N-Carbamylglutamate Promotes Follicular Development by Modulating Cholesterol Metabolism in Yak Ovaries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Serum Biochemistry and Hormone Assays
2.4. Ovary Histology
2.5. RNA Extraction, cDNA Library Construction, and Sequencing
2.6. Quality Control and Mapping
2.7. RNA-Seq Data Analysis
2.8. RT-PCR Analysis
2.9. Statistical Analysis
3. Results
3.1. Follicular Development
3.2. Serum Biochemistry and Hormones
3.3. Transcriptome and Functional Analyses of Ovarian Tissues
3.4. Ovarian Angiogenesis
3.5. Expression of Genes Related to Cholesterol Metabolism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, X.; Long, R.; Kreuzer, M.; Ding, L.; Shang, Z.; Zhang, Y.; Yang, Y.; Cui, G. Importance of functional ingredients in yak milk-derived food on health of Tibetan nomads living under high-altitude stress: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 292–302. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef] [Green Version]
- Zi, X.-D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology 2003, 59, 1303–1312. [Google Scholar] [CrossRef]
- Lan, D.; Xiong, X.; Huang, C.; Mipam, T.D.; Li, J. Toward understanding the genetic basis of yak ovary reproduction: A characterization and comparative analyses of estrus ovary transcriptiome in yak and cattle. PLoS ONE 2016, 11, e0152675. [Google Scholar] [CrossRef]
- Long, R.; Zhang, D.; Wang, X.; Hu, Z.; Dong, S. Effect of strategic feed supplementation on productive and reproductive performance in yak cows. Prev. Vet. Med. 1999, 38, 195–206. [Google Scholar] [CrossRef]
- Fu, M.; Xiong, X.-R.; Lan, D.-L.; Li, J. Molecular characterization and tissue distribution of estrogen receptor genes in domestic yak. Asian-Australas. J. Anim. Sci. 2014, 27, 1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diskin, M.; Kenny, D. Managing the reproductive performance of beef cows. Theriogenology 2016, 86, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.; Vos, P.; Ambrose, D. Postpartum anestrus in dairy cattle. Theriogenology 2009, 71, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Shimada, M. Pretreatment of ovaries with collagenase before vitrification keeps the ovarian reserve by maintaining cell-cell adhesion integrity in ovarian follicles. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, C.-H.; Chen, M.-J. The effect of steroid hormones on ovarian follicle development. Vitamins 2018, 107, 155–175. [Google Scholar] [CrossRef]
- Tonini, C.; Segatto, M.; Pallottini, V. Impact of Sex and Age on the Mevalonate Pathway in the Brain: A Focus on Effects Induced by Maternal Exposure to Exogenous Compounds. Metabolites 2020, 10, 304. [Google Scholar] [CrossRef]
- Azhar, S.; Tsai, L.; Medicherla, S.; Chandrasekher, Y.; Giudice, L.; Reaven, E. Human granulosa cells use high density lipoprotein cholesterol for steroidogenesis. J. Clin. Endocrinol. Metab. 1998, 83, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhou, S.; Lin, X.; Zeng, W.; Mi, Y.; Zhang, C. Effect of dietary N-carbamylglutamate on development of ovarian follicles via enhanced angiogenesis in the chicken. Poult. Sci. 2020, 99, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Guo, S.; Cheng, Y.; Kim, J.-H.; Feng, Y. Stimulation of ovarian follicle growth after AMPK inhibition. Reproduction 2017, 153, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Fortune, J. Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Mol. Reprod. Dev. 2007, 74, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Iijima, K.; Ogawa, Y.; Miyazaki, H.; Sasada, H.; Sato, E. Gene injections of vascular endothelial growth factor and growth differentiation factor-9 stimulate ovarian follicular development in immature female rats. Fertil. Steril. 2008, 89, 1563–1570. [Google Scholar] [CrossRef]
- Shimizu, T.; Iijima, K.; Miyabayashi, K.; Ogawa, Y.; Miyazaki, H.; Sasada, H.; Sato, E. Effect of direct ovarian injection of vascular endothelial growth factor gene fragments on follicular development in immature female rats. Reproduction 2007, 134, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Quintana, R.; Kopcow, L.; Sueldo, C.; Marconi, G.; Rueda, N.G.; Barañao, R.I. Direct injection of vascular endothelial growth factor into the ovary of mice promotes follicular development. Fertil. Steril. 2004, 82, 1101–1105. [Google Scholar] [CrossRef]
- Shimizu, T.; Jiang, J.-Y.; Iijima, K.; Miyabayashi, K.; Ogawa, Y.; Sasada, H.; Sato, E. Induction of follicular development by direct single injection of vascular endothelial growth factor gene fragments into the ovary of miniature gilts. Biol. Reprod. 2003, 69, 1388–1393. [Google Scholar] [CrossRef] [Green Version]
- Abramovich, D.; Irusta, G.; Parborell, F.; Tesone, M. Intrabursal injection of vascular endothelial growth factor trap in eCG-treated prepubertal rats inhibits proliferation and increases apoptosis of follicular cells involving the PI3K/AKT signaling pathway. Fertil. Steril. 2010, 93, 1369–1377. [Google Scholar] [CrossRef]
- Sargent, K.M.; Lu, N.; Clopton, D.T.; Pohlmeier, W.E.; Brauer, V.M.; Ferrara, N.; Silversides, D.W.; Cupp, A.S. Loss of vascular endothelial growth factor A (VEGFA) isoforms in granulosa cells using pDmrt-1-Cre or Amhr2-Cre reduces fertility by arresting follicular development and by reducing litter size in female mice. PLoS ONE 2015, 10, e0116332. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhang, J.; Pan, Z.; Li, Q.; Liu, H. The distribution and expression of vascular endothelial growth factor A (VEGFA) during follicular development and atresia in the pig. Reprod. Fertil. Dev. 2020, 32, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Moonmanee, T.; Navanukraw, C.; Uriyapongson, S.; Kraisoon, A.; Aiumlamai, S.; Guntaprom, S.; Rittirod, T.; Borowicz, P.; Redmer, D. Relationships among vasculature, mitotic activity, and endothelial nitric oxide synthase (eNOS) in bovine antral follicles of the first follicular wave. Domest. Anim. Endocrinol. 2013, 45, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Chacher, B.; Wang, D.-M.; Liu, H.-Y.; Liu, J.-X. Degradation of L-arginine and N-carbamoyl glutamate and their effect on rumen fermentation in vitro. Ital. J. Anim. Sci. 2012, 11, e68. [Google Scholar] [CrossRef]
- Wu, G.; Knabe, D.A.; Kim, S.W. Arginine nutrition in neonatal pigs. J. Nutr. 2004, 134, 2783S–2790S. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zeng, X.; Peng, Q.; Zeng, S.; Zhao, H.; Shen, H.; Qiao, S. Maternal N-carbamylglutamate supplementation during early pregnancy enhances embryonic survival and development through modulation of the endometrial proteome in gilts. J. Nutr. 2015, 145, 2212–2220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sun, H.; Peng, A.; Guo, S.; Wang, M.; Loor, J.J.; Wang, H. N-carbamylglutamate and l-arginine promote intestinal function in suckling lambs with intrauterine growth restriction by regulating antioxidant capacity via a nitric oxide-dependent pathway. Food Funct. 2019, 10, 6374–6384. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, X.; Yin, Y.; Liu, Y.; Geng, M.; Yang, H.; Blachier, F.; Wu, G.J.A.a. Effects of dietary L-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 2012, 42, 2111–2119. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Peng, A.; Guo, S.; Wang, M.; Loor, J.J.; Wang, H. Dietary N-carbamylglutamate and l-arginine supplementation improves intestinal energy status in intrauterine-growth-retarded suckling lambs. Food Funct. 2019, 10, 1903–1914. [Google Scholar] [CrossRef]
- Wang, H.; Lin, C.; Yao, J.; Shi, H.; Zhang, C.; Wei, Q.; Lu, Y.; Chen, Z.; Xing, G.; Cao, X. Deletion of OSBPL2 in auditory cells increases cholesterol biosynthesis and drives reactive oxygen species production by inhibiting AMPK activity. Cell Death Dis. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Nie, H.; Ma, T.; Wang, Z.; Wang, F.; Loor, J.J. Dietary N-carbamylglutamate and rumen-protected l-arginine supplementation during intrauterine growth restriction in undernourished ewes improve fetal thymus development and immune function. Reprod. Fertil. Dev. 2018, 30, 1522–1531. [Google Scholar] [CrossRef]
- Chacher, B.; Zhu, W.; Ye, J.; Wang, D.; Liu, J. Effect of dietary N-carbamoylglutamate on milk production and nitrogen utilization in high-yielding dairy cows. J. Dairy Sci. 2014, 97, 2338–2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, D.G.; McEvoy, T.; Baxter, G.; Robinson, J.; Hogg, C.; Woad, K.; Webb, R.; Sinclair, K. Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: Associations with the ovarian insulin-like growth factor system. Biol. Reprod. 2001, 64, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.W.; Mehta, J.P.; McGettigan, P.A.; Browne, J.A.; Forde, N.; Alibrahim, R.; Mulligan, F.; Loftus, B.; Crowe, M.A.; Matthews, D. Effect of the metabolic environment at key stages of follicle development in cattle: Focus on steroid biosynthesis. Physiol. Genom. 2012, 44, 504–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, S.; Wang, Z.; Wang, C.; Nie, H.; He, D.; Jia, R.; Wu, Y.; Wan, Y.; Zhou, Z.; Yan, Y. Effect of different levels of short-term feed intake on folliculogenesis and follicular fluid and plasma concentrations of lactate dehydrogenase, glucose, and hormones in Hu sheep during the luteal phase. Reproduction 2011, 142, 699. [Google Scholar] [CrossRef] [Green Version]
- Miura, R. Physiological characteristics and effects on fertility of the first follicular wave dominant follicle in cattle. J. Reprod. Dev. 2019, 65, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Yu, S. An anatomical study of the internal genital organs of the yak at different ages. Vet. J. 1999, 157, 192–196. [Google Scholar] [CrossRef]
- Gohir, W.; Kennedy, K.M.; Wallace, J.G.; Saoi, M.; Bellissimo, C.J.; Britz-McKibbin, P.; Petrik, J.J.; Surette, M.G.; Sloboda, D.M. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. J. Physiol. 2019, 597, 3029–3051. [Google Scholar] [CrossRef]
- Wong, Y.L.; LeBon, L.; Basso, A.M.; Kohlhaas, K.L.; Nikkel, A.L.; Robb, H.M.; Donnelly-Roberts, D.L.; Prakash, J.; Swensen, A.M.; Rubinstein, N.D. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. Elife 2019, 8, e42940. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Sirois, J.; Fortune, J. Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time uitrasonograph. Biol. Reprod. 1988, 39, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Ginther, O.; Beg, M.; Bergfelt, D.; Donadeu, F.; Kot, K. Follicle selection in monovular species. Biol. Reprod. 2001, 65, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Adams, G.; Jaiswal, R.; Singh, J.; Malhi, P. Progress in understanding ovarian follicular dynamics in cattle. Theriogenology 2008, 69, 72–80. [Google Scholar] [CrossRef]
- Labrecque, R.; Fournier, E.; Sirard, M.A. Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Mol. Reprod. Dev. 2016, 83, 558–569. [Google Scholar] [CrossRef]
- Lequarre, A.-S.; Vigneron, C.; Ribaucour, F.; Holm, P.; Donnay, I.; Dalbies-Tran, R.; Callesen, H.; Mermillod, P. Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology 2005, 63, 841–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondin, P.; Sirard, M.A. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol. Reprod. Dev. 1995, 41, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Jolly, P.; Tisdall, D.; Heath, D.; Lun, S.; McNatty, K. Apoptosis in bovine granulosa cells in relation to steroid synthesis, cyclic adenosine 3′, 5′-monophosphate response to follicle-stimulating hormone and luteinizing hormone, and follicular atresia. Biol. Reprod. 1994, 51, 934–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimes, R.; Matton, P.; Ireland, J. A comparison of histological and non-histological indices of atresia and follicular function. Biol. Reprod. 1987, 37, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Sasagawa, S.; Shimizu, Y.; Nagaoka, T.; Tokado, H.; Imada, K.; Mizuguchi, K. Dienogest, a selective progestin, reduces plasma estradiol level through induction of apoptosis of granulosa cells in the ovarian dominant follicle without follicle-stimulating hormone suppression in monkeys. J. Endocrinol. Investig. 2008, 31, 636–641. [Google Scholar] [CrossRef]
- Chun, S.; Eisenhauer, K.M.; Minami, S.; Billig, H.; Perlas, E.; Hsueh, A. Hormonal regulation of apoptosis in early antral follicles: Follicle-stimulating hormone as a major survival factor. Endocrinology 1996, 137, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Kaipia, A.; Hsueh, A.J. Regulation of ovarian follicle atresia. Annu. Rev. Physiol. 1997, 59, 349–363. [Google Scholar] [CrossRef]
- Goldenberg, R.; Vaitukaitis, J.; ROSS, G.T. Estrogen and follicle stimulating hormone interactions on follicle growth in rats. Endocrinology 1972, 90, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.E.; Findlay, J.K. The role of estrogen in folliculogenesis. Mol. Cell. Endocrinol. 1999, 151, 57–64. [Google Scholar] [CrossRef]
- Chang, X.-L.; Liu, L.; Wang, N.; Chen, Z.-J.; Zhang, C. The function of high-density lipoprotein and low-density lipoprotein in the maintenance of mouse ovarian steroid balance. Biol. Reprod. 2017, 97, 862–872. [Google Scholar] [CrossRef]
- Robinson, R.; Hammond, A.; Nicklin, L.; Schams, D.; Mann, G.; Hunter, M. Endocrine and cellular characteristics of corpora lutea from cows with a delayed post-ovulatory progesterone rise. Domest. Anim. Endocrinol. 2006, 31, 154–172. [Google Scholar] [CrossRef]
- Robinson, R.; Woad, K.; Hammond, A.; Laird, M.; Hunter, M.; Mann, G. Angiogenesis and vascular function in the ovary. Reproduction 2009, 138, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.-T.; Tang, D.-J.; Ye, Y.-X.; Su, J.; Jiang, H. Influence of SCARB1 gene SNPs on serum lipid levels and susceptibility to coronary heart disease and cerebral infarction in a Chinese population. Gene 2017, 626, 319–325. [Google Scholar] [CrossRef]
- Gautier, T.; Becker, S.; Drouineaud, V.; Ménétrier, F.; Sagot, P.; Nofer, J.-R.; von Otte, S.; Lagrost, L.; Masson, D.; Tietge, U.J. Human luteinized granulosa cells secrete apoB100-containing lipoproteins. J. Lipid Res. 2010, 51, 2245–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiroz, A.; Molina, P.; Santander, N.; Gallardo, D.; Rigotti, A.; Busso, D. Ovarian cholesterol efflux: ATP-binding cassette transporters and follicular fluid HDL regulate cholesterol content in mouse oocytes. Biol. Reprod. 2020, 102, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.M.; Cook, E.C.; van den Berg, M.; Scheij, S.; Zelcer, N.; Loregger, A. Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis. Atherosclerosis 2019, 281, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.S.; Goldstein, J.L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell Adhes. Commun. 1997, 89, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.-T.; Tafazzoli, A.; Mattern, M.; Sivalingam, S.; Wolf, S.; Rupp, A.; Thiele, H.; Altmüller, J.; Nürnberg, P.; Ellwanger, J. Bi-allelic mutations in LSS, encoding lanosterol synthase, cause autosomal-recessive hypotrichosis simplex. Am. J. Hum. Genet. 2018, 103, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Black, S.M.; Harikrishna, J.A.; Szklarz, G.D.; Miller, W.L. The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc. Proc. Natl. Acad. Sci. USA 1994, 91, 7247–7251. [Google Scholar] [CrossRef] [Green Version]
- Clark, B.J.; Wells, J.; King, S.R.; Stocco, D.M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 1994, 269, 28314–28322. [Google Scholar] [CrossRef]
- Kallen, C.B.; Billheimer, J.T.; Summers, S.A.; Stayrook, S.E.; Lewis, M.; Strauss, J.F. Steroidogenic acute regulatory protein (StAR) is a sterol transfer protein. J. Biol. Chem. 1998, 273, 26285–26288. [Google Scholar] [CrossRef] [Green Version]
- Parween, S.; DiNardo, G.; Baj, F.; Zhang, C.; Gilardi, G.; Pandey, A.V. Differential effects of variations in human P450 oxidoreductase on the aromatase activity of CYP19A1 polymorphisms R264C and R264H. J. Steroid Biochem. Mol. Biol. 2020, 196, 105507. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhou, X.; Qiao, X.; Wu, Q.; Yao, Z.; Jiang, Y.; Zhang, H.; Zhang, Z.; Wang, X.; Li, J. FoxA2 and p53 regulate the transcription of HSD17B1 in ovarian granulosa cells of pigs. Reprod. Domest. Anim. 2021, 56, 74–82. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, A.; Yu, Y.; Guo, S.; Wang, M.; Coleman, D.N.; Loor, J.J.; Wang, H. N-Carbamylglutamate and l-arginine promote intestinal absorption of amino acids by regulating the mTOR signaling pathway and amino acid and peptide transporters in suckling lambs with intrauterine growth restriction. J. Nutr. 2019, 149, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Sun, Y.; Gao, H.; Wu, H.; Wang, Z. Carbon disulfide induces embryo loss by perturbing the expression of the mTOR signalling pathway in uterine tissue in mice. Chem.-Biol. Interact. 2019, 300, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Huang, Z.; Mao, X.; Wang, J.; Wu, G.; Qiao, S. N-carbamylglutamate enhances pregnancy outcome in rats through activation of the PI3K/PKB/mTOR signaling pathway. PLoS ONE 2012, 7, e41192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Chen, J.; Long, R.; Gibb, M.J.; Wang, L.; Sang, C.; Mi, J.; Zhou, J.; Liu, P.; Shang, Z.; et al. Blood hormonal and metabolite levels in grazing yak steers undergoing compensatory growth. J. Anim. Feed Sci. 2015, 209, 30–39. [Google Scholar] [CrossRef]
Items | Control | NCG | p-Value |
---|---|---|---|
No. of visible follicles (diameter, n) | |||
1–5 mm | 17.00 ± 4.41 | 6.67 ± 1.50 | 0.051 |
5–10 mm | 1.33 ± 0.42 | 3.00 ± 0.45 | 0.022 |
>5 mm | 1.50 ± 0.50 | 3.33 ± 0.42 | 0.019 |
>10 mm | 0.17 ± 0.17 | 0.33 ± 0.21 | 0.549 |
Ovarian weight (g) | |||
Left-side ovaries | 1.59 ± 0.27 | 1.30 ± 0.13 | 0.347 |
Right-side ovaries | 1.52 ± 0.20 | 1.35 ± 0.24 | 0.582 |
Total weight | 3.11 ± 0.46 | 2.65 ± 0.35 | 0.435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Du, J.; Yue, S.; Xue, B.; Wang, L.; Peng, Q.; Xue, B. N-Carbamylglutamate Promotes Follicular Development by Modulating Cholesterol Metabolism in Yak Ovaries. Agriculture 2021, 11, 825. https://doi.org/10.3390/agriculture11090825
Zhou J, Du J, Yue S, Xue B, Wang L, Peng Q, Xue B. N-Carbamylglutamate Promotes Follicular Development by Modulating Cholesterol Metabolism in Yak Ovaries. Agriculture. 2021; 11(9):825. https://doi.org/10.3390/agriculture11090825
Chicago/Turabian StyleZhou, Jia, Jingjing Du, Shuangming Yue, Benchu Xue, Lizhi Wang, Quanhui Peng, and Bai Xue. 2021. "N-Carbamylglutamate Promotes Follicular Development by Modulating Cholesterol Metabolism in Yak Ovaries" Agriculture 11, no. 9: 825. https://doi.org/10.3390/agriculture11090825
APA StyleZhou, J., Du, J., Yue, S., Xue, B., Wang, L., Peng, Q., & Xue, B. (2021). N-Carbamylglutamate Promotes Follicular Development by Modulating Cholesterol Metabolism in Yak Ovaries. Agriculture, 11(9), 825. https://doi.org/10.3390/agriculture11090825