Compost Enhances Forage Yield and Quality of River Saltbush in Arid Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description and Field Experiments
2.2. Soil Characterization
2.3. Plant Analysis
2.4. Compost Characterization
2.5. Data Analysis
3. Results
3.1. Effects of Compost Addition on the Mineral Content of River Saltbush
3.2. Effect of Compost on Some Biochemical Compounds of Leaves
3.3. Effect of Compost on Yield and Chemical Composition of River Saltbush
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef] [Green Version]
- Gunarathne, V.; Senadeera, A.; Gunarathne, U.; Biswas, J.K.; Almaroai, Y.A.; Vithanage, M. Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar 2020, 2, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houshmand, S.; Arzani, A.; Maibody, S.A.M.; Feizi, M. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crop. Res. 2005, 91, 345–354. [Google Scholar] [CrossRef]
- Yuan, F.; Guo, J.; Shabala, S.; Wang, B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 2019, 9, 1954. [Google Scholar] [CrossRef]
- Masters, D.G.; Norman, H.C. Genetic and Environmental Management of Halophytes for Improved Livestock Production. In Halophytes for Food Security in Dry Lands; Academic Press, Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 243–257. [Google Scholar]
- Soliz, D.; Glenn, E.P.; Seaman, R.; Yoklilc, M.; Nelson, S.; Brown, P. Water consumption, irrigation efficiency and nutritional value of Atriplex lentiformis grown on reverse osmosis brine in a desert irrigation district. Agric. Ecosyst. Environ. 2011, 63, 137–148. [Google Scholar] [CrossRef]
- Walker, D.J.; Lutts, S.; Sánchez-García, M.; Correal, E. Review: Atriplex halimus L.: Its biology and uses. J. Arid Environ. 2014, 100, 111–121. [Google Scholar] [CrossRef]
- Eissa, M.A.; Ahmedand, E.M.; Reichman, S. Production of the forage halophyte Atriplex amnicola in metal-contaminated soils. Soil Use Manag. 2016, 32, 350–356. [Google Scholar] [CrossRef]
- El-Hack, M.E.A.; Samak, D.H.; Noreldin, A.E.; Arif, M.; Yaqoob, H.S.; Swelum, A.A. Towards saving freshwater: Halophytes as unconventional feedstuffs in livestock feed: A review. Environ. Sci. Pollut. Res. 2018, 25, 14397–14406. [Google Scholar] [CrossRef]
- Swingle, R.; Glenn, E.P.; Squires, V. Growth performance of lambs fed mixed diets containing halophyte ingredients. Anim. Feed Sci. Technol. 1996, 63, 137–148. [Google Scholar] [CrossRef]
- Dann, H.M.; Grant, R.J.; Cotanch, K.W.; Thomas, E.D.; Ballard, C.S.; Rice, R. Comparison of brown midrib sorghum-sudangrass with corn silage on lactational performance and nutrient digestibility in Holstein dairy cows. J. Dairy Sci. 2008, 91, 663–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashim, M.A.; Siam, N.; Al-Dosari, A.; Asl-Gaadi, K.A.; Patil, V.C.; Tola, E.H.M.; Rangaswamy, M.; Samdani, M.S. Determination of water requirement and crop water productivity of crops grown in the Makah region of Saudi Arabia. Aust. J. Basic Appl. Sci. 2012, 6, 196–206. [Google Scholar]
- Rekaby, S.A.; Awad, M.Y.; Hegab, S.A.; Eissa, M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020, 43, 1840–1851. [Google Scholar] [CrossRef]
- Aher, S.B.; Lakaria, B.L.; Singh, A.B.; Kaleshananda, S.; Ramana, S.; Ramesh, K.; Thakur, J.K.; Rajput, P.S.; Yashona, D.S. Effect of organic sources of nutrients on performance of soybean (Glycine max). Indian J. Agric. Sci. 2019, 89, 35–39. [Google Scholar]
- Ding, Z.; Zhou, Z.; Lin, X.; Zhao, F.; Wang, B.; Lin, F.; Ge, Y.; Eissa, M.A. Biochar impacts on NH3-volatilization kinetics and growth of sweet basil (Ocimum basilicum L.) under saline conditions. Ind. Crop. Prod. 2020, 157, 11290. [Google Scholar] [CrossRef]
- Rady, A.A. A novel organo-mineral fertilizer can mitigate salinity stress effects for tomato production on reclaimed saline soil. S. Afr. J. Bot. 2012, 81, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Cao, G.; Wang, L.; Wang, S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 2019, 14, e0219512. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, E.; Ibrahim, M.; Ali, N.; Ali, H. Effect of biochar and compost amendments on soil biochemical properties and dry weight of canola plant grown in soil contaminated with heavy metals. Commun. Soil Sci. Plant Anal. 2020, 51, 1561–1571. [Google Scholar] [CrossRef]
- Shahkolaie, S.S.; Baranimotlagh, M.; Dordipour, E.; Khormali, F. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. S. Afr. J. Bot. 2020, 128, 132–140. [Google Scholar] [CrossRef]
- Norman, H.C.; Masters, D.G.; Barrett-Lennard, E.G. Halophytes as forages in saline landscapes: Interactions between plant genotype and environment change their feeding value to ruminants. Environ. Exp. Bot. 2013, 92, 96–109. [Google Scholar] [CrossRef]
- Waldron, B.L.; Sagers, J.K.; Peel, M.D.; Rigby, C.W.; Bugbee, B.; Creech, J.E. Salinity reduces the forage quality of forage kochia: A halophytic Chenopodiaceae shrub. Rangel. Ecol. Manag. 2020, 73, 384–393. [Google Scholar] [CrossRef]
- Chhabra, R. Classification of salt-affected soils. Arid Land Res. Manag. 2004, 19, 61–79. [Google Scholar] [CrossRef]
- Soil Survey Staff 2016. Keys to Soil Taxonomy, 11th ed.; USDA-Natural Resources Conservation Services: Washington, DC, USA, 1997.
- Burt, R. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42, Version 4.0; Natural Resources Conservation Service, United States Department of Agriculture: Lincoln, NE, USA, 2004.
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Comm. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Zaklouta, M.; Hilali, M.; Nefzaoui, A.; Haylani, M. Animal Nutrition and Product Quality Laboratory Manual; ICARDA: Aleppo, Syria, 2011; Volume viii, p. 92. [Google Scholar]
- Chandlee, J.M.; Scandalios, J.G. Analysis of variants affecting the catalase development program in maize scutellum. Theor. Appl. Genet. 1984, 69, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.B.; Khan, P.A. Peroxidase and polyphenol oxidase in excised ragi Eleusine coracana (V. PR 202) leaves during senescence. Indian J. Exp. Bot. 1982, 20, 412–416. [Google Scholar]
- Naik, V.V.; Patil, N.S.; Aparadh, V.T.; Karadge, B.A. Methodology in determination of oxalic acid in plant tissue: A comparative approach. J. Glob. Trends Pharm. Sci. 2014, 5, 1662–1672. [Google Scholar]
- Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 1964, 15, 84–92. [Google Scholar] [CrossRef]
- Michigan State University. MSTAT-C Micro-Computer Statistical Program; Version 2; Michigan State University: East Lansing, MI, USA, 1983. [Google Scholar]
- Reda, M.; Migocka, M.; Kłobus, G. Effect of short-term salinity on the nitrate reductase activity in cucumber roots. Plant Sci. 2011, 180, 783–788. [Google Scholar] [CrossRef]
- Syeed, S.; Anjum, N.A.; Nazar, R.; Iqbal, N.; Masood, A.; Khan, N.A. Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol. Plant. 2011, 86, 33–877. [Google Scholar] [CrossRef]
- Silvertooth, C.J. Fertigation in arid regions and saline soils. In Proceedings of the IPINATESC-CAU-CAAS International Symposium on Fertigation, Beijing, China, 1 September 2005; International Potash Institute: Horgen, Switzerland, 2005; pp. 171–177. [Google Scholar]
- Ding, Z.; Ali, E.F.; Elmahdy, A.M.; Ragab, K.E.; Seleiman, M.F.; Kheir, A.M.S. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agric. Water Manag. 2020, 244, 106626. [Google Scholar] [CrossRef]
- Babalola, O.A.; Adesodun, J.K.; Olasantan, F.O.; Adekunle, A.F. Responses of some soil biological, chemical and physical properties to short-term compost amendment. Int. J. Soil Sci. 2012, 7, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.A. Phosphate and organic amendments for safe production of okra from metal-contaminated soils. Agron. J. 2016, 108, 540–547. [Google Scholar] [CrossRef]
- Abou-Zaid, E.A.; Eissa, M.A. Thompson seedless grapevines growth and quality as affected by glutamic acid, vitamin b, and algae. J. Soil Sci. Plant Nutr. 2019, 19, 725–733. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.; Hegab, S.A.; Gawad, A.M.A.E.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.A.; Abeed, A.H. Growth and biochemical changes in quail bush (Atriplex lentiformis (Torr.) S.Wats) under Cd stress. Environ. Sci. Pollut. Res. 2019, 26, 628–635. [Google Scholar] [CrossRef]
- Drake, J.A.; Cavagnaro, T.R.; Cunningham, S.C.; Jackson, W.R.; Patti, A.F. Does biochar improve establishment of tree seedlings in saline sodic soils? Land Degrad. Dev. 2016, 27, 52–59. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water 2016, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Silber, A.; Levkovitch, I.; Graber, E.R. pH dependent mineral release and surface properties of corn straw biochar: Agronomic implications. Environ. Sci. Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef]
- Eissa, M.A.; Nafady, M.H.; Ragheb, H.M.; Attia, K.K. Effect of soil moisture and forms of phosphorus fertilizers on corn production under sandy calcareous soil. World Appl. Sci. J. 2013, 26, 540–547. [Google Scholar]
- Al-Sayed, H.; Hegab, S.A.; Youssef, M.; Khalafalla, M.; Almaroai, Y.A.; Ding, Z.; Eissa, M.A. Evaluation of quality and growth of roselle (Hibiscus sabdariffa L.) as affected by bio-fertilizers. J. Plant Nutr. 2020, 43, 1025–1035. [Google Scholar] [CrossRef]
- Eissa, M.A. Performance of river saltbush (Atriplex amnicola) grown on contaminated soils as affected by organic fertilization. World Appl. Sci. J. 2014, 30, 1877–1881. [Google Scholar]
- Eissa, M.A. Phytoextraction of nickel, lead and cadmium from metal contaminated soils using different field crops and EDTA. World Appl. Sci. J. 2014, 32, 1045–1052. [Google Scholar]
- Eissa, M.A. Effect of compost and biochar on heavy metals phytostabilization by the halophytic plant old man saltbush [Atriplex nummularia Lindl]. Soil Sediment Contam. Int. J. 2019, 28, 135–147. [Google Scholar] [CrossRef]
- Eissa, M.A.; Almaroai, Y.A. Phytoremediation capacity of some forage plants grown on a metals-contaminated soil. Soil Sediment Contam. Int. J. 2019, 28, 569–581. [Google Scholar] [CrossRef]
- Eissa, M.A. Impact of compost on metals phytostabilization potential of two halophytes species. Int. J. Phytoremediat. 2015, 17, 662–668. [Google Scholar] [CrossRef]
Properties (Units) | Value |
---|---|
Texture | Sandy loam |
CaCO3 (g kg−1) | 52 ± 4 |
pH | 8.20 ± 0.07 |
Salinity (dS m−1) | 15.07 ± 0.72 |
Organic Carbon (g kg−1) | 3.0 ± 0.2 |
Exchangeable sodium percent | 14 |
Available N (mg kg−1) | 100 ± 5 |
Available P (Olsen) (mg kg−1) | 5.5 ± 0.2 |
Available K (mg kg−1) | 200 ± 12 |
pH | Salinity (dS m−1) | Organic Carbon (g kg−1) | N (g kg−1) | P (g kg−1) | K (g kg−1) |
---|---|---|---|---|---|
8.22 ± 0.1 | 5.25 ± 0.3 | 240 ± 12 | 20 ± 2 | 15.70 ± 2.3 | 35 ± 3 |
2017 | 2018 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | K | Cl | P | Ca | N | Na | K | Cl | P | Ca | N | |
Leaves | ||||||||||||
Control | 40 ± 2.1 a | 20 ± 1.1 b | 35 ± 1.3 a | 2.0 ± 0.11 b | 9 ± 0.4 a | 26 ± 1.05 b | 44 ± 2.2 a | 20 ± 1.0 b | 32 ± 1.1 a | 2.2 ± 0.18 b | 4.8 ± 0.5 a | 32 ± 1.03 b |
COM5 | 35 ± 1.5 b | 23 ± 0.8 b | 33 ± 1.7 a | 2.2 ± 0.14 b | 4.8 ± 0.3 a | 35 ± 2.07 a | 38 ± 1.6 b | 24 ± 0.7 a | 28 ± 1.6 a | 2.1 ± 0.16 b | 4.7 ± 0.4 a | 37 ± 1.06 a |
COM10 | 34 ± 2.5 b | 26 ± 1.2 a | 33 ± 1.8 a | 2.9 ± 0.17 a | 4.9 ± 0.2 a | 34 ± 1.07 a | 35 ± 2.2 b | 25 ± 1.3 a | 30 ± 1.7 a | 2.8 ± 0.16 a | 4.8 ± 0.2 a | 38 ± 1.07 a |
COM15 | 32 ± 1.8 b | 27 ± 1.3 a | 34 ± 2.0 a | 2.8 ± 0.18 a | 5.0 ± 0.2 a | 32 ± 1.04 a | 36 ± 1.2 b | 27 ± 1.4 a | 31 ± 2.1 a | 2.9 ± 0.17 a | 5.1 ± 0.3 a | 35 ± 1.05 a |
Ft | * | * | ns | * | ns | * | ||||||
Fy | ns | ns | ns | ns | ns | ns | ||||||
Fy×t | * | ns | * | ns | ns | ** | ||||||
Stems | ||||||||||||
Control | 15 ± 0.5 a | 11 ± 0.4 a | 13 ± 0.7 a | 1.1 ± 0.14 a | 1.9 ± 0.1 a | 8.0 ± 0.04 a | 15 ± 0.4 a | 13 ± 0.5 a | 12 ± 0.6 a | 1.2 ± 0.10 a | 1.8 ± 0.1 a | 9.6 ± 0.03 a |
COM5 | 15 ± 0.7 a | 10 ± 0.7 a | 13 ± 0.8 a | 1.0 ± 0.15 a | 1.8 ± 0.1 a | 8.0 ± 0.04 a | 13 ± 0.7 a | 11 ± 0.7 a | 13 ± 0.8 a | 1.1 ± 0.12 a | 1.7 ± 0.1 a | 11.2 ± 0.04 a |
COM10 | 16 ± 0.4 a | 12 ± 0.5 a | 10 ± 0.6 a | 0.9 ± 0.08 a | 1.8 ± 0.1 a | 7.7 ± 0.05 a | 14 ± 0.3 a | 12 ± 0.6 a | 10 ± 0.7 a | 0.8 ± 0.08 a | 1.8 ± 0.1 a | 8.0 ± 0.06 a |
COM15 | 14 ± 0.4 a | 10 ± 0.5 a | 9 ± 0.4 a | 1.0 ± 0.11 a | 1.9 ± 0.1 a | 8.0 ± 0.03 a | 12 ± 0.5 a | 11 ± 0.6 a | 11 ± 0.6 a | 1.1 ± 0.12 a | 1.8 ± 0.1 a | 11.2 ± 0.03 a |
Ft | ns | ns | * | ns | ns | ns | ||||||
Fy | ns | ns | ns | ns | ns | ns | ||||||
Fy×t | ns | ** | ns | * | * | ns |
2017 | 2018 | |||||
---|---|---|---|---|---|---|
CAT | PPO | POX | CAT | PPO | POX | |
Control | 4.2 ± 0.0 b | 2.7 ± 0.0 b | 2.4 ± 0.0 a | 4.1 ± 0.0 b | 2.6 ± 0.0 b | 2.7 ± 0.0 a |
COM5 | 4.8 ± 0.0 a | 3.2 ± 0.0 a | 2.6 ± 0.0 a | 5.0 ± 0.0 a | 3.4 ± 0.0 a | 2.4 ± 0.0 a |
COM10 | 5.0 ± 0.0 a | 3.2 ± 0.0 a | 2.5 ± 0.0 a | 5.2 ± 0.0 a | 3.1 ± 0.0 a | 2.5 ± 0.0 a |
COM15 | 5.2 ± 0.0 a | 3.3 ± 0.0 a | 2.4 ± 0.0 a | 5.0 ± 0.0 a | 3.5 ± 0.0 a | 2.6 ± 0.0 a |
Ft | ** | ** | *** | |||
Fy | ns | ns | ns | |||
Fy×t | * | * | ns |
2017 | 2018 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MC | DM | OM | CP | Fat | CF | MC | DM | OM | CP | Fat | CF | |
Leaves | ||||||||||||
Control | 730 ± 35 b | 200 ± 8 a | 780 ± 33 b | 160 ± 11 b | 12 ± 1.2 a | 210 ± 9 a | 730 ± 40 b | 250 ± 6 a | 700 ± 28 b | 200 ± 9 c | 10 ± 1.1 a | 120 ± 6 a |
COM5 | 800 ± 40 a | 210 ± 7 a | 810 ± 28 a | 220 ± 8 a | 14 ± 1.0 a | 100 ± 9 b | 860 ± 37 a | 240 ± 5 a | 810 ± 25 a | 230 ± 8 ab | 12 ± 1.1 a | 100 ± 7 b |
COM10 | 850 ± 32 a | 210 ± 8 a | 830 ± 25 a | 210 ± 7 a | 14 ± 1.0 a | 120 ± 8 b | 850 ± 38 a | 270 ± 8 a | 850 ± 22 a | 240 ± 5 a | 13 ± 1.3 a | 110 ± 8 b |
COM15 | 860 ± 40 a | 200 ± 8 a | 810 ± 40 a | 200 ± 8 a | 12 ± 1.1 a | 100 ± 7 b | 880 ± 32 a | 270 ± 7 a | 820 ± 30 a | 220 ± 7 b | 10 ± 1.3 a | 105 ± 5 b |
Ft | ** | ** | *** | ** | ns | *** | ||||||
Fy | ns | ns | ns | ns | ns | ns | ||||||
Fy×t | * | * | ns | ns | ns | * | ||||||
Stems | ||||||||||||
Control | 520 ± 22 b | 480 ± 15 a | 890 ± 55 b | 50 ± 3 a | 11 ± 1.4 a | 270 ± 8 a | 590 ± 24 a | 450 ± 15 a | 920 ± 50 a | 60 ± 4 a | 10 ± 1.2 a | 220 ± 8 a |
COM5 | 620 ± 18 a | 480 ± 18 a | 910 ± 65 a | 50 ± 2 a | 12 ± 1.2 a | 160 ± 9 b | 560 ± 18 a | 470 ± 17 a | 910 ± 58 b | 70 ± 3 a | 12 ± 1.1 a | 140 ± 5 b |
COM10 | 615 ± 25 a | 480 ± 20 a | 900 ± 50 a | 48 ± 3 a | 11 ± 1.0 a | 130 ± 8 b | 500 ± 27 b | 500 ± 20 a | 890 ± 60 d | 50 ± 2 a | 11 ± 1.0 a | 150 ± 9 b |
COM15 | 650 ± 26 a | 450 ± 15 a | 910 ± 58 a | 50 ± 2 a | 11 ± 1.1 a | 140 ± 7 b | 570 ± 22 a | 490 ± 19 a | 900 ± 62 c | 70 ± 4 a | 12 ± 1.4 a | 160 ± 9 b |
Ft | ** | ** | * | ns | ns | *** | ||||||
Fy | ns | * | ns | ns | ns | * | ||||||
Fy×t | ns | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ali, E.F.; Majrashi, A.; Eissa, M.A.; Ibrahim, O.H.M. Compost Enhances Forage Yield and Quality of River Saltbush in Arid Conditions. Agriculture 2021, 11, 595. https://doi.org/10.3390/agriculture11070595
Li J, Ali EF, Majrashi A, Eissa MA, Ibrahim OHM. Compost Enhances Forage Yield and Quality of River Saltbush in Arid Conditions. Agriculture. 2021; 11(7):595. https://doi.org/10.3390/agriculture11070595
Chicago/Turabian StyleLi, Jianjian, Esmat F. Ali, Ali Majrashi, Mamdouh A. Eissa, and Omer H. M. Ibrahim. 2021. "Compost Enhances Forage Yield and Quality of River Saltbush in Arid Conditions" Agriculture 11, no. 7: 595. https://doi.org/10.3390/agriculture11070595
APA StyleLi, J., Ali, E. F., Majrashi, A., Eissa, M. A., & Ibrahim, O. H. M. (2021). Compost Enhances Forage Yield and Quality of River Saltbush in Arid Conditions. Agriculture, 11(7), 595. https://doi.org/10.3390/agriculture11070595