Wheat Straw Incorporation Affecting Soil Carbon and Nitrogen Fractions in Chinese Paddy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Soil Sampling and Analysis
2.3. Statistical Analysis
3. Results and Analysis
3.1. Soil pH and Water Content
3.2. SOC and TN
3.3. Soil MBC and MBN
3.4. Soil WSOC and WSTN
3.5. Soil LOC and LTN
3.6. Correlations of Soil C/N Ratio, and C and N Fractions
3.7. Rice Grain Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1626. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.L.; Wang, S.W.; Yan, X.Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agric. Ecosyst. Environ. 2014, 197, 118–127. [Google Scholar] [CrossRef]
- Yu, Q.G.; Hu, X.; Ma, J.W.; Ye, J.; Sun, W.C.; Wang, Q.; Lin, H. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil Till. Res. 2020, 196, 104483. [Google Scholar] [CrossRef]
- Li, N.; Ma, X.H.; Bai, J.Z.; Xu, H.W.; Feng, Y.Z.; Ren, G.X.; Yang, G.H.; Han, X.H.; Wang, X.J.; Ren, C.J.; et al. Plastic film mulching mitigates the straw-induced soil greenhouse gas emissions in summer maize field. Appl. Soil Ecol. 2021, 162, 103876. [Google Scholar] [CrossRef]
- Beare, M.H.; Hus, S.; Coleman, D.C.; Hendrix, P.F. Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils. Appl. Soil Ecol. 1997, 5, 211–219. [Google Scholar] [CrossRef]
- Mandal, N.; Dwivedi, B.S.; Meena, M.C.; Singh, D.; Datta, S.P.; Tomar, R.K.; Sharma, B.M. Effect of induced defoliation in pigeonpea, farmyard manure and sulphitation pressmud on soil organic carbon fractions, mineral nitrogen and crop yields in a pigeonpea−wheat cropping system. Field Crop. Res. 2013, 154, 178–187. [Google Scholar] [CrossRef]
- Yuan, G.Y.; Huang, W.W.; Song, H.; Lu, D.J.; Chen, X.Q.; Wang, H.Y.; Zhou, J.M. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system. Soil Till. Res. 2021, 209, 104958. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C.M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dai, M.W.; Dai, S.L.; Dong, X.J. Current status and environment impact of direct straw return in China’s cropland-A review. Ecotox. Environ. Safe. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Tan, D.; Jin, J.; Huang, S.; Li, S.; He, P. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Agric. Sci. China 2007, 6, 200–207. [Google Scholar]
- Zhang, P.; Wei, T.; Li, Y.L.; Wang, K.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the stratification of the soil organic C, total N and C:N ratio in a semiarid region of China. Soil Till. Res. 2015, 153, 28–35. [Google Scholar] [CrossRef]
- Luo, S.S.; Gao, Q.; Wang, S.J.; Tian, L.; Zhou, Q.; Li, X.J.; Tian, C.J. Long-term fertilization and residue return affect soil stoichiometry characteristics and labile soil organic matter fractions. Pedosphere 2020, 30, 703–713. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.L.; Wei, T.; Yang, Z.; Jia, Z.K.; Yang, B.P.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Till. Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Wang, X.J.; Jia, Z.K.; Liang, L.Y.; Zhao, Y.F.; Yang, B.P.; Ding, R.X.; Wang, J.P.; Nie, J.F. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop. Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Li, T.; Gao, J.S.; Bai, L.Y.; Wang, Y.N.; Huang, J.; Kumar, M.; Zeng, X.B. Influence of green manure and rice straw management on soil organic carbon, enzyme activities, and rice yield in red paddy soil. Soil Till. Res. 2019, 195, 104428. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.L.; Zhang, Y.; Yin, C.B.; Richel, A. The effect of corn straw return on corn production in Northeast China: An integrated regional evaluation with meta-analysis and system dynamics. Resour. Conserv. 2021, 167, 105402. [Google Scholar] [CrossRef]
- Wissing, L.; Kölbl, A.; Häusler, W.; Schad, P.; Cao, Z.H.; Kögel-Knabner, I. Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. Soil Till. Res. 2013, 126, 60–71. [Google Scholar] [CrossRef]
- Dai, W.; Gao, H.; Sha, Z.M.; Penttinen, P.; Fang, K.K.; Wang, J.; Cao, L.K. Changes in soil organic carbon fractions in response to wheat straw incorporation in a subtropical paddy field in China. J. Plant Nutr. Soil Sci. 2021, 184, 198–207. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; International Soil and Reference Information Centre, Food and Agriculture Organisation: Wageningen, The Netherlands, 2002. [Google Scholar]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.C. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Wu, J.S.; Jiang, P.K.; Chang, S.X.; Xu, Q.F.; Yang, L. Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China. Can. J. Soil Sci. 2010, 90, 27–36. [Google Scholar] [CrossRef]
- Ren, C.J.; Kang, D.; Wu, J.P.; Zhao, F.Z.; Yang, G.H.; Han, X.H.; Feng, Y.Z.; Ren, G.X. Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma 2016, 282, 103–111. [Google Scholar] [CrossRef]
- Yagi, R.; Ferreira, M.E.; Cruz, M.C.P.; Barbosa, J.C. Soil organic matter as a function of nitrogen fertilization in crop succession. Sci. Agric. 2005, 62, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Sparling, G.P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust. J. Soil Res. 1992, 30, 195–207. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Zhou, G.P.; Gao, S.J.; Lu, Y.H.; Liao, Y.L.; Nie, J.; Cao, W.D. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil Till. Res. 2020, 197, 104499. [Google Scholar] [CrossRef]
- Liu, S.; Huang, D.; Chen, A.; Wei, W.; Brookes, P.C.; Li, Y.; Wu, J. Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics. Agric. Ecosyst. Environ. 2014, 184, 51–58. [Google Scholar] [CrossRef]
- Rochett, P.; Gregorich, E.G. Dynamics of soil microbial biomass C, soluble organic C and CO2 evolution after three years of manure application. Can. J. Soil Sci. 1998, 78, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, S.R.; Pu, Y.L.; Li, T.; Xu, X.X.; Jia, Y.X.; Deng, O.P.; Gong, G.S. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Till. Res. 2016, 155, 289–297. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Ladd, J.N. Microbial biomass in soil: Measurement and turnover. In Soil Biochemistry; Paul, E.A., Ladd, J.N., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 415–471. [Google Scholar]
- Huang, W.; Wu, J.F.; Pan, X.H.; Tan, X.M.; Zeng, Y.J.; Shi, Q.H.; Liu, T.J.; Zeng, Y.H. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China. J. Integr. Agr. 2021, 20, 236–247. [Google Scholar] [CrossRef]
- Lovell, R.D.; Jarvis, S.C.; Bardgett, R.D. Soil microbial biomass and activity in long-term grassland: Effects of management changes. Soil Biol. Biochem. 1995, 27, 969–975. [Google Scholar] [CrossRef]
- Kroer, N. Bacterial growth efficiency on natural dissolved organic matter. Limnol. Oceanogr. 1993, 38, 1282–1290. [Google Scholar] [CrossRef]
pH | BD (g cm−3) | SOC (g kg−1) | TN (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|
7.08 (0.02) † | 1.16 (0.01) | 16.59 (0.20) | 1.96 (0.03) | 140.47 (10.71) | 36.51 (0.35) | 146.00 (3.08) |
Soil Layers (cm) | Treatments | MBC/SOC (%) | MBN/TN (%) | MBC/MBN | WSOC/SOC (%) | WSTN/TN (%) | WSOC/WSTN | LOC/SOC (%) | LTN/TN (%) | SOC/TN |
---|---|---|---|---|---|---|---|---|---|---|
0–5 | CK | 2.04 ± 0.16 b | 1.44 ± 0.03 b | 12.02 ± 1.10 a | 1.01 ± 0.17 b | 0.65 ± 0.03 b | 13.29 ± 2.90 a | 3.05 ± 0.10 c | 2.09 ± 0.04 c | 8.48 ± 0.08 b |
NPK | 2.24 ± 0.10 ab | 1.49 ± 0.06 b | 13.05 ± 0.49 a | 1.13 ± 0.06 ab | 0.70 ± 0.03 b | 13.88 ± 0.54 a | 3.38 ± 0.05 b | 2.19 ± 0.07 c | 8.64 ± 0.28 b | |
MSNPK | 2.39 ± 0.18 a | 1.62 ± 0.09 ab | 12.74 ± 0.17 a | 1.22 ± 0.15 ab | 0.72 ± 0.08 b | 14.67 ± 1.66 a | 3.61 ± 0.26 ab | 2.34 ± 0.02 b | 8.66 ± 0.35 b | |
HSNPK | 2.52 ± 0.21 a | 1.71 ± 0.17 a | 13.59 ± 1.27 a | 1.29 ± 0.13 a | 0.85 ± 0.05 a | 14.10 ± 2.15 a | 3.81 ± 0.10 a | 2.55 ± 0.12 a | 9.17 ± 0.24 a | |
5–10 | CK | 1.89 ± 0.14 b | 1.27 ± 0.11 b | 12.87 ± 2.13 a | 0.90 ± 0.10 a | 0.55 ± 0.04 a | 14.30 ± 2.83 a | 2.79 ± 0.22 b | 1.82 ± 0.15 b | 8.59 ± 0.15 a |
NPK | 1.87 ± 0.10 b | 1.32 ± 0.18 b | 12.78 ± 2.54 a | 0.92 ± 0.06 a | 0.56 ± 0.09 a | 14.77 ± 1.74 a | 2.79 ± 0.16 b | 1.88 ± 0.13 b | 8.85 ± 0.17 a | |
MSNPK | 2.00 ± 0.19 b | 1.41 ± 0.08 ab | 12.57 ± 0.52 a | 1.06 ± 0.09 a | 0.60 ± 0.10 a | 15.87 ± 2.59 a | 3.06 ± 0.25 b | 2.01 ± 0.04 ab | 8.90 ± 0.27 a | |
HSNPK | 2.50 ± 0.27 a | 1.58 ± 0.07 a | 14.11 ± 1.34 a | 1.06 ± 0.15 a | 0.61 ± 0.02 a | 15.56 ± 2.73 a | 3.57 ± 0.31 a | 2.19 ± 0.08 a | 8.90 ± 0.48 a | |
10–20 | CK | 1.68 ± 0.08 a | 0.96 ± 0.29 b | 15.75 ± 2.20 a | 0.71 ± 0.02 b | 0.53 ± 0.03 a | 11.62 ± 1.61 a | 2.39 ± 0.10 b | 1.49 ±0.29 b | 8.73 ± 0.87 a |
NPK | 1.67 ± 0.14 a | 1.08 ± 0.02 ab | 13.22 ± 0.92 a | 0.74 ± 0.02 b | 0.53 ± 0.09 a | 12.15 ± 1.95 a | 2.41 ±0.16 b | 1.61 ± 0.10 ab | 8.57 ± 0.47 a | |
MSNPK | 1.85 ± 0.10 a | 1.17 ± 0.12 ab | 14.20 ± 1.48 a | 0.86 ± 0.07 a | 0.55 ± 0.08 a | 14.10 ± 2.09 a | 2.71 ± 0.03 a | 1.72 ± 0.18 ab | 8.90 ± 0.20 a | |
HSNPK | 1.90 ± 0.16 a | 1.35 ± 0.17 a | 13.03 ± 1.97 a | 0.92 ± 0.07 a | 0.60 ± 0.02 a | 13.89 ± 0.75 a | 2.82 ± 0.20 a | 1.95 ± 0.19 a | 9.13 ± 0.13 a | |
20–30 | CK | 1.87 ± 0.27 a | 0.95 ± 0.07 a | 15.73 ± 1.53 a | 0.82 ± 0.12 a | 0.58 ± 0.09 a | 11.44 ± 0.32 a | 2.69 ± 0.39 a | 1.53 ± 0.14 a | 8.03 ± 0.26 a |
NPK | 1.56 ± 0.21 a | 0.86 ± 0.12 a | 16.35 ± 0.80 a | 0.71 ± 0.04 a | 0.56 ± 0.14 a | 11.89 ± 2.58 a | 2.27 ± 0.25 a | 1.42 ± 0.24 a | 9.17 ± 2.12 a | |
MSNPK | 1.65 ± 0.20 a | 0.88 ± 0.09 a | 16.54 ± 1.00 a | 0.76 ± 0.08 a | 0.53 ± 0.07 a | 12.64 ± 1.27 a | 2.41 ± 0.27 a | 1.42 ± 0.15 a | 8.84 ± 0.11 a | |
HSNPK | 1.70 ± 0.19 a | 0.94 ± 0.24 a | 17.03 ± 2.74 a | 0.79 ± 0.10 a | 0.58 ± 0.06 a | 12.81 ± 2.96 a | 2.49 ± 0.11 a | 1.52 ± 0.23 a | 9.22 ± 0.20 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, W.; Wang, J.; Fang, K.; Cao, L.; Sha, Z.; Cao, L. Wheat Straw Incorporation Affecting Soil Carbon and Nitrogen Fractions in Chinese Paddy Soil. Agriculture 2021, 11, 803. https://doi.org/10.3390/agriculture11080803
Dai W, Wang J, Fang K, Cao L, Sha Z, Cao L. Wheat Straw Incorporation Affecting Soil Carbon and Nitrogen Fractions in Chinese Paddy Soil. Agriculture. 2021; 11(8):803. https://doi.org/10.3390/agriculture11080803
Chicago/Turabian StyleDai, Wei, Jun Wang, Kaikai Fang, Luqi Cao, Zhimin Sha, and Linkui Cao. 2021. "Wheat Straw Incorporation Affecting Soil Carbon and Nitrogen Fractions in Chinese Paddy Soil" Agriculture 11, no. 8: 803. https://doi.org/10.3390/agriculture11080803
APA StyleDai, W., Wang, J., Fang, K., Cao, L., Sha, Z., & Cao, L. (2021). Wheat Straw Incorporation Affecting Soil Carbon and Nitrogen Fractions in Chinese Paddy Soil. Agriculture, 11(8), 803. https://doi.org/10.3390/agriculture11080803