Effects of Wheat and Rapeseed Production on Soil Water Storage in Mongolian Rangeland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling Method and Period
2.3. Method of Measuring Soil Water Content, Matric Potential, and Bulk Density
2.4. Estimaton of Soil Water Characteristic Curves
2.5. Determination of Root Zone Depth
2.6. Calculation of the Average Matric Potential
2.7. Analysis of Soil Water Storage
2.8. Evaluation of Soil Water Storage Effect during Fallow Period
3. Results
3.1. Soil Water Characteristic Curves
3.2. Determination of the Root Zone Depth
3.3. Temporal Changes in Soil Water Storage and Matric Potential at the Study Sites
3.4. Soil Water Storage Effects during the Fallow Period
4. Discussion
4.1. Soil Water Storage in the Rangelands
4.2. Soil Water Storage in Wheat and Rapeseed Field
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Soil | Gas Stove Method | Oven Drying Method | |||||
---|---|---|---|---|---|---|---|
Mw | Md | Wc | Mw | Md | Wc | ||
Sand dune sand | wet 1 | 39.35 | 33.34 | 0.18 | 31.07 | 26.57 | 0.17 |
wet 2 | 35.54 | 30.21 | 0.18 | 34.99 | 29.87 | 0.17 | |
wet 3 | 35.36 | 29.96 | 0.18 | 39.46 | 33.57 | 0.18 | |
Average | 0.18 | 0.17 | |||||
dry 1 | 36.23 | 34.99 | 0.04 | 35.32 | 34.16 | 0.03 | |
dry 2 | 29.00 | 28.01 | 0.04 | 30.01 | 29.00 | 0.03 | |
dry 3 | 33.55 | 32.40 | 0.04 | 32.61 | 31.52 | 0.03 | |
Average | 0.04 | 0.03 | |||||
Sandy clay loam | wet 1 | 21.55 | 18.51 | 0.16 | 18.33 | 15.77 | 0.16 |
wet 2 | 17.39 | 14.96 | 0.16 | 24.53 | 21.11 | 0.16 | |
wet 3 | 21.98 | 18.87 | 0.16 | 15.11 | 13.01 | 0.16 | |
Average | 0.16 | 0.16 | |||||
dry 1 | 17.61 | 16.83 | 0.05 | 23.38 | 22.39 | 0.04 | |
dry 2 | 22.71 | 21.72 | 0.05 | 25.60 | 24.52 | 0.04 | |
dry 3 | 24.60 | 23.52 | 0.05 | 25.16 | 24.10 | 0.04 | |
Average | 0.05 | 0.04 |
References
- Mongolian Statistical Information Service. Mongolian Statistical Yearbook. 2020. Available online: http://www.1212.mn (accessed on 1 May 2020).
- Didier, K.; Lkhamjav, O. The Potential for Intensive Crop Production in the Eastern Steppe of Mongolia: History, Current Status, Government Plans, and Potential Impacts on Biodiversity; USAID: Washington, DC, USA, 2009. Available online: https://programs.wcs.org/databases/doi/ctl/view/mid/33065/pubid/DMX540100000.aspx (accessed on 5 March 2021).
- Erdenebolor, B.; Nyamgerel, B. Value Chain Analysis of Wheat, Potato and Rapeseed in Mongolia; Federal Ministry of Food and Agriculture: Bonne, Germany, 2017.
- Grami, B.; Lacroix, L.J. Cultivar variation in total nitrogen uptake in rape. Can. J. Plant Sci. 1977, 57, 619–624. [Google Scholar] [CrossRef]
- Svecnjak, Z.; Rengel, Z. Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crops Res. 2006, 97, 221–226. [Google Scholar] [CrossRef]
- Ye, X.S.; Hong, J.A.; Shi, L.; Xu, F.S. Adaptability mechanism of nitrogen-efficient germplasm of natural variation to low nitrogen stress in Brassica napus. J. Plant Nutr. 2010, 33, 2028–2040. [Google Scholar] [CrossRef]
- Stanhill, G. Water-use efficiency. Adv. Agron. 1986, 39, 53–85. [Google Scholar]
- Zhang, H.; Turner, N.C.; Poole, M.L. Yield of wheat and canola in the high rainfall zone of south-western Australia in years with and without a transient perched water table. Aust. J. Agric Res. 2004, 55, 461–470. [Google Scholar] [CrossRef]
- Hu, Q.; Hua, W.; Yin, Y.; Zhang, X.K.; Liu, L.J.; Shi, J.Q.; Zhao, Y.G.; Qin, L.; Chen, C.; Wang, H.Z. Rapeseed research and production in China. Crop J. 2017, 5, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Faghih, H.; Behmanesh, J.; Rezaie, H.; Khalili, K. Climate and rainfed wheat yield. Theor. Appl. Climatol. 2021, 144, 13–24. [Google Scholar] [CrossRef]
- Orgil, B. Towards Stronger Rapeseed Policy as a Cash Crop in Mongolia; CDN Policy Oriented Research Paper; Cooperation and Development Network of Pavia: Pavia, Italy, 2017; Available online: http://www.cooperationdevelopment.org/wp-content/uploads/2018/01/POR_CDN-Policy-research-paper-Orgil-Balgansuren.pdf (accessed on 5 March 2021).
- Yang, C.; Geng, Y.; Fu, X.Z.; Coulter, J.A.; Chai, Q. The effects of wind erosion depending on cropping system and tillage method in a semi-arid region. Agronomy 2020, 10, 732. [Google Scholar] [CrossRef]
- Sankey, T.T.; Massey, R.; Yadav, K.; Congalton, R.G.; Tilton, J.C. Post-socialist cropland changes and abandonment in Mongolia. Land. Degrad. Dev. 2018, 29, 2808–2821. [Google Scholar] [CrossRef]
- Tian, F.; Herzschuh, U.; Mischke, S.; Schlutz, F. What drives the recent intensified vegetation degradation in Mongolia—Climate change or human activity? Holocene 2014, 24, 1206–1215. [Google Scholar] [CrossRef]
- Wang, J.; Brown, D.G.; Chen, J.Q. Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian Plateau. Landsc. Ecol. 2013, 28, 725–739. [Google Scholar] [CrossRef]
- Yanagawa, A.; Sasaki, T.; Undarmaa, J.; Okuro, T.; Takeuchi, K. Factors limiting vegetation recovery processes after cessation of cropping in a semiarid grassland in Mongolia. J. Arid Environ. 2016, 131, 1–5. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Xiao, H.L.; Liu, Z.M.; Li, J. Soil degradation and restoration as affected by land use change in the semiarid Bashang area, northern China. Catena 2005, 59, 173–186. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.G.; Yu, G.R.; Asanuma, J.; Sugita, M.; Zhang, L.M.; Hu, Z.M.; Wei, Y.F. Seasonal and interannual variations in water vapor exchange and surface water balance over a grazed steppe in central Mongolia. Agric. Water Manag. 2010, 97, 857–864. [Google Scholar] [CrossRef]
- Yamanaka, T.; Kaihotsu, I.; Oyunbaatar, D.; Ganbold, T. Summertime soil hydrological cycle and surface energy balance on the Mongolian steppe. J. Arid Environ. 2007, 69, 65–79. [Google Scholar] [CrossRef]
- Lu, N.; Shen, S.; Wilske, B.; Sun, G.; Chen, J. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China. J. Plant Ecol. 2011, 4, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Lampurlanes, J.; Angas, P.; Cantero-Martinez, C. Tillage effects on water storage during fallow, and on barley root growth and yield in two contrasting soils of the semi-arid Segarra region in Spain. Soil Tillage Res. 2002, 65, 207–220. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F. Precipitation storage efficiency during fallow in wheat-fallow systems. Soil Water 2010, 102, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Peterson, G.A.; Schlegel, A.J.; Tanaka, D.L.; Jones, O.R. Precipitation use efficiency as affected by cropping and tillage systems. J. Prod. Agric. 1996, 9, 180–186. [Google Scholar] [CrossRef]
- Van Staalduinen, M. Impact of grazing by large and small mammalian herbivores in a Mongolian forest steppe. In The Impact of Herbivores in Mongolian Forest Steppe; Plant Ecology Group, Department of Biology, Utrecht University: Utrecht, The Netherlands, 2005; Chapter 3; pp. 49–64. [Google Scholar]
- Van Genuchten, M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Yanagawa, A.; Fujimaki, H.; Jamsran, U.; Okuro, T.; Takeuchi, K. Changes in Dominant perennial species affect soil hydraulic properties after crop abandonment in a semiarid grassland in Mongolia. Eurasian Soil Sci. 2019, 52, 1378–1390. [Google Scholar] [CrossRef]
- Miyazaki, S.; Yasunari, T.; Miyamoto, T.; Kaihotsu, I.; Davaa, G.; Oyunbaatar, D.; Natsagdorj, L.; Oki, T. Agrometeorological conditions of grassland vegetation in central Mongolia and their impact for leaf area growth. J. Geophys. Res. Atmos. 2004, 109, 14. [Google Scholar] [CrossRef]
- Miyasaka, K.; Shiozawa, S.; Nishida, K.; Siilegmaa, B.; Yoshida, S.; Undarmaa, J. Occurrence of water ponding on soil surfaces depending on infiltration rates on Mongolian rangeland. Hydrol. Process. 2017, 31, 3996–4005. [Google Scholar] [CrossRef]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root distribution by depth for temperate agricultural crops. Field Crops Res. 2016, 189, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Campbell, C.A.; Janzen, H.H.; Lemke, R.; Liu, L.; Basnyat, P.; McDonald, C.L. Root mass for oilseed and pulse crops: Growth and distribution in the soil profile. Can. J. Plant Sci. 2009, 89, 883–893. [Google Scholar] [CrossRef]
- Cutforth, H.; Angadi, S.; McConkey, B.; Miller, P.; Ulrich, D.; Gulden, R.; Volkmar, K.; Entz, M.; Brandt, S. Comparing rooting characteristics and soil water withdrawal patterns of wheat with alternative oilseed and pulse crops grown in the semiarid Canadian prairie. Can. J. Soil Sci. 2013, 93, 147–160. [Google Scholar] [CrossRef]
- Satho, T.; Sugita, M.; Yamanaka, T.; Tsujimura, M.; Ishii, R. Water dynamics within soil-vegetation-atmosphere system in a steppe region covered by shurubs and herbaceous plants. In The Mongolian Network: Environmental Issues under Climate and Social Changes; Ecological Research Monographs; Yamanmura, N., Fujita, N., Maekawa, A., Eds.; Springer: Tokyo, Japan, 2013; pp. 43–63. [Google Scholar]
- Onda, Y.; Kato, H.; Tanaka, Y.; Tsujimura, M.; Davaa, G.; Oyunbaatar, D. Analysis of runoff generation and soil erosion processes by using environmental radionuclides in semiarid areas of Mongolia. J. Hydrol. 2007, 333, 124–132. [Google Scholar] [CrossRef]
- Boyer, J.S. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 1970, 46, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C. Drought Resistanc: A Comparison of Two Research Frameworks. In Management of Agricultural Drought: Agronomic and Genetic Options; Saxena, N., Ed.; Science Publishers, Inc.: Enfield, NH, USA, 2003; pp. 89–102. [Google Scholar]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Merrill, S.D.; Tanaka, D.L.; Hanson, J.D. Root length growth of eight crop species in haplustoll soils. Soil Sci. Soc. Am. J. 2002, 66, 913–923. [Google Scholar] [CrossRef]
- Gan, Y.; Campbell, C.A.; Liu, L.; Basnyat, P.; McDonald, C.L. Water use and distribution profile under pulse and oilseed crops in semiarid northern high latitude areas. Agric. Water Manag. 2009, 96, 337–348. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Unger, P.W.; Miller, P.R. Efficient water use in dryland cropping systems in the Great Plains. Agron. J. 2005, 97, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Price, J.S.; Hobson, R.N.; Neale, M.A.; Bruce, D.M. Seed losses in commercial harvesting of oilseed rape. J. Agric. Eng. Res. 1996, 65, 183–191. [Google Scholar] [CrossRef]
- Simard, M.J.; Legere, A.; Pageau, D.; Lajeunesse, J.; Warwick, S. The frequency and persistence of volunteer canola (Brassica napus) in Quebec cropping systems. Weed Technol. 2002, 16, 433–439. [Google Scholar] [CrossRef]
- Pari, L.; Assirelli, A.; Suardi, A.; Civitarese, V.; Del Giudice, A.; Santangelo, E. Seed losses during the harvesting of oilseed rape (Brassica napus L.) at on-farm scale. J. Agric. Engin. 2013, 44, 633–636. [Google Scholar] [CrossRef]
Site | RR | FR | RW | FW | |
---|---|---|---|---|---|
Location | |||||
N | 47°48′39.9″ | 47°48′39.0″ | 47°47′16.1″ | 47°47′15.8″ | |
E | 105°53′26.5″ | 105°53′26.3″ | 105°52′6.1″ | 105°52′2.8″ | |
Land use | Rapeseed production | Rangeland | Wheatproduction | Rangeland | |
Soil type | Kastanozems [24] | Kastanozems [24] | Kastanozems [24] | Kastanozems [24] | |
(Chestnut soil) | (Chestnut soil) | (Chestnut soil) | (Chestnut soil) | ||
Texture a | Light clay | Light clay | Light clay | Light clay | |
Coarse sand | 4.5% | 9.0% | 7.8% | 4.8% | |
Fine sand | 29.2% | 38.0% | 41.8% | 32.2% | |
Silt | 31.5% | 24.6% | 21.4% | 28.4% | |
Clay | 34.8% | 28.4% | 29.0% | 34.6% |
Site | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|
Annual precipitation | 224 | 176 | 192 | 182 | 217 | 193 |
(mm) | ||||||
FR | P | P | F | P | F | F |
FW | P | P | F | P | F | P |
Site | Depth | Parameters | ||||
---|---|---|---|---|---|---|
θr | θs | α | n | m | ||
[cm3/cm3] | [cm3/cm3] | [cm−1] | [–] | [–] | ||
Rangelands (RR, RW) | 0–30 cm | 0.01 | 0.491 | 0.0184 | 7.49 | 0.04 |
Rangelands (RR, RW) | 30–60 cm | 0.01 | 0.491 | 0.0308 | 7.01 | 0.038 |
Fields (FR, FW) | 0–30 cm | 0.01 | 0.495 | 0.0121 | 7.23 | 0.055 |
Fields (FR, FW) | 30–60 cm | 0.01 | 0.491 | 0.0128 | 8.01 | 0.05 |
Year | Field State | FR | FW | |
---|---|---|---|---|
PSE (%) | 2016 | F | −6.8 | 10.9 |
2017 | P | 1.2 | 3.3 | |
2018 | F | 2.8 | −1.4 | |
DSWS (%) | 2015 | P | 4.6 | 1.5 |
2016 | F | −1.7 | 10.9 | |
2017 | P | −14.6 | 0.6 | |
2018 | F | −2.9 | 5.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyasaka, K.; Miyasaka, T.; Ota, J.; Batsukh, S.; Jamsran, U. Effects of Wheat and Rapeseed Production on Soil Water Storage in Mongolian Rangeland. Agriculture 2021, 11, 888. https://doi.org/10.3390/agriculture11090888
Miyasaka K, Miyasaka T, Ota J, Batsukh S, Jamsran U. Effects of Wheat and Rapeseed Production on Soil Water Storage in Mongolian Rangeland. Agriculture. 2021; 11(9):888. https://doi.org/10.3390/agriculture11090888
Chicago/Turabian StyleMiyasaka, Katori, Takafumi Miyasaka, Jumpei Ota, Siilegmaa Batsukh, and Undarmaa Jamsran. 2021. "Effects of Wheat and Rapeseed Production on Soil Water Storage in Mongolian Rangeland" Agriculture 11, no. 9: 888. https://doi.org/10.3390/agriculture11090888
APA StyleMiyasaka, K., Miyasaka, T., Ota, J., Batsukh, S., & Jamsran, U. (2021). Effects of Wheat and Rapeseed Production on Soil Water Storage in Mongolian Rangeland. Agriculture, 11(9), 888. https://doi.org/10.3390/agriculture11090888