Effect of 25-Hydroxycholecalciferol with Different Vitamin D3 Levels in the Hens Diet in the Rearing Period on Growth Performance, Bone Quality, Egg Production, and Eggshell Quality
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Birds, Diets, and Management
2.2. Data Collection and Sample Collection
2.3. Eggshell Quality
2.4. Serum Parameters Analysis
2.5. Keel Development and Calcification
2.6. Tibia Quality
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Laying Performance and Eggshell Quality
3.3. Serum Parameters
3.4. Keel Development and Calcification
3.5. Tibia Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, W.K.; Bloomfield, S.A.; Sugiyama, T.; Ricke, S.C. Concepts and methods for understanding bone metabolism in laying hens. World’s Poult. Sci. 2012, 68, 71–82. [Google Scholar] [CrossRef]
- Nys, Y.; Le Roy, N. Chapter 22—Calcium Homeostasis and Eggshell Biomineralization in Female Chicken. In Vitamin D, 4th ed.; Feldman, D., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 361–382. [Google Scholar]
- Kerschnitzki, M.; Zander, T.; Zaslansky, P.; Fratzl, P.; Shahar, R.; Wagermaier, W. Rapid alterations of avian medullary bone material during the daily egg-laying cycle. Bone 2014, 69, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Chargo, N.J.; Robison, C.I.; Akaeze, H.O.; Baker, S.L.; Toscano, M.J.; Makagon, M.M.; Karcher, D.M. Keel bone differences in laying hens housed in enriched colony cages. Poult. Sci. 2019, 98, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Livingston, K.A.; Persia, M.E. Effect of high concentrations of dietary vitamin D3 on pullet and laying hen performance, skeleton health, eggshell quality, and yolk vitamin D3 content when fed to W36 laying hens from day of hatch until 68 wk of age. Poult. Sci. 2019, 98, 6713–6720. [Google Scholar] [CrossRef]
- Dijkslag, M.A.; Kwakkel, R.P.; Martin-Chaves, E.; Alfonso-Carrillo, C.; Walvoort, C.; Navarro-Villa, A. The effects of dietary calcium and phosphorus level, and feed form during rearing on growth performance, bone traits and egg production in brown egg-type pullets from 0 to 32 weeks of age. Poult. Sci. 2021, 100, 101130. [Google Scholar] [CrossRef] [PubMed]
- de Matos, R. Calcium metabolism in birds. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 59–82. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, C.C.; Portsmouth, J.I. Vitamin requirements and allowances for poultry. Recent Adv. Anim. Nutr. 1989, 14, 35–86. [Google Scholar]
- Mattila, P.; Valaja, J.; Rossow, L.; Venalainen, E.; Tupasela, T. Effect of vitamin D2- and D3-enriched diets on egg vitamin D content, production, and bird condition during an entire production period. Poult. Sci. 2004, 83, 433–440. [Google Scholar] [CrossRef]
- Plaimast, H.; Kijparkorn, S.; Ittitanawong, P. Effects of vitamin D3 and calcium on productive performance, egg quality and vitamin D3 content in egg of second production cycle hens. Thai J. Vet. Med. 2015, 45, 189–195. [Google Scholar]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Bederska-Lojewska, D.; Józefiak, D. Efficacy of dietary vitamin D and its metabolites in poultry-review and implications of the recent studies. Worlds Poult. Sci. J. 2017, 73, 57–68. [Google Scholar] [CrossRef]
- Chen, C.; Turner, B.; Applegate, T.J.; Litta, G.; Kim, W.K. Role of long-term supplementation of 25-hydroxyvitamin D(3) on egg production and egg quality of laying hen. Poult. Sci. 2020, 99, 6899–6906. [Google Scholar] [CrossRef]
- Bar, A.; Sharvit, M.; Noff, D.; Edelstein, S.; Hurwitz, S. Absorption and excretion of cholecalciferol and of 25-hydroxycholecalciferol and metabolites in birds. J. Nutr. 1980, 110, 1930–1934. [Google Scholar] [CrossRef] [PubMed]
- Atencio, A.; Edwards, H.M., Jr.; Pesti, G.M. Effect of the level of cholecalciferol supplementation of broiler breeder hen diets on the performance and bone abnormalities of the progeny fed diets containing various levels of calcium or 25-hydroxycholecalciferol. Poult. Sci. 2005, 84, 1593–1603. [Google Scholar] [CrossRef]
- Adhikari, R.; White, D.; House, J.D.; Kim, W.K. Effects of additional dosage of vitamin D3, vitamin D2, and 25-hydroxyvitamin D3 on calcium and phosphorus utilization, egg quality and bone mineralization in laying hens. Poult. Sci. 2020, 99, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Koreleski, J.; Świątkiewicz, S. Efficacy of different levels of a cholecalciferol 25-OH-derivative in diets with two limestone forms in laying hen nutrition. J. Anim. Feed Sci. 2005, 14, 305–315. [Google Scholar] [CrossRef]
- Sotosalanova, M.F.; Molinero, A. Efficacy of the use of Hy-D® in laying hens. In Proceedings of the 11th European Symposium on the Quality of Eggs and Egg Products, Doorwerth, The Netherlands, 23–26 May 2005; pp. 23–46. [Google Scholar]
- Silva, F.A. Effects of Dietary 25-Hydroxycholecalciferol on Growth, Production Performance, Eggshell Quality and Bone Traits of Brown Egg Layers Housed under Commercial Conditions. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2017. [Google Scholar]
- Mattila, P.H.; Valkonen, E.; Valaja, J. Effect of different vitamin D supplementations in poultry feed on vitamin D content of eggs and chicken meat. J. Agric. Food Chem. 2011, 59, 8298–8303. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.; Murakami, A.; Guerra, A.; Ospinas-Rojas, I.; Ferreira, M.; Fanhani, J. Effect of different vitamin D sources and calcium levels in the diet of layers in the second laying cycle. Braz. J. Poult. Sci. 2014, 16, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Qiu, L.; Gong, H.; Celi, P.; Yan, L.; Ding, X.; Bai, S.; Zeng, Q.; Mao, X.; Xu, S.; et al. Effect of dietary 25-hydroxycholecalciferol supplementation and high stocking density on performance, egg quality, and tibia quality in laying hens. Poult. Sci. 2020, 99, 2608–2615. [Google Scholar] [CrossRef]
- Käppeli, S.; Fröhlich, E.; Gebhardt-Henrich, S.G.; Pfulg, A.; Schäublin, H.; Zweifel, R.; Wiedmer, H.; Stoffel, M.H. Effects of dietary supplementation with synthetic vitamin D3 and 25-hydroxycholecalciferol on blood calcium and phosphate levels and performance in laying hens. Archiv Für Geflügelkunde 2011, 75, 179–184. [Google Scholar]
- Zhang, H.Y.; Liao, H.; Zeng, Q.F.; Wang, J.P.; Ding, X.M.; Bai, S.P.; Zhang, K.Y. A study on the sternum growth and mineralization kinetic of meat duck from 35 to 63 days of age. Poult. Sci. 2017, 96, 4103–4115. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.; Caston, L.J. Growth and development of Leghorn pullets subjected to abrupt changes in environmental temperature and dietary energy level. Poult. Sci. 1991, 70, 1732–1738. [Google Scholar] [CrossRef]
- Torres, C.A.; Vieira, S.L.; Reis, R.N.; Ferreira, A.K.; Silva, P.X.D.; Furtado, F.V.F. Productive performance of broiler breeder hens fed 25-hydroxycholecalciferol. Rev. Bras. Zootec. 2009, 38, 1286–1290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Zeng, Q.F.; Bai, S.P.; Wang, J.P.; Ding, X.M.; Xuan, Y.; Su, Z.W.; Fraley, G.S.; Yao, B.; Zhang, K.Y. Effect of dietary 25-hydroxycholecalciferol on the sternal mass of meat ducks under different vitamin regimens. Poult. Sci. 2020, 99, 1241–1253. [Google Scholar] [CrossRef]
- Chen, C.; Turner, B.; Applegate, T.J.; Litta, G.; Kim, W.K. Role of long-term supplementation of 25-hydroxyvitamin D(3) on laying hen bone 3-dimensional structural development. Poult. Sci. 2020, 99, 5771–5782. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Ajibade, D.; Benn, B.S.; Feng, J.; Joshi, S.S. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. J. Steroid Biochem. Mol. Biol. 2010, 121, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Goltzman, D. Functions of vitamin D in bone. Histochem. Cell Biol. 2018, 149, 305–312. [Google Scholar] [CrossRef]
- Kim, W.K.; Donalson, L.M.; Bloomfield, S.A.; Hogan, H.A.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Molt performance and bone density of cortical, medullary, and cancellous bone in laying hens during feed restriction or alfalfa-based feed molt. Poult. Sci. 2007, 86, 1821. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, C.C. Overview of bone biology in the egg-laying hen. Poult. Sci. 2004, 83, 193–199. [Google Scholar] [CrossRef]
- Fritts, C.A.; Waldroup, P.W. Effect of Source and Level of Vitamin D on Live Performance and Bone Development in Growing Broilers. J. Appl. Poult. Res. 2003, 12, 25–45. [Google Scholar] [CrossRef]
- Wideman, R.F., Jr.; Blankenship, J.; Pevzner, I.Y.; Turner, B.J. Efficacy of 25-OH Vitamin D3 prophylactic administration for reducing lameness in broilers grown on wire flooring. Poult. Sci. 2015, 94, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Jung, L.; Niebuhr, K.; Hinrichsen, L.K.; Gunnarsson, S.; Brenninkmeyer, C.; Bestman, M.; Heerkens, J.; Ferrari, P.; Knierim, U. Possible risk factors for keel bone damage in organic laying hens. Animal 2019, 13, 2356–2364. [Google Scholar] [CrossRef] [PubMed]
- Käppeli, S.; Gebhardt-Henrich, S.G.; Fröhlich, E.; Pfulg, A.; Schäublin, H.; Stoffel, M.H. Effects of housing, perches, genetics, and 25-hydroxycholecalciferol on keel bone deformities in laying hens. Poult. Sci. 2011, 90, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
Ingredient (%) | Week 0–3 | Week 4–8 | Week 9–17 | Week 18–19 | Week 20 |
---|---|---|---|---|---|
Corn | 59.92 | 63.98 | 68.34 | 62.42 | 57 |
Soybean meal | 34.9 | 31.19 | 17.8 | 29.06 | 28.36 |
Wheat bran | 9.22 | ||||
Soybean oil | 0.44 | 0.52 | 0.75 | 1.5 | 3.24 |
DL-methionine | 0.21 | 0.11 | 0.17 | 0.18 | 0.29 |
L-lysine HCl | 0.17 | 0.03 | |||
L-threonine | 0.01 | 0.02 | |||
Threonine | 0.04 | ||||
NaCl | 0.18 | 0.17 | 0.16 | 0.16 | 0.16 |
Choline chloride, 60% | 0.05 | 0.05 | 0.05 | 0.07 | 0.07 |
NaHCO3 | 0.25 | ||||
Calcium carbonate | 1.27 | 1.26 | 1.36 | 3.9 | 8.67 |
Calcium hydrophosphate | 2.08 | 1.95 | 1.4 | 1.95 | 1.57 |
Mineral premix 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.15 |
Vitamin premix 2 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
Antioxidant (Ethoxyquin) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Total | 100 | 100 | 100 | 100 | 100 |
Calculated nutrient content, % | |||||
ME (kcal/kg) | 2753 | 2789 | 2783 | 2775 | 2738 |
Crude protein | 20 | 18.5 | 14.5 | 17.5 | 16.82 |
Calcium | 1.05 | 1 | 0.9 | 2 | 3.73 |
Non-phytate P | 0.48 | 0.45 | 0.37 | 0.45 | 0.38 |
Lysine | 1.2 | 1 | 0.68 | 0.92 | 0.88 |
Methionine | 0.51 | 0.4 | 0.39 | 0.45 | 0.55 |
Tryptophan | 0.23 | 0.21 | 0.17 | 0.22 | 0.19 |
Threonine | 0.8 | 0.71 | 0.54 | 0.67 | 0.65 |
Item 1 | 300 IU/kg VD3 | 2800 IU/kg VD3 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
25-OHD(−) | 25-OHD(+) | 25-OHD(−) | 25-OHD(+) | VD3 | 25-OHD | VD3 × 25-OHD | |||
BW (g) | 1 d | 41.8 | 41.7 | 41.8 | 41.6 | 0.2 | 0.793 | 0.371 | 0.930 |
8 weeks | 649.2 | 649.5 | 663.4 | 657.3 | 8.5 | 0.216 | 0.740 | 0.715 | |
19 weeks | 1611.5 | 1590.6 | 1626.5 | 1627.6 | 18.4 | 0.177 | 0.596 | 0.559 | |
BWG (g) | 1–8 weeks | 607.4 | 607.8 | 621.5 | 615.7 | 8.5 | 0.215 | 0.757 | 0.719 |
9–19 weeks | 962.3 | 941.1 | 963.1 | 970 | 16.2 | 0.369 | 0.669 | 0.396 | |
1–19 weeks | 1569.7 | 1548.9 | 1584.7 | 1585.9 | 18.4 | 0.176 | 0.602 | 0.558 | |
BWU (%) | 8 weeks | 64.6 | 73.8 | 79.4 | 72.8 | 4.0 | 0.079 | 0.728 | 0.047 |
19 weeks | 76.0 | 76.0 | 75.6 | 72.0 | 3.7 | 0.651 | 0.711 | 0.711 | |
ADFI (g) | 1–8 weeks | 30.7 | 30.3 | 30.3 | 29.6 | 0.3 | 0.480 | 0.246 | 0.829 |
9–19 weeks | 73.8 | 72.8 | 72.8 | 72.5 | 0.8 | 0.430 | 0.428 | 0.664 | |
1–19 weeks | 55.0 | 54.3 | 54.2 | 53.9 | 0.4 | 0.142 | 0.215 | 0.602 | |
SL (mm) | 19 weeks | 100.8 | 101.6 | 101.8 | 102.1 | 0.6 | 0.184 | 0.260 | 0.667 |
Item 2 | 300 IU/kg VD3 | 2800 IU/kg VD3 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
25-OHD(−) | 25-OHD(+) | 25-OHD(−) | 25-OHD(+) | VD3 | 25-OHD | VD3 × 25-OHD | ||
HDLR, % | 91.0 | 91.4 | 91.7 | 87.7 | 1.5 | 0.320 | 0.234 | 0.151 |
HHLR, % | 87.9 | 90.2 | 88.8 | 86.0 | 1.7 | 0.332 | 0.899 | 0.144 |
AEW, g | 62.6 | 63.0 | 62.6 | 63.0 | 0.4 | 0.959 | 0.361 | 0.929 |
ENHD, No | 327 | 329 | 330 | 316 | 5.2 | 0.319 | 0.233 | 0.148 |
ENHH, No | 316 | 325 | 319 | 310 | 6.0 | 0.331 | 0.899 | 0.145 |
HDEW, kg | 20.5 | 20.7 | 20.7 | 19.9 | 0.4 | 0.386 | 0.461 | 0.220 |
HHEW, kg | 19.8 | 20.5 | 20 | 19.5 | 0.4 | 0.369 | 0.889 | 0.188 |
QENHD, No | 323 | 325 | 325 | 310 | 5.6 | 0.274 | 0.254 | 0.139 |
QENHH, No | 312 | 321 | 315 | 304 | 6.2 | 0.281 | 0.874 | 0.130 |
Item 1 | 300 IU/kg VD3 | 2800 IU/kg VD3 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
25-OHD(−) | 25-OHD(+) | 25-OHD(−) | 25-OHD(+) | VD3 | 25-OHD | VD3 × 25-OHD | ||
Eggshell strength, kgf | ||||||||
20 weeks | 4.99 | 4.80 | 4.82 | 4.86 | 0.11 | 0.640 | 0.534 | 0.317 |
40 weeks | 4.76 | 4.76 | 4.57 | 4.54 | 0.14 | 0.179 | 0.911 | 0.951 |
60 weeks | 4.26 | 4.25 | 4.21 | 4.31 | 0.15 | 0.984 | 0.753 | 0.717 |
70 weeks | 4.20 | 4.27 | 4.11 | 4.25 | 0.18 | 0.766 | 0.561 | 0.844 |
Eggshell thickness, mm | ||||||||
20 weeks | 0.433 | 0.437 | 0.436 | 0.439 | 0.01 | 0.793 | 0.707 | 0.991 |
40 weeks | 0.383 | 0.390 | 0.390 | 0.382 | 0.01 | 0.975 | 0.950 | 0.254 |
60 weeks | 0.382 | 0.385 | 0.382 | 0.380 | 0.01 | 0.806 | 0.907 | 0.773 |
70 weeks | 0.384 | 0.368 | 0.364 | 0.378 | 0.01 | 0.593 | 0.900 | 0.107 |
Eggshell relative weight, % | ||||||||
20 weeks | 12.3 | 12.2 | 12.1 | 12.6 | 0.2 | 0.748 | 0.239 | 0.068 |
40 weeks | 11.4 | 11.5 | 11.2 | 11.4 | 0.1 | 0.163 | 0.353 | 0.626 |
60 weeks | 11.3 | 11.3 | 11.2 | 11.2 | 0.2 | 0.789 | 0.957 | 0.879 |
70 weeks | 10.9 | 10.6 | 10.4 | 10.7 | 0.2 | 0.351 | 0.889 | 0.171 |
Item 1 | 300 IU/kg VD3 | 2800 IU/kg VD3 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
25-OHD(−) | 25-OHD(+) | 25-OHD(−) | 25-OHD(+) | VD3 | 25-OHD | VD3 × 25-OHD | ||
10 weeks | ||||||||
Ca, mmol/L | 0.67 a | 1.06 ab | 0.62 a | 1.24 b | 0.16 | 0.659 | 0.006 | 0.462 |
Pi, mmol/L | 0.67 | 0.87 | 0.70 | 1.04 | 0.17 | 0.571 | 0.118 | 0.688 |
25-OHD, ng/mL | 27.0 a | 30.1 b | 28.6 ab | 30.2 b | 0.89 | 0.280 | 0.009 | 0.351 |
PTH, pg/mL | 112.4 | 108.6 | 107.5 | 107.3 | 6.7 | 0.652 | 0.770 | 0.796 |
20 weeks | ||||||||
Ca, mmol/L | 2.03 a | 2.78 ab | 2.8 ab | 3.29 b | 0.3 | 0.038 | 0.044 | 0.640 |
Pi, mmol/L | 0.84 | 0.86 | 0.98 | 1.23 | 0.38 | 0.123 | 0.215 | 0.197 |
25-OHD, ng/mL | 32.6 a | 46.3 b | 38.7 ab | 50.4 b | 4.2 | 0.249 | 0.011 | 0.823 |
PTH, pg/mL | 105.3 | 107.4 | 115.2 | 98.1 | 9.5 | 0.827 | 0.341 | 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhang, K.; Bai, S.; Wang, J.; Zeng, Q.; Peng, H.; Su, Z.; Xuan, Y.; Qi, S.; Ding, X. Effect of 25-Hydroxycholecalciferol with Different Vitamin D3 Levels in the Hens Diet in the Rearing Period on Growth Performance, Bone Quality, Egg Production, and Eggshell Quality. Agriculture 2021, 11, 698. https://doi.org/10.3390/agriculture11080698
Li D, Zhang K, Bai S, Wang J, Zeng Q, Peng H, Su Z, Xuan Y, Qi S, Ding X. Effect of 25-Hydroxycholecalciferol with Different Vitamin D3 Levels in the Hens Diet in the Rearing Period on Growth Performance, Bone Quality, Egg Production, and Eggshell Quality. Agriculture. 2021; 11(8):698. https://doi.org/10.3390/agriculture11080698
Chicago/Turabian StyleLi, Dongdong, Keying Zhang, Shiping Bai, Jianping Wang, Qiufeng Zeng, Huanwei Peng, Zuowei Su, Yue Xuan, Sharina Qi, and Xuemei Ding. 2021. "Effect of 25-Hydroxycholecalciferol with Different Vitamin D3 Levels in the Hens Diet in the Rearing Period on Growth Performance, Bone Quality, Egg Production, and Eggshell Quality" Agriculture 11, no. 8: 698. https://doi.org/10.3390/agriculture11080698
APA StyleLi, D., Zhang, K., Bai, S., Wang, J., Zeng, Q., Peng, H., Su, Z., Xuan, Y., Qi, S., & Ding, X. (2021). Effect of 25-Hydroxycholecalciferol with Different Vitamin D3 Levels in the Hens Diet in the Rearing Period on Growth Performance, Bone Quality, Egg Production, and Eggshell Quality. Agriculture, 11(8), 698. https://doi.org/10.3390/agriculture11080698