Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review
Abstract
:1. Introduction
2. Properties of Triazole Fungicides
3. Effects of Triazole Fungicides on Soil Microorganisms
3.1. Difenoconazole
3.2. Epoxiconazole
3.3. Flutriafol
3.4. Hexaconazole
3.5. Myclobutanil
3.6. Paclobutrazol
3.7. Propiconazole
3.8. Tebuconazole
3.9. Tetraconazole
3.10. Triadimefon
3.11. Triticonazole
4. Effects of the Triazole Fungicides on Enzyme Activities
4.1. Difenoconazole
4.2. Myclobutanil
4.3. Paclobutrazol
4.4. Propiconazole
4.5. Tebuconazole
4.6. Triadimefon
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ozkara, A.; Akil, D.; Konuk, M. Pesticides, environmental pollution, and health. In Environmental Health Risk—Hazardous Factors to Living Species; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- De, A.; Bose, R.; Kumar, A.; Mozumdar, S. Worldwide pesticide use. In Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles; Springer Briefs in Molecular Science: New Dehli, India, 2014. [Google Scholar]
- Agri-Environmental Indicator—Consumption of Pesticides. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_consumption_of_pesticides (accessed on 6 June 2021).
- Machado, C.; Martins, I. Risk assessment of occupational pesticide exposure: Use of endpoints and surrogates. Regul. Toxicol. Pharmacol. 2018, 98, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lucas, G.; Vela, N.; El Aatik, A.; Navarro, S. Environmental risk of groundwater pollution by pesticide leaching through the soil profile. In Pesticides—Use and Misuse and Their Impact in the Environment; Larramendy, M.L., Salonescki, S., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Doran, W.J.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Rao, M.A.; Scelza, R.; Acevedo, F.; Diez, M.C.; Gianfreda, L. Enzymes as useful tools for environmental purposes. Chemosphere 2014, 107, 145–162. [Google Scholar] [CrossRef]
- Gianfreda, L.; Rao, M.A.; Piotrowska, A.; Palumbo, G.; Colombo, C. Soil enzyme activities as affected by anthropogenic al-terations: Intensive agricultural practices and organic pollution. Sci. Total Environ. 2005, 341, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.K.; Garg, H. Pesticides: Environmental impacts and management strategies. In Pesticides-Toxic Aspects; Soloneski, S., Ed.; IntechOpen: Rijeka, Croatia, 2014. [Google Scholar]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicology 2016, 25, 1575–1587. [Google Scholar] [CrossRef] [Green Version]
- Akinnifesi, T.A.; Asubiojo, O.I.; Amusan, A.A. Effects of fungicide residues on the physico-chemical characteristics of soils of a major cocoa-producing area of Nigeria. Sci. Total Environ. 2006, 366, 876–879. [Google Scholar] [CrossRef]
- Poole, N.F.; Arnaudin, M.E. The role of fungicides for effective disease management in cereal crops. Can. J. Plant Pathol. 2014, 36, 1–11. [Google Scholar] [CrossRef]
- Eurostat. Generation of Waste by Waste Category, Hazardousness and NACE Rev. 2 Activity. 2020. Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 8 April 2021).
- Cycon, M.; Piotrowska-Seget, Z.; Kaczynska, A.; Kozdrój, J. Microbiological characteristics of a sandy loam soil exposed to tebuconazole and l-cyhalothrin under laboratory conditions. Ecotoxicology 2006, 15, 639–646. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Bruhl, C.A.; Imfeld, G.; Knabel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmuller, A.; et al. Fungicides: An overlooked pesticide class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.J.; da Cunha, J.P.A.R.; de Morais, T.P.; de Oliveira, J.P.R.; de Morais, J.B. Physical-chemical properties of pesticides: Concepts, applications, and interactions with the environment. Biosci. J. 2016, 32, 627–641. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Kim, M.-S.; Kim, J.-G.; Kim, S.-O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability 2020, 12, 8209. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Tecon, R.; Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 2017, 41, 599–623. [Google Scholar] [CrossRef]
- Durjava, M.K.; Kolar, B.; Arnus, L.; Papa, E.; Kovarich, S.; Sahlin, U.; Peijnenburg, W. Experimental Assessment of the En-vironmental Fate andEffects of Triazoles and Benzotriazole. ATLA 2013, 41, 65–75. [Google Scholar] [PubMed]
- Assessment Report for Cyproconazole. Available online: https://echa.europa.eu/documents/10162/b880ebfb-9298-5ab2-df04-2d40742ac714 (accessed on 30 May 2021).
- Metconazole. Available online: https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/cps-spc/alt_formats/pdf/pubs/pest/_decisions/rd2015-05/rd2015-05-eng.pdf (accessed on 30 May 2021).
- Muñoz-Leoz, B.; Garbisu, C.; Charcosset, J.-Y.; Sánchez-Pérez, J.M.; Antigüedad, I.; Ruiz-Romera, E. Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Sci. Total Environ. 2013, 449, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Da Rocha, A.G.; Pitombo, L.M.; Bresolin, J.D.; da Silva, W.T.L.; Espindola, E.L.G.; de Menezes Oliveira, V.B. Single and com-bined toxicity of the pesticides abamectin and difenoconazole on soil microbial activity and Enchytraeus crypticus population. SN Appl. Sci. 2020, 2, 1390. [Google Scholar] [CrossRef]
- Hart, M.; Brookes, P. Effects of two ergosterol-inhibiting fungicides on soil ergosterol and microbial biomass. Soil Biol. Biochem. 1996, 28, 885–892. [Google Scholar] [CrossRef]
- Munier-Lamy, C.; Borde, O. Effect of a triazole fungicide on the cellulose decomposition by the soil microflora. Chemosphere 2000, 41, 1029–1035. [Google Scholar] [CrossRef]
- Kalam, A.; Mukherjee, A.K. Influence of hexaconazole, carbofuran and ethion on soil micloflora and dehydrogenase activites in soil and intact cell. Indian J. Exp. Biol. 2001, 39, 90–94. [Google Scholar]
- Ju, C.; Wu, X.; Dong, F.; Liu, X.; Tian, C.; Zheng, Y. Effects of hexaconazole application on soil microbes community and ni-trogen transformations in paddy soils. Sci. Total Environ. 2017, 609, 655–663. [Google Scholar] [CrossRef]
- Madhuri, R.J.; Rangaswamy, V. Influence of selected fungicides on microbial population in groundnut (Arachis hypogeae L.) soils. Pollut. Res. 2003, 22, 205–212. [Google Scholar]
- Zhang, D.; Wu, Y.; Zhang, X.; Zhu, Y. Persistence of myclobutanil and its impact on soil microbial biomass C and dehydro-genase enzyme activity in tea orchard soils, Eurasian. J. Soil Sci. 2017, 6, 106–113. [Google Scholar]
- Silva, C.M.M.S.; Vieira, R.F.; Nicolella, G. Paclobutrazol effects on soil microorganisms. Appl. Soil Ecol. 2003, 22, 79–86. [Google Scholar] [CrossRef]
- Kuo, J.; Wang, Y.W.; Chen, M.; Fuh, G.; Lin, C.H. The effect of paclobutrazol on soil bacterial composition across three con-secutive flowering stages of mung bean. Folia Microbiol. 2019, 64, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhou, Y.; Xia, Y.; Chen, L.; Li, T.; Zhao, H. Effects of paclobutrazol on soil bacterial diversity in mango orchard and picrust-based predicted metagenomic analysis. Chin. J. Trop. Crop. 2019, 40, 807–814. [Google Scholar]
- Yen, J.H.; Chang, J.S.; Huang, P.J.; Wang, Y.S. Effects of fungicides triadimefon and propiconazole on soil bacterial commu-nities. J. Environ. Sci. Health B 2009, 44, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Calvino, D.; Rousk, J.; Baath, E.; Bollmann, U.E.; Bester, K.; Brandt, K.K. Ecotoxicological assessment of pro-piconazole using soil bacterial and fungal gowth assays. Appl. Soil Ecol. 2017, 115, 27–30. [Google Scholar] [CrossRef]
- Satapute, P.; Kamble, M.V.; Adhikari, S.S.; Jogaiah, S. Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Sci. Total Environ. 2019, 651, 2334–2344. [Google Scholar] [CrossRef]
- Carpio, M.J.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Effect of Organic Residues on Pesticide Behavior in Soils: A Review of Laboratory Research. Environments 2021, 8, 32. [Google Scholar] [CrossRef]
- Strickland, T.C.; Potter, T.L.; Joo, H. Tebuconazole dissipation and metabolism in Tifton loamy sand during laboratory incu-bation. Pest Manag. Sci. 2004, 60, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.P.B.; Dusi, A.N.; Costa, J.R.; Xavier, G.R.; Rumjanek, N.G. Assessing insecticide and fungicide effects on the cul-turable soil bacterial community by analyses of variance of their DGGE fingerprinting data. Eur. J. Soil Biol. 2009, 45, 466–472. [Google Scholar] [CrossRef]
- Muñoz-Leoz, B.; Ruiz-Romera, E.; Antigüedad, I.; Garbisu, C. Tebuconazole application decreases soil microbial biomass and activity. Soil Biol. Biochem. 2011, 43, 2176–2183. [Google Scholar] [CrossRef]
- EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance tebuconazole. EFSA J. 2014, 12, 3485. [Google Scholar]
- Wang, C.; Wang, F.; Zhang, Q.; Liang, W. Individual and combined effects of tebuconazole and carbendazim on soil microbial activity. Eur. J. Soil Biol. 2016, 72, 6–13. [Google Scholar] [CrossRef]
- Storck, V.; Nikolaki, S.; Perruchon, C.; Chabanis, C.; Sacchi, A.; Pertile, G.; Baguelin, C.; Karas, P.A.; Spor, A.; Devers-Lamrani, M.; et al. Lab to field assessment of the ecotoxicological impact of chlorpyrifos, isoproturon, or tebuconazole on the diversity and com-position of the soil bacterial community. Front. Microbiol. 2018, 9, 1412. [Google Scholar] [CrossRef] [PubMed]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Biostimulation as a process aiding tebuconazole degradation in soil. J. Soils Sediments 2019, 19, 3728–3741. [Google Scholar] [CrossRef] [Green Version]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Response of soil microorganisms and enzymes to the foliar application of Helicur 250 EW fungicide on Horderum vulgare L. Chemosphere 2020, 242, 125163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, J.; Dong, F.; Liu, X.; Zhang, Y.; Wu, X.; Zheng, Y. Effect of tetraconazole application on the soil microbial community. Environ. Sci. Pollut. Res. 2014, 21, 8323–8332. [Google Scholar] [CrossRef]
- Sułowicz, S.; Piotrowska-Seget, Z. Response of microbial communities from an apple orchard and grassland soils to the first-time application of the fungicide tetraconazole. Ecotoxicol. Environ. Saf. 2016, 124, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Sułowicz, S.; Cycoń, M.; Piotrowska-Seget, Z. Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management. Ecotoxicology 2016, 25, 1047–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niewiadomska, A.; Sawinska, Z.; Wolna-Maruwka, A. Impact of selected seed dressings on soil microbiological activity in spring barley cultivation. Fresenius Environ. Bull. 2011, 20, 1252–1261. [Google Scholar]
- Yang, C.; Hamel, C.; Vujanovic, V.; Gan, Y. Fungicide: Modes of Action and Possible Impact on Nontarget Microorganisms. ISRN Ecol. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Tang, J.; Li, Z.; Yang, W.; Duan, Y. The Influence of Soil Physico-Chemical Properties and Enzyme Activities on Soil Quality of Saline-Alkali Agroecosystems in Western Jilin Province, China. Sustainability 2018, 10, 1529. [Google Scholar] [CrossRef] [Green Version]
- Filimon, M.N.; Voia, S.O.; Vlădoiu, D.L.; Isvoran, A.; Ostafe, V. Temperature dependent effect of difenoconazole on enzymatic activity from the soil. J. Serb. Chem. Soc. 2015, 80, 1127–1137. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Herrero-Hernández, E.; Soledad Andrades, M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Sci. Total Environ. 2014, 476–477, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.; Piparya, A.; Bhadury, D. Enzymatic activities and microbial biomassin peanut field soil as affected by the foliar application of tebuconazole. Environ. Earth. Sci. 2016, 75, 558. [Google Scholar] [CrossRef]
- Singh, N. Factors Affecting Triadimefon Degradation in Soils. J. Agric. Food Chem. 2005, 53, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Deborah, B.; Madhuri, R.; Mohiddin, M. Interaction effects of selected pesticides on soil enzymes. Toxicol. Int. 2013, 20, 195–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klink, H.; Verreet, J.-A.; Hasler, M.; Birr, T. Will Triazoles Still Be of Importance in Disease Control of Zymoseptoria tritici in the Future? Agronomy 2021, 11, 933. [Google Scholar] [CrossRef]
- PAN International Consolidated List of Banned Pesticides, Edition 5, March 2021. Available online: https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (accessed on 1 August 2021).
Fungicide Common Name | IUPAC Name | MW (g/mol) | logP | HBD | HBA | RBC | TPSA (Å2) | DT50 for Field Studies (Days) | DT90 for Field Studies (Days) |
---|---|---|---|---|---|---|---|---|---|
Cyproconazole | 2-(4-chlorophenyl)-3-cyclopropyl-1-(1,2,4-triazol-1-yl)butan-2-ol | 291.77 | 2.9 | 1 | 3 | 5 | 50.9 | 62.1–501.2 (persistent) | 179–1000 |
Difenoconazole | 1-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl]methyl]-1,2,4-triazole | 406.3 | 4.0 | 0 | 5 | 5 | 58.4 | 20–265 (persistent) | 68–879 |
Epoxiconazole | 1-[[3-(2-chlorophenyl)-2-(4-fluorophenyl)oxiran-2-yl]methyl]-1,2,4-triazole | 329.8 | 3.2 | 0 | 4 | 4 | 43.2 | 0.75–247.8 (persistent) | 183.7–10.000 |
Flutriafol | 1-(2-fluorophenyl)-1-(4- fluorophenyl)-2-(1,2,4-triazol-1-yl)ethanol | 301.29 | 2.3 | 1 | 5 | 4 | 50.9 | 316–4089 (very persistent) | 1051–13,583 |
Hexaconazole | 2-(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)hexan-2-ol | 314.2 | 3.7 | 1 | 3 | 6 | 50.9 | 49–200 (persistent) | NA |
Metconazole | 5-[(4-chlorophenyl)methyl]-2,2-dimethyl-1-(1,2,4-triazol-1-ylmethyl)cyclopentan-1-ol | 319.8 | 3.7 | 1 | 3 | 4 | 50.9 | 26.6–368.5 (persistent) | 102.9–1000 |
Myclobutanil | 2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile | 288.77 | 2.9 | 0 | 3 | 6 | 54.5 | 9–58 (Moderately persistent) | 637–1906 |
Paclobutrazol | 1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol | 293.79 | 3.2 | 1 | 3 | 5 | 50.9 | 27.2–60.8 (persistent) | 46.7–202 |
Propiconazole | 1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1,2,4-triazole | 342.2 | 3.5 | 0 | 4 | 5 | 49.2 | 15.3–96.3 (moderately persistent) | 108–525 |
Tebuconazole | 1-(4-chlorophenyl)-4,4-dimethyl-3-(1,2,4-triazol-1-ylmethyl)pentan-3-ol | 307.82 | 3.7 | 1 | 3 | 6 | 50.9 | 25.8–91.6 (moderately persistent) | 66–304 |
Tetraconazole | 1-[2-(2,4-dichlorophenyl)-3-(1,1,2,2-tetrafluoroethoxy)propyl]-1,2,4-triazole | 372.14 | 4.4 | 0 | 7 | 7 | 39.9 | 136–1688 (moderately persistent) | 453–5606 |
Triadimenol | 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-ol | 295.76 | 3.1 | 1 | 4 | 5 | 60.2 | 24.1–83.7 (persistent) | 76.3–423.9 |
Triadimefon | 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one | 293.75 | 2.8 | 0 | 4 | 5 | 57 | 26 (non-persistent) | NA |
Triticonazole | (5E)-5-[(4-chlorophenyl)methylidene]-2,2-dimethyl-1-(1,2,4-triazol-1-ylmethyl)cyclopentan-1-ol | 317.8 | 3.1 | 1 | 3 | 3 | 50.9 | 36.1–242 (persistent) | 329–803 |
Triazole Fungicide | Soil Microbial Activity | Microbial Biomass | Total Microbial Population | Population of Fungi | Population of Bacteria | Structure of the Microbial Communities |
---|---|---|---|---|---|---|
Difenoconazole | ||||||
Epoxiconazole | ||||||
Flutriafol | ||||||
Hexaconazole | ||||||
Myclobutanil | ||||||
Paclobutrazole | ||||||
Propiconazole | ||||||
Tebuconazole | ||||||
Tetraconazole | ||||||
Triadimefon | ||||||
Triticonazole |
Fungicide | DHA | UA | PHA | PA | ASA | NRA | β-GLCA | CA | IA | AA |
---|---|---|---|---|---|---|---|---|---|---|
Difenoconazole | ||||||||||
Hexaconazole | ||||||||||
Myclobutanil | ||||||||||
Paclobutrazole | ||||||||||
Propiconazole | ||||||||||
Tebuconazole | ||||||||||
Triadimefon |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, D.L.; Voiculescu, D.I.; Filip, M.; Ostafe, V.; Isvoran, A. Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review. Agriculture 2021, 11, 893. https://doi.org/10.3390/agriculture11090893
Roman DL, Voiculescu DI, Filip M, Ostafe V, Isvoran A. Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review. Agriculture. 2021; 11(9):893. https://doi.org/10.3390/agriculture11090893
Chicago/Turabian StyleRoman, Diana Larisa, Denisa Ioana Voiculescu, Madalina Filip, Vasile Ostafe, and Adriana Isvoran. 2021. "Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review" Agriculture 11, no. 9: 893. https://doi.org/10.3390/agriculture11090893
APA StyleRoman, D. L., Voiculescu, D. I., Filip, M., Ostafe, V., & Isvoran, A. (2021). Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review. Agriculture, 11(9), 893. https://doi.org/10.3390/agriculture11090893