szakacs, G.; Ashbell, G.; Hen, Y. The effect of Lactobacillus buchneri and L. plantarum, applied at ensiling, on the ensiling fermentation and aerobic stability of wheat and sorghum silages. J. Ind. Microbiol. 1999, 23, 218–222. [Google Scholar] [CrossRef]
- Filya, I. Aerobic stability of sorghum and maize silages treated with homofermentative and heterofermentative lactic acid bacteria. In TurkeyIsraeli Workshop on Silage and Agricultural By-Products for High Lactating Cows; Weinberg, Z.G., Ed.; Agricultural Research Organization: Bet Dagan, Israel, 2001; pp. 24–26. [Google Scholar]
- Weinberg, Z.G.; Ashbell, G.; Hen, Y.; Azrieli, A.; Szakacs, G.; Filya, I. Ensiling whole-crop wheat and corn in large containers with Lactobacillus plantarum and Lactobacillus buchneri. J. Ind. Microbiol. 2002, 28, 7–11. [Google Scholar]
- Ranjit, N.K.; Kung, L., Jr. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2000, 83, 526–535. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Ranjit, N.K. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef]
- Moon, N.J. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J. Appl. Biomater. 1983, 55, 453–460. [Google Scholar] [CrossRef]
- Krooneman, J.; Faber, F.; Alderkamp, A.C.; Elferink, S.O.; Driehuis, F.; Cleenwerck, I.; Vancanneyt, M. Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int. J. Syst. Evol. Microbiol. 2002, 52, 639–646. [Google Scholar] [CrossRef]
- Spoelstra, S.F.; Courtin, M.G.; Van Beers, J.A.C. Acetic acid bacteria can initiate aerobic deterioration of whole crop maize silage. J. Agric. Sci. 1988, 111, 127–132. [Google Scholar] [CrossRef]
- Lau, N.; Kramer, E.; Hummel, J. Impact of grass silage with high levels of propylene glycol on ketosis prophylaxis during transition phase and early lactation. In Proceedings of the 18th International Silage Conference, Bonn, Germany, 24–26 July 2018; pp. 308–309. [Google Scholar]
Strains | Strain Resource | Growth Rate 1 | Acid Production Rate 2 | Acid Tolerance Test 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OD620 Value | pH Value | OD620 at pH = 3 OD620 at pH = 4 | |||||||||
3 h | 6 h | 12 h | 18 h | 3 h | 6 h | 12 h | 18 h | 24 h | 24 h | ||
10-1 | 2 years alfalfa silage | 0.82 ± 0.01 | 1.72 ± 0.02 | 2.31 ± 0.01 | 2.80 ± 0.01 | 5.36 ± 0.02 | 4.78 ± 0.01 | 4.03 ± 0.01 | 3.87 ± 0.01 | 0.06 ± 0.01 | 2.29 ± 0.01 |
9-2 | 2 years alfalfa silage | 0.80 ± 0.01 | 1.71 ± 0.01 | 2.30 ± 0.02 | 2.69 ± 0.01 | 5.40 ± 0.01 | 4.85 ± 0.01 | 4.16 ± 0.01 | 3.95 ± 0.01 | 0.07 ± 0.01 | 2.30 ± 0.01 |
1-2 | 1 year oat silage | 0.71 ± 0.02 | 1.54 ± 0.01 | 2.39 ± 0.01 | 2.55 ± 0.01 | 5.47 ± 0.01 | 4.89 ± 0.02 | 4.21 ± 0.02 | 4.08 ± 0.01 | 0.07 ± 0.01 | 2.30 ± 0.02 |
6-2 | 1 year corn silage | 0.56 ± 0.01 | 1.52 ± 0.01 | 2.19 ± 0.02 | 2.32 ± 0.02 | 5.57 ± 0.02 | 5.32 ± 0.01 | 5.16 ± 0.01 | 4.32 ± 0.01 | 0.05 ± 0.01 | 1.87 ± 0.01 |
2-5 | 1 year corn silage | 0.60 ± 0.01 | 1.39 ± 0.02 | 2.04 ± 0.02 | 2.28 ± 0.01 | 5.48 ± 0.02 | 4.95 ± 0.01 | 4.26 ± 0.01 | 4.24 ± 0.02 | 0.06 ± 0.01 | 2.24 ± 0.01 |
4-1 | 1 year oat silage | 0.20 ± 0.02 | 0.53 ± 0.01 | 1.01 ± 0.01 | 1.25 ± 0.01 | 5.59 ± 0.01 | 5.42 ± 0.01 | 5.18 ± 0.01 | 5.11 ± 0.01 | 0.06 ± 0.01 | 1.75 ± 0.01 |
1-1 | 1 year oat silage | 0.20 ± 0.01 | 0.52 ± 0.02 | 0.88 ± 0.01 | 1.30 ± 0.01 | 5.57 ± 0.03 | 5.59 ± 0.01 | 5.31 ± 0.01 | 5.06 ± 0.01 | 0.05 ± 0.02 | 1.62 ± 0.01 |
4-2 | 1 year oat silage | 0.21 ± 0.01 | 0.51 ± 0.01 | 0.96 ± 0.01 | 1.31 ± 0.02 | 5.69 ± 0.01 | 5.61 ± 0.01 | 5.26 ± 0.02 | 5.01 ± 0.02 | 0.06 ± 0.01 | 1.61 ± 0.01 |
11-1 | 1 year alfalfa silage | 0.20 ± 0.01 | 0.47 ± 0.01 | 0.93 ± 0.02 | 1.22 ± 0.01 | 5.72 ± 0.01 | 5.62 ± 0.01 | 5.35 ± 0.01 | 5.11 ± 0.01 | 0.05 ± 0.01 | 1.62 ± 0.01 |
5-3 | 1 year alfalfa silage | 0.17 ± 0.02 | 0.43 ± 0.02 | 0.93 ± 0.01 | 1.20 ± 0.01 | 5.65 ± 0.01 | 5.57 ± 0.02 | 5.33 ± 0.01 | 5.11 ± 0.01 | 0.05 ± 0.01 | 1.62 ± 0.01 |
11-3 | 1 year alfalfa silage | 0.20 ± 0.02 | 0.49 ± 0.01 | 0.98 ± 0.01 | 1.27 ± 0.01 | 5.63 ± 0.02 | 5.55 ± 0.01 | 5.26 ± 0.01 | 5.08 ± 0.02 | 0.05 ± 0.01 | 1.62 ± 0.02 |
11-4 | 1 year alfalfa silage | 0.20 ± 0.01 | 0.46 ± 0.01 | 1.08 ± 0.01 | 1.28 ± 0.02 | 5.62 ± 0.01 | 5.58 ± 0.01 | 5.25 ± 0.02 | 5.07 ± 0.01 | 0.05 ± 0.01 | 1.65 ± 0.01 |
12-1 | 1 year alfalfa silage | 0.25 ± 0.01 | 0.57 ± 0.01 | 1.21 ± 0.01 | 1.44 ± 0.01 | 5.61 ± 0.01 | 5.51 ± 0.02 | 5.26 ± 0.02 | 5.06 ± 0.01 | 0.06 ± 0.01 | 1.63 ± 0.01 |
6-3 | 1 year corn silage | 0.20 ± 0.01 | 0.53 ± 0.02 | 1.06 ± 0.02 | 1.29 ± 0.02 | 5.6 ± 0.02 | 5.53 ± 0.01 | 5.27 ± 0.01 | 5.07 ± 0.01 | 0.05 ± 0.01 | 1.65 ± 0.01 |
5-1 | 1 year alfalfa silage | 0.23 ± 0.02 | 0.52 ± 0.01 | 1.13 ± 0.01 | 1.30 ± 0.01 | 5.63 ± 0.01 | 5.58 ± 0.01 | 5.26 ± 0.03 | 5.07 ± 0.01 | 0.05 ± 0.01 | 1.65 ± 0.01 |
3-2 | 2 years corn silage | 0.22 ± 0.01 | 0.51 ± 0.02 | 1.03 ± 0.03 | 1.30 ± 0.01 | 5.61 ± 0.01 | 5.52 ± 0.01 | 5.25 ± 0.01 | 5.07 ± 0.01 | 0.05 ± 0.01 | 1.64 ± 0.02 |
13-5 | 1 year alfalfa silage | 0.21 ± 0.01 | 0.51 ± 0.01 | 1.07 ± 0.02 | 1.29 ± 0.01 | 5.62 ± 0.03 | 5.53 ± 0.02 | 5.29 ± 0.01 | 5.09 ± 0.01 | 0.05 ± 0.01 | 1.60 ± 0.01 |
7-1 | 2 years corn silage | 0.20 ± 0.02 | 0.52 ± 0.02 | 1.04 ± 0.01 | 1.28 ± 0.01 | 5.68 ± 0.02 | 5.6 ± 0.01 | 5.32 ± 0.01 | 5.08 ± 0.01 | 0.07 ± 0.01 | 1.54 ± 0.01 |
1-8 | 1 year alfalfa silage | 0.22 ± 0.01 | 0.52 ± 0.01 | 1.11 ± 0.02 | 1.30 ± 0.01 | 5.62 ± 0.02 | 5.52 ± 0.01 | 5.3 ± 0.02 | 5.06 ± 0.02 | 0.05 ± 0.01 | 1.65 ± 0.01 |
3-1 | 2 years corn silage | 0.23 ± 0.01 | 0.53 ± 0.01 | 1.11 ± 0.01 | 1.31 ± 0.03 | 5.65 ± 0.01 | 5.53 ± 0.01 | 5.27 ± 0.01 | 5.05 ± 0.01 | 0.05 ± 0.01 | 1.68 ± 0.01 |
8-2 | 1 year alfalfa silage | 0.21 ± 0.02 | 0.53 ± 0.02 | 1.02 ± 0.02 | 1.30 ± 0.01 | 5.63 ± 0.01 | 5.52 ± 0.03 | 5.26 ± 0.01 | 5.07 ± 0.01 | 0.06 ± 0.02 | 1.65 ± 0.01 |
4-3 | 1 year oat silage | 0.23 ± 0.01 | 0.53 ± 0.01 | 1.12 ± 0.01 | 1.31 ± 0.02 | 5.61 ± 0.01 | 5.51 ± 0.01 | 5.28 ± 0.01 | 5.04 ± 0.01 | 0.06 ± 0.01 | 1.65 ± 0.01 |
13-2 | 1 year alfalfa silage | 0.22 ± 0.02 | 0.53 ± 0.01 | 1.06 ± 0.01 | 1.30 ± 0.01 | 5.66 ± 0.01 | 5.56 ± 0.02 | 5.32 ± 0.01 | 5.07 ± 0.01 | 0.06 ± 0.01 | 1.65 ± 0.01 |
10-3 | 2 years alfalfa silage | 0.18 ± 0.01 | 0.49 ± 0.02 | 1.02 ± 0.02 | 1.21 ± 0.02 | 5.59 ± 0.02 | 5.48 ± 0.01 | 5.15 ± 0.01 | 5.1 ± 0.01 | 0.06 ± 0.01 | 1.74 ± 0.02 |
13-1 | 1 year alfalfa silage | 0.21 ± 0.01 | 0.51 ± 0.01 | 1.10 ± 0.01 | 1.30 ± 0.01 | 5.62 ± 0.01 | 5.5 ± 0.01 | 5.23 ± 0.02 | 5.08 ± 0.02 | 0.05 ± 0.01 | 1.65 ± 0.01 |
14-1 | 1 year alfalfa silage | 0.37 ± 0.01 | 0.66 ± 0.01 | 1.52 ± 0.03 | 1.73 ± 0.01 | 5.53 ± 0.02 | 5.49 ± 0.01 | 5.21 ± 0.01 | 4.86 ± 0.01 | 0.06 ± 0.01 | 1.69 ± 0.01 |
11-2 | 1 year alfalfa silage | 0.19 ± 0.02 | 0.50 ± 0.02 | 1.07 ± 0.01 | 1.23 ± 0.02 | 5.58 ± 0.01 | 5.52 ± 0.01 | 5.33 ± 0.01 | 5.09 ± 0.01 | 0.05 ± 0.01 | 1.59 ± 0.01 |
7-3 | 2 years corn silage | 0.22 ± 0.01 | 0.51 ± 0.01 | 1.07 ± 0.01 | 1.30 ± 0.01 | 5.62 ± 0.02 | 5.56 ± 0.02 | 5.35 ± 0.02 | 5.06 ± 0.03 | 0.06 ± 0.01 | 1.63 ± 0.01 |
9-1 | 2 years alfalfa silage | 0.33 ± 0.01 | 0.62 ± 0.02 | 1.12 ± 0.02 | 1.36 ± 0.02 | 5.61 ± 0.01 | 5.48 ± 0.01 | 5.25 ± 0.01 | 5.05 ± 0.01 | 0.06 ± 0.01 | 1.70 ± 0.01 |
5-2 | 1 year alfalfa silage | 0.20 ± 0.02 | 0.47 ± 0.01 | 1.03 ± 0.01 | 1.26 ± 0.01 | 5.65 ± 0.02 | 5.51 ± 0.01 | 5.23 ± 0.01 | 5.09 ± 0.02 | 0.05 ± 0.01 | 1.62 ± 0.01 |
9-3 | 2 years alfalfa silage | 0.19 ± 0.01 | 0.47 ± 0.02 | 1.03 ± 0.01 | 1.24 ± 0.01 | 5.66 ± 0.01 | 5.57 ± 0.01 | 5.25 ± 0.01 | 5.09 ± 0.01 | 0.05 ± 0.01 | 1.60 ± 0.01 |
L. buchneri 40788 | 0.78 ± 0.01 | 1.64 ± 0.01 | 2.30 ± 0.02 | 2.56 ± 0.01 | 5.52 ± 0.01 | 4.98 ± 0.01 | 4.32 ± 0.02 | 4.12 ± 0.01 | 0.06 ± 0.01 | 2.25 ± 0.01 |
Strains | Strain Resource | Acetic Acid 1 (mg/mL; Mean ± Standard Deviation) | 1,2-Propanediol 1 (mg/mL; Mean ± Standard Deviation) |
---|---|---|---|
10-1 | 2 years alfalfa silage | 4.67 ± 0.02 | 3.25 ± 0.03 |
9-2 | 2 years alfalfa silage | 4.97 ± 0.03 | 3.36 ± 0.02 |
1-2 | 1 year oat silage | 4.80 ± 0.02 | 3.20 ± 0.01 |
6-2 | 1 year corn silage | 4.54 ± 0.01 | 3.06 ± 0.02 |
2-5 | 1 year corn silage | 4.90 ± 0.02 | 3.27 ± 0.03 |
4-1 | 1 year oat silage | 4.75 ± 0.02 | 3.17 ± 0.02 |
1-1 | 1 year oat silage | 3.88 ± 0.04 | 2.59 ± 0.01 |
4-2 | 1 year oat silage | 4.23 ± 0.03 | 3.01 ± 0.03 |
11-1 | 1 year alfalfa silage | 3.94 ± 0.02 | 2.79 ± 0.02 |
5-3 | 1 year alfalfa silage | 4.13 ± 0.01 | 2.99 ± 0.02 |
11-3 | 1 year alfalfa silage | 3.97 ± 0.02 | 2.76 ± 0.03 |
11-4 | 1 year alfalfa silage | 4.19 ± 0.02 | 2.88 ± 0.04 |
12-1 | 1 year alfalfa silage | 4.15 ± 0.01 | 3.00 ± 0.03 |
6-3 | 1 year corn silage | 3.94 ± 0.03 | 2.75 ± 0.02 |
5-1 | 1 year alfalfa silage | 4.04 ± 0.03 | 2.87 ± 0.02 |
3-2 | 2 years corn silage | 4.06 ± 0.03 | 2.85 ± 0.01 |
13-5 | 1 year alfalfa silage | 4.14 ± 0.02 | 2.96 ± 0.03 |
7-1 | 2 years corn silage | 4.00 ± 0.04 | 2.89 ± 0.04 |
1-8 | 1 year alfalfa silage | 4.27 ± 0.05 | 3.06 ± 0.03 |
3-1 | 2 years corn silage | 3.98 ± 0.03 | 2.76 ± 0.02 |
8-2 | 1 year alfalfa silage | 4.21 ± 0.01 | 2.84 ± 0.02 |
4-3 | 1 year oat silage | 4.36 ± 0.04 | 3.11 ± 0.03 |
13-2 | 1 year alfalfa silage | 4.19 ± 0.02 | 2.98 ± 0.03 |
10-3 | 2 years alfalfa silage | 4.42 ± 0.03 | 3.08 ± 0.01 |
13-1 | 1 year alfalfa silage | 4.19 ± 0.02 | 2.86 ± 0.03 |
14-1 | 1 year alfalfa silage | 4.14 ± 0.01 | 2.88 ± 0.02 |
11-2 | 1 year alfalfa silage | 4.05 ± 0.02 | 2.78 ± 0.02 |
7-3 | 2 years corn silage | 4.26 ± 0.03 | 3.02 ± 0.03 |
9-1 | 2 years alfalfa silage | 4.14 ± 0.02 | 2.95 ± 0.01 |
5-2 | 1 year alfalfa silage | 4.25 ± 0.01 | 2.99 ± 0.02 |
9-3 | 2 years alfalfa silage | 4.10 ± 0.03 | 2.76 ± 0.03 |
L. Buchneri 40788 | 4.54 ± 0.02 | 3.18 ± 0.01 |
Item 1 | Value (Mean ± Standard Deviation) |
---|---|
DM, g/kg | 237 ± 5.3 |
pH | 5.24 ± 0.03 |
WSC, g/kg DM | 88 ± 0.6 |
NH3-N, g/kg TN | 44 ± 0.7 |
NDF, g/kg DM | 445 ± 1.7 |
ADF, g/kg DM | 254 ± 0.9 |
Ash, g/kg DM | 58 ± 0.02 |
CP, g/kg DM | 71 ± 1.2 |
NPN, g/kg DM | 90 ± 0.4 |
AA-N, g/kg TN | 7 ± 0.02 |
Starch, g/kg DM | 238 ± 3.86 |
LAB, log10 cfu/g of fresh weight | 6.41 ± 0.03 |
Yeasts, log10 cfu/g of fresh weight | 5.67 ± 0.03 |
Molds, log10 cfu/g of fresh weight | 4.93 ± 0.02 |
Item 1 | Control | L. buchneri 40788 | L. buchneri 9-2 | L. buchneri 10-1 | SEM 2 | p-Value |
---|---|---|---|---|---|---|
DM g/kg | 228 b | 239 a | 242 a | 240 a | 2.2 | 0.057 |
DM recovery g/kg | 941 b | 972 a | 973 a | 974 a | 4.7 | 0.005 |
NH3-N, g/kg TN | 76 a | 70 a | 62 b | 71 a | 1.7 | 0.014 |
WSC, g/kg DM | 21 a | 16 b | 16 b | 16 b | 0.7 | 0.001 |
CP, g/kg DM | 86 a | 84 a,b | 86 a | 81 b | 0.8 | 0.021 |
NPN, g/kg TN | 476 a | 452 a,b | 420c | 448 b | 7 | 0.009 |
AA-N, g/kg TN | 154 | 141 | 146 | 134 | 6.2 | 0.503 |
NDF, g/kg DM | 488 a | 463 b | 459 b | 444 b | 5.5 | 0.006 |
ADF, g/kg DM | 288 a | 264 b | 266 b | 262 b | 3.8 | 0.021 |
Starch, g/kg DM | 247 | 252 | 251 | 249 | 1.3 | 0.591 |
Ash, g/kg DM | 70 | 68 | 68 | 66 | 0.6 | 0.264 |
Item 1 | Control | L. buchneri 40788 | L. buchneri 9-2 | L. buchneri 10-1 | SEM 2 | p-Value |
---|---|---|---|---|---|---|
pH | 3.95 a | 3.89 b | 3.86 b | 3.87 b | 0.01 | 0.018 |
Lactic acid, g/kg DM | 60.6 a | 58.7 b | 61.6 a | 60.1 a,b | 0.4 | 0.025 |
Acetic acid, g/kg DM | 9.6 c | 35.9 b | 47.2 a | 45.9 a | 4.6 | <0.001 |
1,2-propanediol, g/kg DM | 0 c | 19.5 b | 34.7 a | 34.6 a | 4.3 | <0.001 |
Ethanol, g/kg DM | 20.6 a | 17.0 b | 13.4 c | 13.3 c | 0.9 | <0.001 |
Aerobic stability, h | 97 c | 353 b | 458 a | 448 a | 43.97 | <0.001 |
LAB, log10 cfu/g | 6.45 c | 7.91 b | 8.70 a | 8.61 a | 0.27 | <0.001 |
Yeasts, log10 cfu/g | 4.18 a | 1.60 b | 0 c | 0 c | 0.54 | <0.001 |
Molds, log10 cfu/g | 0.72 | 0 | 0 | 0 | 0.18 | 0.441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Wang, M.; Ke, W.; Guo, X. Screening of High 1,2-Propanediol Production by Lactobacillus buchneri Strains and Their Effects on Fermentation Characteristics and Aerobic Stability of Whole-Plant Corn Silage. Agriculture 2021, 11, 590. https://doi.org/10.3390/agriculture11070590
Huang Z, Wang M, Ke W, Guo X. Screening of High 1,2-Propanediol Production by Lactobacillus buchneri Strains and Their Effects on Fermentation Characteristics and Aerobic Stability of Whole-Plant Corn Silage. Agriculture. 2021; 11(7):590. https://doi.org/10.3390/agriculture11070590
Chicago/Turabian StyleHuang, Zhipeng, Musen Wang, Wencan Ke, and Xusheng Guo. 2021. "Screening of High 1,2-Propanediol Production by Lactobacillus buchneri Strains and Their Effects on Fermentation Characteristics and Aerobic Stability of Whole-Plant Corn Silage" Agriculture 11, no. 7: 590. https://doi.org/10.3390/agriculture11070590
APA StyleHuang, Z., Wang, M., Ke, W., & Guo, X. (2021). Screening of High 1,2-Propanediol Production by Lactobacillus buchneri Strains and Their Effects on Fermentation Characteristics and Aerobic Stability of Whole-Plant Corn Silage. Agriculture, 11(7), 590. https://doi.org/10.3390/agriculture11070590