Review on Control Methods against Plant Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union
Abstract
:1. Introduction
2. Fumigants
2.1. Metam-Sodium
2.2. Metam-Potassium
2.3. Dazomet
3. Non-Fumigant Products
3.1. Fenamiphos
3.2. Fosthiazate
3.3. Oxamyl
3.4. Fluopyram
4. Agronomic Methods
4.1. Crop Rotations
4.2. Biofumigation
4.3. Cover Crops
4.4. Fallow
4.5. Trap Crops
4.6. Soil Amendments
- farmyard manure (a mixture of animal excrements and vegetable matter, animal bedding);
- dried farmyard manure and dehydrated poultry manure;
- composted or fermented mixture of household waste;
- peat (use limited to horticulture, i.e., market gardening, floriculture, arboriculture, nursery);
- vermicompost and dejecta of insects;
- mollusc waste and chitin (both only from sustainable fisheries);
- Biochar, pyrolysis products made from a wide variety of organic materials of plant origin and applied as a soil conditioner (only from plant materials, untreated or treated with products included in Annex II) [56].
5. Physical Methods
Soil Solarisation
6. Biopesticides (Fungi, Bacteria and Bacteria Derived Product)
6.1. Fungi
6.1.1. Purpureocillium lilacinum Strain 251
6.1.2. Pochonia clamydosporia
6.2. Bacteria and Bacteria Derived Product
6.2.1. Pasteuria penetrans
6.2.2. Bacillus firmus
6.2.3. Abamectin
7. Plant Extracts
7.1. Garlic Extract
7.2. Clove Oil
7.3. Thymol and Geraniol Oils
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Sasanelli, N.; Toderas, I.; Iurcu-Straistaru, E.; Rusu, S.; Migunova, V.; Konrat, A. Yield losses caused by plant parasitic nematodes graphical estimation. In Book of International Symposium “Functional Ecology of Animals”; National Book Chamber of R. Moldova, Ed.; Institute of Zoology: Chisinau, Moldova, 2018; pp. 319–329. ISBN 978-9975-3159-7-5. [Google Scholar]
- Sikora, R.A.; Coyne, D.L.; Hallmann, J.; Timper, P. Reflections and Challenges: Nematology in Subtropical and Tropical Agriculture. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 3rd ed.; Sikora, R.A., Coyne, D.L., Hallmann, J., Timper, P., Eds.; CAB International: Boston, MA, USA, 2018; pp. 1–19. [Google Scholar]
- Gheysen, G.; Jones, J.T. Molecular Aspects of Plant––Nematode Interactions. In Plant Nematology, 2nd ed.; Perry, R.N., Moens, M., Eds.; CAB International: Boston, MA, USA, 2013; pp. 274–300. [Google Scholar]
- Sasanelli, N.; Ciccarese, F.; Papajova, I. Aphanocladium album by via sub-irrigation in the control of Pyrenochaeta lycopersici and Meloidogyne incognita on tomato in a plastic-house. Helminthologia 2008, 45, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Saeedizadeh, A.; Kheiri, A.; Zad, J.; Etebarian, H.R.; Bandani, A.R.; Nasiri, M.B. A study of interaction between Verticillium wilt Verticillium dahliae and root-knot nematode Meloidogyne javanica in olive cultivars. Commun. Agric. Appl. Biol. Sci. 2009, 74, 567–572. [Google Scholar] [PubMed]
- Mai, W.F.; Abawi, G.S. Interactions among root-knot nematodes and Fusarium wilt fungi on host plants. Ann. Rev. Phytopatol. 1987, 25, 317–338. [Google Scholar] [CrossRef]
- Seinhorst, J.W. The relationship between nematode density and damage to plants. Nematologica 1965, 11, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Seinhorst, J.W. Nematodes and growth of plants: Formulation of the nematode-plant system. In Root-Knot Nematodes (Meloidogyne Species) Systematics, Biology and Control; Lamberti, F., Taylor, C.E., Eds.; Academic Press: London, UK, 1979; pp. 231–256. [Google Scholar]
- Li, L.; Barry, T.; Mongar, K.; Wofford, P. Modeling methyl isothiocyanate soil flux and emission ratio form a field following a chemigation of metam-sodium. J. Environ. Qual. 2006, 35, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Ingham, R.E.; Hamm, P.B.; David, N.L.; Wade, N.M. Control of Meloidogyne chitwoodi in Potato with Shank-injected Metam Sodium and other Nematicides. J. Nematol. 2007, 39, 161–168. [Google Scholar]
- Stanton, J.M. Effect of Metham-Sodium on Potato Cyst Nematode; Report; Department of Agriculture and Food: Perth, Australia, 1986.
- PPDB: Pesticide Properties DataBase. A to Z list of Pesticide Active Ingredients; University of Hertfordshire: Hatfield, UK, 2021.
- Zamanzadeh, E.; Nabavikalat, S.M.; Norouzzadeh, S. Efficacy of sulfosulforon (Apyrus) and Metham Sodium (Vapam) herbicides on control of broomrape (Orobanche aeygptiaca) in tomato fields. J. Crop. Ecophysiol. 2011, 5, 67–81. [Google Scholar]
- Ajwa, H.A.; Trout, T.; Mueller, S.; Wilhelm, S.; Nelson, S.D.; Soppe, R.; Shatley, D. Application of Alternative Fumigants Through Drip Irrigation Systems. Phytopatology 2002, 92, 1349–1355. [Google Scholar] [CrossRef] [Green Version]
- Biles, C.L.; Lindsey, D.L.; Liddell, C.M. Control of Phytophthora root rot of chile peppers by irrigation practices and fungicides. Crop. Prot. 1992, 11, 225–228. [Google Scholar] [CrossRef]
- Carlock, L.L.; Dotson, T.A. Metam-Sodium (Chapter 107). In Hayes’s Handbook of Pesticide Toxicology, 3rd ed.; Academic Press: Cambridge, UK, 2010; pp. 2293–2306. [Google Scholar] [CrossRef]
- Khatri, K.; Vallad, G.; Peres, N.; Desaegaer, J.; Regmi, H. Efficacy of metam potassium on Fusarium oxysporum, Macrophomina phaseolina, Meloidogyne javanica, and seven weed species in microcosm experiments. Pest. Manag. Sci. 2021, 77, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Gamliel, A.; Katan, J. Disinfestation. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 394–400. [Google Scholar] [CrossRef]
- Philis, J. Effect of D-D, EDB and Dazomet on Potato Cyst Nematode Control in Clay Soils of Cyprus. Nematol. Medit. 1978, 6, 77–81. [Google Scholar]
- Patel, N.D.; Patel, A.D. Management of Root-Knot Nematodes (Meloidogyne spp.) using different Chemicals in Tomato Nursery. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2047–2051. [Google Scholar] [CrossRef]
- Lamberti, F.; Sasanelli, N.; D’Addabbo, T.; Carella, A. Translocation and persistance of fenamiphos in the control of root-knot nematodes. Meded. Fac. Landbouwkd. Toegep. Biol. Wet. Univ. Gent 2000, 65, 463–469. [Google Scholar]
- European Food Safety Authority. Peer review of the pesticide risk assessment of the active substance fenamiphos. EFSA J. 2019, 17, 5557. [Google Scholar]
- Johnson, W.A.; Young, J.R. Efficacy of Fenamiphos Formulations Applied through Irrigation for Control of Meloidogyne incognita on Squash. J. Nematol. 1994, 26, 697–700. [Google Scholar]
- Chabrier, C.; Hubervic, J.; Quénéhervé, P. Evaluation of Fosthiazate (Nemathorin 10 G) for the control of nematodes in banana fields in Martinique. Nematropica 2002, 32, 137–147. [Google Scholar]
- PubChem. National Library of Medicine; National Center for Biotechnology Information: Bethesda, MD, USA, 2019. Available online: https://pubchem.ncbi.nlm.nih.gov/#query=Oxamyl (accessed on 20 June 2021).
- Rousidou, C.; Karaiskos, D.; Myti, D.; Karanasios, E.; Karas, P.A.; Tourna, M.; Tzortzakakis, E.A.; Karpouzas, D.G. Distribution and function of carbamate hydrolase genes cehA and mcd in soils: The distinct role of soil pH. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef]
- Kennedy, J.L., Jr. Acute toxicity studies with oxamyl. Fundam. Appl. Toxicol. 1986, 6, 423–429. [Google Scholar] [CrossRef]
- Lamberti, F.; Sasanelli, N.; D’Addabbo, T.; Carella, A. Study on the nematicide translocation and persistence of oxamyl. Inf. Fitopatol. 2003, 7, 57–59. (In Italian) [Google Scholar]
- Du Pont de Nemours (It). Label of Vydate 10L. Label Authorized by Executive Decree of 13 June 2015 and Modified According to art. 7, Paragraph 1, Presidential Decree n. 55/2012. 2015. Valid from 22 June 2018. Available online: https://www.corteva.it/content/dam/dpagco/corteva/eu/it/it/files/cp/DF_Vydate_10_L-label.pdf (accessed on 20 June 2021). (In Italian).
- EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance fluopyram. EFSA J. 2013, 11, 3052. [Google Scholar]
- Burns, A.R.; Luciani, G.M.; Musso, G.; Bagg, R.; Yeo, M.; Zhang, Y.; Rajendran, L.; Glavin, J.; Hunter, R.; Redman, E.; et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat. Commun. 2015, 6, 7485. [Google Scholar] [CrossRef] [PubMed]
- Oka, Y. From Old-Generation to Next-Generation Nematicides. Agronomy 2020, 10, 1387. [Google Scholar] [CrossRef]
- Faske, T.R.; Hurd, K. Sensivity of Meloidogyne incognita and Rotylenchulus reniformis to Fluopyram. J. Nematol. 2015, 47, 316–321. [Google Scholar]
- Storelli, A.; Keiser, A.; Eder, R.; Jenni, S.; Kiewnick, S. Evaluation of fluopyram for the control of Ditylenchus dipsaci in sugar beet. J. Nematol. 2020, 52, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Beeman, A.Q.; Tylka, G.L. Assessing the effects of ILeVO and VOTiVO seed treatments on reproduction, hatching, motility, and root penetration of the soybean cyst nematode, Heterodera glycines. Plant Dis. 2018, 102, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beeman, A.Q.; Njus, Z.L.; Pandey, S.; Tylka, G. Effects of ILeVO and VOTiVO on root penetration and behavior of the soybean cyst nematode, Heterodera glycines. Plant Dis. 2019, 103, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Kandel, Y.R.; Wise, K.A.; Bradley, C.A.; Chilvers, M.I.; Byrne, A.M.; Tenuta, A.U.; Faghihi, J.; Wiggs, S.N.; Mueller, D.S. Effect of soybean cyst nematode resistance source and seed treatment on population densities of Heterodera glycines, sudden death syndrome, and yield of soybean. Plant Dis. 2017, 101, 2137–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, M.G.; Jacobs, J.L.; Napieralski, S.; Byrne, A.M.; Stou er-Hopkins, A.; Warner, F.; Chilvers, M.I. Fluopyram suppresses population densities of Heterodera glycines in field and greenhouse studies in Michigan. Plant Dis. 2020, 104, 1305–1311. [Google Scholar] [CrossRef]
- Hawk, T. The Effects of Seed-Applied Fluopyram on Root Penetration and Development of Meloidogyne incognita on Cotton and Soybean. Ph.D. Theis, University of Arkansas, Fayetteville, AR, USA, 2019; p. 47. [Google Scholar]
- Li, J.; Wang, C.; Bangash, S.H.; Lin, H.; Zeng, D.; Tang, W. Efficacy of fluopyram applied by chemigation on controlling eggplant root-knot nematodes (Meloidogyne spp.) and its effects on soil properties. PLoS ONE 2020, 15, e0235423. [Google Scholar] [CrossRef]
- Chitwood, D. Phytochemical Based Strategies for Nematode Control. Ann. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef] [Green Version]
- Gowen, S.R. Chemical control of nematodes: Efficiency and side-effects. FAO Plant Prod. Prot. Pap. 1997, 144, 59–65. [Google Scholar]
- Nusbaum, C.J.; Ferris, H. The Role of Cropping Systems in Nematode Population Management. Ann. Rev. Phytopathol. 1973, 11, 423–440. [Google Scholar] [CrossRef]
- Vovlas, A.; Santoro, S.; Sasanelli, N. Weeds as alternative hosts for plant parasitic nematodes and their ability to maintain nematode populations larger than the tolerance limit for the main crop. In Proceedings of the 7th International Weed Science Congress, Prague, Czech Republic, 19–25 June 2016. [Google Scholar]
- Roberts, P.A.; Thomasom, I.J. Sugarbeet pest management nematodes. (University of California, Division of Agricultural Science, Los Angeles, LA, USA), Special Publication 3272, 1981, 30. Available online: https://books.google.it/books?hl=en&lr=&id=a_cz_u40P6AC&oi=fnd&pg=PA3&dq=Sugar+Beet+pest+management+nematodes&ots (accessed on 20 June 2021).
- Curto, G.; Di Silvestro, D. Fight. Chapter 10.6.1—Crop rotations. In General and Applied Plant Nematology (Nematologia Agraria Generale ed Applicata); Italian Society of Nematology: Florence, Italy, 2014; pp. 199–202. Available online: http://www.nematologia.it/index.php?option=com_content&view=article&id=122:informazioni-sul-libro&catid=14:sample-data-articles (accessed on 20 June 2021). (In Italian)
- Zhong, S.; Zeng, H.C.; Jin, Z.Q. Response of soil nematode community composition and diversity to different crop rotations and tillage in the tropics. App. Soil Ecol. 2016, 107, 134–143. [Google Scholar] [CrossRef]
- Brennan, R.J.B.; Glaze-Corcoran, S.; Wick, R.; Hashemi, M. Biofumigation: An alternative strategy for the control of plant parasitic nematodes. J Integr Agric. 2020, 19, 1680–1690. [Google Scholar] [CrossRef]
- Thangstad, O.P.; Evjen, K.; Bones, A. Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma 1991, 161, 85–93. [Google Scholar] [CrossRef]
- Caboni, P.; Sarais, G.; Aissani, N.; Tocco, G.; Sasanelli, N.; Liori, B.; Carta, A.; Angioni, A. Nematicidal activity of 2-Thiophenecarboxaaldehyde and Methylisothiocyanate from Caper (Capparis spinosa) against Meloidogyne incognita. J. Agric. Food Chem. 2012, 60, 7345–7351. [Google Scholar] [CrossRef]
- Lazzeri, L.; Curto, G.; Dallavalle, E.; D’Avino, L.; Malaguti, L.; Santi, R.; Patalano, G. Nematicidal efficacy of biofumigation by defatted Brassicaceae meal for control of Meloidogyne incognita (Kofoid& White) Chitw. on a full field zucchini crop. J. Sust. Agric. 2009, 33, 349–358. [Google Scholar]
- D’Addabbo, T.; De Mastro, G.; Sasanelli, N.; Di Stefano, A.; Omidbaigi, R. Suppressive action of different crociferous crops on the root-knot nematode Meloidogyne incognita. Agroindustria 2004, 3, 379–380. [Google Scholar]
- Buskov, S.; Serra, B.; Rosa, E.; Sorensen, H.; Sorensen, J.C. Effect of intact glucosinolates and products from glucosinolates in myrosinase-catalyzed hydrolysys on the potato cyst nematode (Globodera rostrochiensis Woll.). J. Agric. Food Chem. 2002, 50, 690–695. [Google Scholar] [CrossRef]
- Adediran, J.A.; Adegbite, A.A.; Akinlosotu, T.A.; Agbaje, G.O.; Taiwo, L.B.; Owolade, O.F.; Oluwatosin, G.A. Evaluation of fallow and cover crops for nematode suppression in three agro-ecologies of south western Nigeria. Afric. J. Biotechnol. 2005, 4, 1034–1039. [Google Scholar]
- Gadhave, A. A Short Review on Microemulsion and its application in extraction of vegetable oil. Int. J. Res. Eng. Technol. 2014, 3, 147–158. [Google Scholar] [CrossRef]
- Westerdahl, B.B. Evaluation of trap cropping for management of root-knot nematode on annual crops. Acta Hortic. 2020, 1270, 141–146. [Google Scholar] [CrossRef]
- Sacchi, S.; Torrini, G.; Marianelli, L.; Mazza, G.; Fumagalli, A.; Cavagna, B.; Ciampitti, M.; Roversi, P.F. Control of Meloidogyne graminicola a Root-Knot Nematode Using Rice Plants as Trap Crops: Preliminary Results. Agriculture 2021, 11, 37. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2019/2164. Amending Regulation (EC) N° 889/2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) N° 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control. Off. J. Eur. Union 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=uriserv:OJ.L_.2019.328.01.0061.01.ENG (accessed on 20 June 2021).
- Renčo, M. Organic amendments of soil as useful tools of plant parasitic nematodes control. Helminthologia 2013, 50, 3–14. [Google Scholar] [CrossRef] [Green Version]
- D’Addabbo, T.; Fontanazza, G.; Lamberti, F.; Sasanelli, N.; Patumi, M. The suppressive effect of soil amendments with olive residues on Meloidogyne incognita. Nematol. Medit. 1997, 25, 195–198. [Google Scholar]
- D’Addabbo, T.; Sasanelli, N. The suppression of Meloidogyne incognita on tomato by grape pomace soil amendments. Nematol. Medit. 1998, 26, 145–149. [Google Scholar]
- D’Addabbo, T.; Sasanelli, N.; Lamberti, F.; Greco, P.; Carella, A. Olive pomace and chicken manure amendments for control of Meloidogyne incognita over two crop cycles. Nematropica 2003, 33, 1–7. [Google Scholar]
- Sasanelli, N.; Ferri, D.; Convertini, G.; D’Addabbo, T. Nematicidal and agronomical effects of composted olive pomace amendments. In Proceedings of the 12th Congress of the Mediterranean Phytopathological Union, Rhodes Island, Greece, 11–15 June 2006; pp. 565–567. [Google Scholar]
- Renčo, M.; Sasanelli, N.; Salamun, P. The effect of two compost soil amendments, based on municipal green and penicillin production wastes, on plant parasitic nematodes. Helminthologia 2009, 46, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Renčo, M.; Sasanelli, N.; D’Addabbo, T.; Papajova, I. Soil nematode community changes associated with compost amendments. Nematology 2010, 12, 681–692. [Google Scholar] [CrossRef]
- Abdelaym, E.A.; Erriquens, F.; Sasanelli, N.; Ceglie, F.G.; Zaccone, G.; Miano, T.; Cocozza, C. Effects of several amendments on organic melon growth and production, Meloidogyne incognita population and soil properties. Sci. Hortic. 2014, 180, 156–160. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Migunova, V.; Renčo, M.; Sasanelli, N. Suppressiveness of soil amendments with pelleted plant materials on the root-knot nematode Meloidogyne incognita. Helminthologia 2020, 57, 376–383. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Millner, P.D.; Meyer, S.L.F.; Roig, A. Potential of olive mill wasteand compost as biobased pesticides against weeds, fungi and nematodes. Sci. Total Environ. 2008, 399, 11–18. [Google Scholar] [CrossRef]
- Galper, S.; Cohn, E.; Spiegel, Y.; Chet, I. A collagenolytic fungus, Cunninghamella elegans, for biological control of plant parasitic nematodes. J. Nematol. 1991, 23, 269–274. [Google Scholar]
- Gooday, G.W. The ecology of chitin degradation. In Advances in Microbial Ecology; Marshall, K.C., Ed.; Plenum Press: New York, NY, USA, 1990; Volume 2, pp. 387–430. [Google Scholar]
- Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O. Perspectives of Anaerobic Soil Disinfestation. Acta Hort. 2010, 883, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Runia, W.T.; Molendijk, L.P.G. Physical Methods for Soil Disinfestation in Intensive Agriculture: Old Methods and New Approaches. Acta Hort. 2010, 833, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Katan, J.; Greenberger, A.; Alon, H.; Grinstein, A. Solar heating by polyethylene mulching for the control of diseases caused by soil-borne pathogens. Phytopathology 1976, 66, 683–688. [Google Scholar] [CrossRef]
- Katan, J. Soil solarization. In Innovative Approaches to Plant Disease Control; Chet, I., Ed.; John Wiley and Sons: New York, NY, USA, 1987; pp. 77–105. [Google Scholar]
- Porter, I.J.; Merriman, P.R. Effect of solarization of soil on nematode and fungal pathogens at two siets in Victoria. Soil Biol. Biochem. 1983, 15, 39–44. [Google Scholar] [CrossRef]
- Stepleton, J.J.; De Vay, J.E. Response of phytoparasitic and free-living nematodes to soil solarization and 1,3 dichloropropene in California. Phytopathology 1983, 73, 1429–1436. [Google Scholar] [CrossRef]
- La Mondia, J.A.; Brodie, B.B. Control of Globodera rostochiensis by solar heat. Plant Dis. 1984, 68, 474–476. [Google Scholar] [CrossRef] [Green Version]
- Greco, N.; Brandonisio, A.; Elia, F. Control of Ditylenchus dipsaci, Heterodera carotae and Meloidogyne javanica by solarization. Nematol. Medit. 1985, 13, 191–197. [Google Scholar]
- Barbercheck, M.E.; Von Broenbsen, S.L. Effect of soil solarization on plant-parasitic nematodes and Phytophtora cinnamon in South Africa. Plant Dis. 1986, 70, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Candido, V.; D’Addabbo, T.; Basile, M.; Castronuovo, D.; Miccolis, V. Greenhouse soil solarization: Effect on weeds, nematodes and yield of tomato and melon. Agron. Sust. Develop. 2008, 28, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Greco, N.; D’Addabbo, T.; Sasanelli, N.; Seinhorst, J.W.; Stea, V.; Brandonisio, A. Effects of temperature and length of exposure on the mortality of the carrot cyst nematode, Heterodera carotae. Int. J. Pest. Manag. 1998, 44, 99–107. [Google Scholar] [CrossRef]
- Greco, N.; Brandonisio, A.; D’Angelico, A. Control of the potato cyst nematode, Globodera rostochiensis, with soil solarization and nematicides. Nematol. Medit. 2000, 28, 93–99. [Google Scholar]
- Di Vito, M.; Greco, N.; Saxena, M.C. Effectiveness of soil solarization for control of Heterodera ciceri and Pratylenchus thornei on chickpea on in Syria. Nematol. Medit. 1991, 19, 109–111. [Google Scholar]
- D’Addabbo, T.; Sasanelli, N.; Greco, N.; Stea, V.; Brandonisio, A. Effect of Water, Soil Temperatures, and Exposure Times on the Survival of the Sugar Beet Cyst Nematode: Heterodera schachtii. Phytopathology 2005, 95, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Gaur, H.S.; Dhingra, A. Management of Meloidogyne incognita and Rotylenchulus reniformis in nursery-beds by soil solarization and organic soil amendment. Rev. Nematol. 1991, 14, 189–195. [Google Scholar]
- Sasanelli, N.; Greco, N. Formulation of a model to relate nematode populations with exposure times to a range of temperatures. Acta Hort. 2000, 532, 131–135. [Google Scholar] [CrossRef]
- Oka, Y.; Shapira, N.; Finec, P. Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Prot. 2007, 26, 1556–1565. [Google Scholar] [CrossRef]
- Moura, L.; Queiroz, I.; Mourao, I.; Brito, L.M. Effectiveness of soil solarization and biofumigation for the control of corky root and root-knot nematode Meloidogyne spp. on tomato. Acta Hort. 2012, 933, 399–406. [Google Scholar] [CrossRef]
- Butler, D.M.; Kokalis-Burelle, N.; Muramoto, J.; Shennan, C.; McColluma, G.; Rosskopfa, E.N. Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot. 2012, 39, 33–40. [Google Scholar] [CrossRef]
- Kiewnick, S.; Sikora, R.A. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol. Control 2006, 38, 179–186. [Google Scholar] [CrossRef]
- Castillo, J.D.; Lawrence, K.S.; Kloepper, J.W. Biocontrol of the Reniform Nematode by Bacillus firmus GB-126 and Paecilomyces lilacinus 251 on Cotton. Plant Dis. 2013, 97, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Bayer CropScience (It). Label of BioAct Prime DC. Label authorized by Italian Healthy Ministery, Decree N° 17118 of 27 February 2019. Available online: https://www.cropscience.bayer.it/-/media/prodotti/bioact-prime-dc/etichetta_bioact-prime-dc.pdf (accessed on 20 June 2021). (In Italian).
- Manzanilla-Lopez, R.H.; Esteves, I.; Finetti-Sialer, M.M.; Hirsch, P.R.; Ward, E.; Devonshire, J.; Hidalgo-Diaz, L. Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J. Nematol. 2013, 45, 1–7. [Google Scholar]
- Rosso, L.C.; Colagiero, M.; Salatino, N.; Ciancio, A. Effect of trophic conditions on gene expression of Pochonia chlamydosporia. Ann. Appl. Biol. 2014, 164, 232–243. [Google Scholar] [CrossRef]
- Ciancio, A.; Colagiero, M.; Ferrara, M.; Nigro, F.; Pentimone, I.; Rosso, L.C. Transcriptome changes in tomato roots during colonization by the endophytic fungus Pochonia chlamydosporia. Abstr. In Proceedings of the 5th Congress, Federation of the European Microbiologists Societies (FEMS), Leipzig, Germany, 21–25 July 2013. [Google Scholar]
- Zavala-Gonzales, E.A.; Escudero, N.; Lopez-Moya, F.; Aranda-Martinez, A.; Exposito, A.; Ricaño-Rodríguez, J.; Naranjo-Ortiz, M.A.; Ramírez-Lepe, M.; Lopez-Llorca, L.V. Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. Ann. App. Biol. 2015, 166, 472–483. [Google Scholar] [CrossRef]
- Sellitto, V.M.; Curto, G.; Dallavalle, E.; Ciancio, A.; Colagiero, M.; Pietrantonio, L.; Bireescu, G.; Stoleru, V.; Storari, M. Effect of Pochonia chlamydosporia-based formulates on the regulation of root-knot nematodes and plant growth response. Front Life Sci. 2016, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bishop, A.H.; Gowen, S.R.; Pembroke, B.; Trotter, J.R. Morphological and molecular characteristics of a new species of Pasteuria parasitic on Meloidogyne ardenensis. J. Invert. Pathol. 2007, 96, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.P.; Sayre, R.M. Pasteuria thorneii sp. nov. and Pasteuria penetrans sensu stricto emend. mycelial and endospore-forming bacteria parasitic, respectively, on plant-parasitic nematodes of the genera Pratylenchus and Meloidogyne. In Annales de l’Institut Pasteur/Microbiologie; Elsevier: Paris, France, 1988; Volume 139, pp. 11–31. [Google Scholar]
- Atibalentja, N.; Jakstys, B.P.; Noel, G.R. Life cycle, ultrastructure, and host specificity of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines. J. Nematol. 2004, 36, 171–180. [Google Scholar]
- EFSA. Peer review of the pesticide risk assessment of the active substance Pasteuria nishizawae Pn1. EFSA J. 2018, 5159. [Google Scholar] [CrossRef]
- Ghahremani, Z.; Escudero, N.; Beltrán-Anadón, D.; Saus, E.; Cunquero, M.; Andilla, J.; Loza-Alvarez, P.; Gabaldón, T.; Sorribas, F.J. Bacillus firmus Strain I-1582, a Nematode Antagonist by Itself and Through the Plant. Front Plant. Sci. 2020, 10, 796. [Google Scholar] [CrossRef]
- Geng, C.; Nie, X.; Tang, Z.; Yuyang Zhang, Y.; Lin, J.; Ming Sun, M.; Peng, D. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Sci. Reposts 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bayer CropScience (It). Label of Flocter. Label authorized by Italian Healthy Ministery, Decree N° 15841 of 30 June 2013. Available online: https://www.salute.gov.it/fitosanitariwsWeb_new/EtichettaServlet?id=27296 (accessed on 20 June 2021).
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Bacillus firmus I-1582. EFSA J. 2012, 10, 2868. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/2868 (accessed on 20 June 2021). [CrossRef]
- Jansson, R.K.; Dybas, R.A. Avermectins: Biochemical mode of action, biological activity and agricultural importance. In Insecticides with Novel Modes of Action: Mechanism and Application; Chapter 9; Ishaaya, I., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 152–170. [Google Scholar]
- Khalil, M.S. Abamectin and Azadirachtin as Eco-friendly Promising Biorational Tools in Integrated Nematodes Management Programs. J. Plant Pathol. Microb. 2013, 4, 174. [Google Scholar] [CrossRef] [Green Version]
- Faske, T.R.; Starr, J.L. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Abamectin. J. Nematol. 2006, 38, 240–244. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19259453 (accessed on 20 June 2021).
- Jayakumar, J. Bio-efficacy of Streptomyces avermitilis culture filtrates against root-knot nematode, Meloidogyne incognita and reniform nematodes, Rotylenchulus reniformis. J. Agric. Sci. 2009, 22, 567–571. [Google Scholar]
- Toderas, I.; Rusu, S.; Iurcu-Straistaru, E.; Erhan, D.; Poiras, N.; Bivol, A.; Sasanelli, N.; Rusu, V. Control of the root-knot nematode Meloidogyne incognita by Ivomec containing an exametabolite of Streptomyces avermitilis. In Proceedings of the 9th International Conference of Zoologists, Chisinau, Moldova, 12–13 October 2016; pp. 176–177. [Google Scholar]
- Samac, D.; Kinkel, L.L. Suppression of the root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant Soil 2001, 235, 35–44. [Google Scholar] [CrossRef]
- Sasanelli, N.; Toderas, I.; Veronico, P.; Iurcu-Straistaru, E.; Rusu, S.; Melillo, M.T.; Caboni, P. Abamectin Efficacy on the Potato Cyst Nematode Globodera pallida. Plants 2020, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, J.A.; Kiewnick, S.; Grimm, C.; Dababat, A.A.; Sikora, R.A. Efficacy of abamectin seed treatment on Pratylenchus zeae, Meloidogyne incognita and Heterodera schachtii. J. Plant Dis. Prot. 2009, 116, 124–128. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Ji, X.; Wang, K.; Wang, D.; Qiao, K. Effect of Abamectin on the Cereal Cyst Nematode (CCN, Heterodera avenae) and Wheat Yield. Plant Dis. 2017, 101, 973–976. [Google Scholar] [CrossRef] [Green Version]
- Toderas, I.; Erhan, D.; Rusu, S.; Iurcu-Straistaru, E.; Bivol, A.; Sasanelli, N.; Toderas, L. In vitro effect of abamectin on the carrot cyst nematode Heterodera carotae. In Proceedings of the 9th International Conference of Zoologists, Chisinau, Moldova, 12–13 October 2016; pp. 174–175. [Google Scholar]
- Ladurner, E.; Benuzzi, M.; Fiorentini, F.; Lucchi, A. Efficacy of NemGuard® Granules, a new nematicide based on garlic extract for the control of root-knot nematodes on horticultural crops. Acts Phytopathol. Days 2014, 1, 301–308. [Google Scholar]
- Eder, R.; Consoli, E.; Krauss, J.; Dahlin, P. Polysulfides Applied as Formulated Garlic Extract to Protect Tomato Plants against the Root-Knot Nematode Meloidogyne incognita. Plants 2021, 10, 394. [Google Scholar] [CrossRef]
- ECOspray Ltd. Label of Nemguard. Label authorized by Italian Healthy Ministery, Decree N° 116742, 28 January 2020. Available online: https://www.biogard.it/wp-content/uploads/2020/03/NEMGUARD_SC-1.pdf (accessed on 20 June 2021).
- Andrés, M.F.; González-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 2012, 11, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Jardim, I.N.; Oliveira, D.F.; Campos, V.P.; Silva, G.H.; Souza, P.E. Garlic essential oil reduces the population of Meloidogyne incognita in tomato plants. Europ. J. Plant Pathol. 2020, 157, 197–209. [Google Scholar] [CrossRef]
- Meyer, S.L.F.; Lakshman, D.K.; Zasada, I.A.; Vinyard, B.T.; Chitwood, D.J. Dose-response effects of clove oil from Syzygium aromaticum on the root-knot nematode Meloidogyne incognita. Pest Manag. Sci. 2008, 64, 223–229. [Google Scholar] [CrossRef]
- Djiwanti, S.R.; Supriadi, W.; Wiratno, W. Effectiveness of some clove and citronella oil based-pesticide formulas against root-knot nematode on ginger. IOP Conf. Ser. Earth Environ. Sci. 2019, 250, 012090. [Google Scholar] [CrossRef] [Green Version]
- Xeda Italia. Label of Eugenio. Registration N° 17616–5 June 2020. Available online: http://www.xeda.it/it/difesa-protezione/9/eugenio/X/17224 (accessed on 20 June 2021).
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Avato, P.; Laquale, S.; Argentieri, M.P.; Lamiri, A.; Radicci, V.; D’Addabbo, T. Nematicidal activity of essential oils from aromatic plants of Morocco. J. Pest. Sci. 2017, 90, 711–722. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Argentieri, M.P.; Laquale, S.; Candido, V.; Avato, P. Relationship between Chemical Compisition and Nematicidal Activity of Different Essential Oils. Plants 2020, 9, 1546. [Google Scholar] [CrossRef] [PubMed]
- Sasanelli, N.; Anton, A.; Takacs, T.; D’Addabbo, T.; Biro, I.; Malov, X. Influence of arbuscular mychorrizal fungi on the nematicidal properties of leaf extracts of Thymus vulgaris L. Helminthologia 2009, 46, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Mattarelli, P.; Epifano, F.; Minardi, P.; Di Vito, M.; Modesto, M.; Barbanti, L.; Bellardi, M.G. Chemical composition and antimicrobial activity of essential oils from aerial parts of Monarda didyma and Monarda fistulosa cultivated in Italy. J. Essent. Oil Bear. Plants 2017, 20, 76–86. [Google Scholar] [CrossRef]
- Eastman Italia. Label of Cedroz. Label Authorized by Italian Healthy Ministery, Decree N° 117415, 3 April 2019. Available online: https://mccaa.org.mt/media/3881/cedroz.pdf (accessed on 20 June 2021).
- Forghani, F.; Hajihassani, A. Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef]
- Lamberti, F.; Minuto, A.; Caroppo, S.; Sasanelli, N.; Ambrogioni, L.; D’Addabbo, T.; Carella, A.; Tescari, E.; Coiro, M.I.; Spotti, C.A. The EC formulation of the 1,3 dichloropropene as an alternative to methyl bromyde in the control of root-knot nematodes. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, San Diego, CA, USA, 5–9 November 2001. [Google Scholar]
- Sasanelli, N.; D’Aloisio, V.; Basile, M.; Rana, G.L. Control of Ditylenchus dipsaci on Onion by Chemical Treatments with Cadusafos, Fenamiphos and Aldicarb. Afro Asian J. Nematol. 1995, 5, 24–27. [Google Scholar]
- European Food Safety Authority (EFSA); Anastassiadou, M.; Auteri, M.A.D.; Brancato, A.; Bura, L.; Carrasco Cabrera, L.; Chaideftou, E.; Chiusolo, A.; Court Marques, D.; Crivellente, F.; et al. Review of the pesticide risk assessment of the active substance chloropicrin. EFSA J. 2020, 18, 6028. [Google Scholar] [CrossRef]
- Greco, N.; Lopez-Aranda, J.M.; Maccarini, C.A.; Saporiti, M.; de Tommaso, M.; Myrta, A. Sustainability of European vegetables and strawberry production in relation to fumigation practices in EU. Acta Hort. 2020, 1270. [Google Scholar] [CrossRef]
- Goggin, F.L.; Lingling Jia, L.; Shah, G.; Hebert, S.; Valerie, M.; Williamson, V.M.; Ullman, D.E. Heterologous Expression of the Mi-1.2 Gene from Tomato Confers Resistance Against Nematodes but Not Aphids. MPMI 2006, 19, 383–388. Available online: https://pubmed.ncbi.nlm.nih.gov/16610741/ (accessed on 14 February 2007). [CrossRef] [Green Version]
- Chen, S. Dynamics of Population Density and Virulence Phenotype of the Soybean Cyst Nematode as Influenced by Resistance Source Sequence and Tillage. Plant Disease 2020, 104, 2111–2122. [Google Scholar] [CrossRef]
- El-Sappah, A.H.; Islam, M.M.; El-awady, H.H.; Yan, S.; Qi, S.; Liu, J.; Cheng, G.; Liang, Y. Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode. Genes 2019, 10, 925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nematicide Actives | Bulgaria | Cyprus | France | Greece | Italy | Malta | Portugal | Spain | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC * | OF ** | PC | OF | PC | OF | PC | OF | PC | OF | PC | OF | PC | OF | PC | OF | |
Dazomet | Yes | Yes | --- | --- | --- | --- | Yes | Yes | Yes | Yes | --- | --- | Yes | Yes | --- | --- |
Metam potassium | --- | --- | --- | --- | --- | --- | Yes | Yes | Yes | Yes | --- | --- | --- | --- | --- | --- |
Metam sodium | --- | --- | Yes | Yes | --- | --- | Yes | Yes | Yes | Yes | --- | --- | Yes | Yes | --- | --- |
Fluopyram | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | --- | --- | Yes | Yes | Yes | Yes |
Fosthiazate | Yes | Yes | Yes | Yes | --- | Yes | Yes | Yes | Yes | Yes | --- | --- | --- | --- | Yes | Yes |
Oxamyl | Yes | Yes | Yes | Yes | --- | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Abamectin | Yes | X | Yes | X | --- | --- | Yes | --- | Yes | --- | --- | --- | --- | --- | Yes | --- |
Azadiractin | --- | --- | --- | --- | --- | --- | --- | --- | Yes | --- | --- | --- | --- | --- | --- | --- |
Bacillus firmus I-1582 | Yes | Yes | --- | --- | Yes | Yes | Yes | Yes | Yes | Yes | --- | --- | Yes | Yes | Yes | Yes |
Garlic extract | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | --- | --- | Yes | Yes | Yes | Yes |
Purpureocili. lilacinum strain 251 | --- | --- | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | --- | --- | Yes | Yes | Yes | Yes |
Terpenes (Thymol+Geraniol) | --- | --- | --- | --- | Yes | Yes | Yes | Yes | Yes | Yes | --- | --- | Yes | Yes | Yes | Yes |
Type of Nematicide | Name | Formulation | Concentration a.i. 1 (g/L or g/Kg) | Application Time | Dose (L or Kg/ha) | Covering with Plastic Film |
---|---|---|---|---|---|---|
Fumigant | Metam Na 2 | Liquid | 500 | Pre- transplant or sowing | 400–1500 | Yes |
Metam K 3 | Liquid | 500 | Pre- transplant or sowing | 400–750 | Yes | |
Dazomet | Granular | 990 | Pre- transplant or sowing | 500–700 | Yes | |
Non-fumigant | Fenamiphos 4 | Microencapsulated | 240 | At transplant or sowing | 42 | No |
Fosthiazate 5 | Granular (GR) or liquid (Lq) | GR-100 Lq-150 | At transplant or sowing | GR–30 Lq-10 | No | |
Oxamyl | Liquid | 100 | At transplant or sowing and during crop cycle | 10–20 | No | |
Fluopyram | Liquid | 400 | Pre- and post-transplant | 0.4–0.6 | No |
Bionematicide Based on | Name | Formulation | Concentration a.i. 1 (CFU/L or g/L) | Application Time | Dose (L or Kg/ha) | Number of Applications during the Crop Cycle |
---|---|---|---|---|---|---|
Fungi | Purpureocillium lilacinum strain 251 2 | Liquid | 5.1 × 1013 | Transplant and post-transplant | 0.75 | 3–4 |
Pochonia clamydosporia3 | Liquid | 1011 | Transplant and post-transplant | 2 | 2–3 | |
Bacteria | Pasteuria penetrans | In advanced state of evaluation by the EU phytosanitary commission | ||||
Bacillus firmus4 (strain I 1582) | Wettable powder | 3.55 × 1012 | Before transplant or sowing (A) and after (B) | 80 (A) or 40 + 40 (B) | 1 | |
Bacteria derived product | Abamectin 5 | Liquid | 20 | Immediately after transplant (first application) | 5 | 5 (tomato) 3 (eggplant, pepper, cucurbits) |
Type of Product | Name | Formulation | Concentration a.i. 1 (g/L or g/Kg) | Application Time | Dose (L or Kg/ha) | Number of Applications during the Crop Cycle |
---|---|---|---|---|---|---|
Extract | Garlic 2 | Granular (GR) Concentrated suspension (CS) | 450 (GR) 999 (CS) | Transplant or sowing (GR) Pre- and post-transplant or sowing (CS) | 20–25 (GR) 2–4 (CS) | Max 6 (for CS formulation every 2 weeks) |
Oil | Clove 3 | Concentrated emulsion (CE) | 203 | Pre- and post-transplant or sowing | 50 (pre) 30–50 (post) | Max 4 (every 10 days) |
Thymol and geraniol 4 | Encapsulated aqueous solution | 41 (thymol) + 121 (geraniol) | Pre- and post-transplant or sowing | 9 | 6 (every 2 weeks) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasanelli, N.; Konrat, A.; Migunova, V.; Toderas, I.; Iurcu-Straistaru, E.; Rusu, S.; Bivol, A.; Andoni, C.; Veronico, P. Review on Control Methods against Plant Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union. Agriculture 2021, 11, 602. https://doi.org/10.3390/agriculture11070602
Sasanelli N, Konrat A, Migunova V, Toderas I, Iurcu-Straistaru E, Rusu S, Bivol A, Andoni C, Veronico P. Review on Control Methods against Plant Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union. Agriculture. 2021; 11(7):602. https://doi.org/10.3390/agriculture11070602
Chicago/Turabian StyleSasanelli, Nicola, Alena Konrat, Varvara Migunova, Ion Toderas, Elena Iurcu-Straistaru, Stefan Rusu, Alexei Bivol, Cristina Andoni, and Pasqua Veronico. 2021. "Review on Control Methods against Plant Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union" Agriculture 11, no. 7: 602. https://doi.org/10.3390/agriculture11070602
APA StyleSasanelli, N., Konrat, A., Migunova, V., Toderas, I., Iurcu-Straistaru, E., Rusu, S., Bivol, A., Andoni, C., & Veronico, P. (2021). Review on Control Methods against Plant Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union. Agriculture, 11(7), 602. https://doi.org/10.3390/agriculture11070602