Potential Benefits of Boswellia sacra Resin on Immunity, Metabolic Status, Udder and Uterus Health, and Milk Production in Transitioning Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Gas Chromatographic–Mass Spectral (GC–MS) Analysis
2.2. Animals and Experimental Design
2.3. Determination of Hematobiochemical and Immunological Signs
2.4. Determination of Udder and Uterus Health Bioindicators
2.5. Colostrum Collection and Analyses
2.6. Milk Collection and Analyses
2.7. Statistical Analyses
3. Results
3.1. Active Components of Bs Resin
3.2. Effects of Treatment on Hematological and Immunological Variables
3.3. Effects of Treatment on Blood Metabolites
3.4. Effects of Treatment on Udder and Uterus Health Bioindicators
3.5. Effects of Treatment on Colostrum Components and Immunoglobulin Concentrations
3.6. Effects of Treatment on Milk Yield and Components and Energy Status Implications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Azrak, K.M.; Morsy, A.S.; Soltan, Y.; Hashem, N.M.; Sallam, S.M. Impact of specific essential oils blend on milk production, serum biochemical parameters and kid performance of goats. Anim. Biotechnol. 2021, 1–9. [Google Scholar] [CrossRef]
- Sundrum, A. Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals 2015, 5, 978–1020. [Google Scholar] [CrossRef] [PubMed]
- Moyes, K. Triennial Lactation Symposium: Nutrient partitioning during intramammary inflammation: A key to severity of mastitis and risk of subsequent diseases? J. Anim. Sci. 2015, 93, 5586–5593. [Google Scholar] [CrossRef]
- Braga Paiano, R.; Becker Birgel, D.; Birgel, E.H., Jr. Uterine involution and reproductive performance in dairy cows with metabolic diseases. Animals 2019, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Hashem, N.M.; El-Zarkouny, S.Z. Metabolic attributes, milk production and ovarian activity of ewes supplemented with a soluble sugar or a protected-fat as different energy sources during postpartum period. Ann. Anim. Sci. 2017, 17, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, B.; Yuan, K.; Farney, J.; Mamedova, L.; Carpenter, A. Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J. Dairy Sci. 2015, 98, 6631–6650. [Google Scholar] [CrossRef] [PubMed]
- Iram, F.; Khan, S.A.; Husain, A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac. J. Trop. Biomed. 2017, 7, 513–523. [Google Scholar] [CrossRef]
- Ammon, H. Boswellic extracts and 11-keto-ß-boswellic acids prevent type 1 and type 2 diabetes mellitus by suppressing the expression of proinflammatory cytokines. Phytomedicine 2019, 63, 153002. [Google Scholar] [CrossRef]
- Birkner, K.M. Boswellia, the pain herb. Pain Stress Publ. 2006, 1, 60–61. [Google Scholar]
- Franz, C.; Baser, K.; Windisch, W. Essential oils and aromatic plants in animal feeding—A European perspective. A review. Flavour Fragr. J. 2010, 25, 327–340. [Google Scholar] [CrossRef]
- Ismail, I.E.; Abdelnour, S.A.; Shehata, S.A.; El-Hack, A.; Mohamed, E.; El-Edel, M.A.; Taha, A.E.; Schiavitto, M.; Tufarelli, V. Effect of dietary Boswellia serrata resin on growth performance, blood biochemistry, and cecal microbiota of growing rabbits. Front. Vet. Sci. 2019, 6, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Alderman, G. Prediction of the energy value of compound feeds. Recent Adv. Anim. Nutr. 1985, 285. [Google Scholar]
- Feldman, B.F.; Zinkl, J.G.; Jain, N.C. Schalm’s Veterinary Hematology; Blackwell: Hoboken, NJ, USA, 2000. [Google Scholar]
- Calder, P.C. Immunological parameters: What do they mean? J. Nutr. 2007, 137, 773S–780S. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, E.; Ueda, T.; Nomura, S. In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathol. 1991, 26, 213–214. [Google Scholar] [CrossRef]
- Rainger, G.; Rowley, A. Antibacterial activity in the serum and mucus of rainbow trout, Oncorhynchus mykiss, following immunisation with Aeromonas salmonicida. Fish. Shellfish Immunol. 1993, 3, 475–482. [Google Scholar] [CrossRef]
- Dulin, A.; Paape, M.; Wergin, W. Differentiation and enumeration of somatic cells in goat milk. J. Food Prot. 1982, 45, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.; Shook, G. A lactation measure of somatic cell count. J. Dairy Sci. 1987, 70, 2666–2672. [Google Scholar] [CrossRef]
- Hashem, N.; El-Zarkouny, S.; Taha, T.; Abo-Elezz, Z. Oestrous response and characterization of the ovulatory wave following oestrous synchronization using PGF2α alone or combined with GnRH in ewes. Small Rumin. Res. 2015, 129, 84–87. [Google Scholar] [CrossRef]
- Mateus, L.; Da Costa, L.L.; Carvalho, H.; Serra, P.; Robalo Silva, J. Blood and intrauterine leukocyte profile and function in dairy cows that spontaneously recovered from postpartum endometritis. Reprod. Domest. Anim. 2002, 37, 176–180. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Hashem, N.; Abu-Tor, E.; Abo-Elezz, Z.; Latif, M. Relevance of antioxidant vitamin supplementation for improvement of milk production, milk quality and energy status of lactating ewes. Small Rumin. Res. 2019, 177, 153–159. [Google Scholar] [CrossRef]
- Ammon, H. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine 2010, 17, 862–867. [Google Scholar] [CrossRef]
- Hamidpour, S.; Hamidpour, M.; Shahlari, M.; Hamidpour, R. Chemistry, pharmacology and medicinal property of frankincense (Boswellia Species): From the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. Glob. J. Med. Res. 2015, 15, 1–9. [Google Scholar]
- Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci. 2019, 20, 4101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashem, N.; El-Zarkouny, S. Postpartum associated metabolism, milk production and reproductive efficiency of Barki and Rahmani subtropical fat-tailed Breeds. Asian J. Anim. Vet. Adv. 2016, 11, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.-L.; Peng, Y.-L.; Wang, C.; Cao, F.; Huo, X.-K.; Tian, X.-G.; Feng, L.; Ning, J.; Zhang, B.-J.; Sun, C.-P. Alismanoid A, an unprecedented 1, 2-seco bisabolene from Alisma orientale, and its protective activity against H2O2-induced damage in SH-SY5Y cells. New J. Chem. 2017, 41, 12664–12670. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, W.; Yoo, J.-G.; Ebersole, J.L.; Huang, C.B. Antibacterial compounds from Siraitia grosvenorii leaves. Nat. Prod. Res. 2011, 25, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Skalicka-Woźniak, K.; Grzegorczyk, A.; Świątek, Ł.; Walasek, M.; Widelski, J.; Rajtar, B.; Polz-Dacewicz, M.; Malm, A.; Elansary, H.O. Biological activity and safety profile of the essential oil from fruits of Heracleum mantegazzianum Sommier & Levier (Apiaceae). Food Chem. Toxicol. 2017, 109, 820–826. [Google Scholar]
- Soka, S.; Alam, H.; Boenjamin, N.; Agustina, T.W.; Suhartono, M.T. Effect of Sauropus androgynus leaf extracts on the expression of prolactin and oxytocin genes in lactating BALB/C Mice. Lifestyle Genom. 2010, 3, 31–36. [Google Scholar] [CrossRef]
- Soltan, Y.; Morsy, A.; Hashem, N.; Sallam, S. Boswellia sacra resin as a phytogenic feed supplement to enhance ruminal fermentation, milk yield, and metabolic energy status of early lactating goats. Anim. Feed Sci. Technol. 2021, 277, 114963. [Google Scholar] [CrossRef]
- Al-Harrasi, A.; Rehman, N.U.; Khan, A.L.; Al-Broumi, M.; Al-Amri, I.; Hussain, J.; Hussain, H.; Csuk, R. Chemical, molecular and structural studies of Boswellia species: β-Boswellic Aldehyde and 3-epi-11β-Dihydroxy BA as precursors in biosynthesis of boswellic acids. PLoS ONE 2018, 13, e0198666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nusier, M.K.; Bataineh, H.N.; Bataineh, Z.M.; Daradka, H.M. Effect of frankincense (Boswellia thurifera) on reproductive system in adult male rat. J. Health Sci. 2007, 53, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Ahangarpour, A.; Heidari, H.; Fatemeh, R.A.A.; Pakmehr, M.; Shahbazian, H.; Ahmadi, I.; Mombeini, Z.; Mehrangiz, B.H. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type 2 diabetic patients. J. Diabetes Metab. Disord. 2014, 13, 29. [Google Scholar] [CrossRef] [Green Version]
- Elmetwally, M.A. Uterine involution and ovarian activity in postpartum Holstein dairy cows. A review. J. Vet. Healthc. 2018, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- Chapinal, N.; LeBlanc, S.; Carson, M.; Leslie, K.; Godden, S.; Capel, M.; Santos, J.; Overton, M.; Duffield, T. Herd-level association of serum metabolites in the transition period with disease, milk production, and early lactation reproductive performance. J. Dairy Sci. 2012, 95, 5676–5682. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.K.; Ali, A.Y.; Hayward, O.A.; Turnham, D.; Jackson, T.; Bowen, I.D.; Clarkson, R. β-Bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines. Phytother. Res. 2016, 30, 418–425. [Google Scholar] [CrossRef]
- Ahmad, M.; Hidayanty, H.; As’ad, S.; Arifuddin, S.; Usman, A.N. The effect of biscuit made with mung beans (Vigna radiata), and star gooseberry (Sauropus androgynous) leaves on infant weight. Eur. J. Mol. Clin. Med. 2021, 7, 3725–3736. [Google Scholar]
- Suprayogi, A. Studies on the Biological Effects of Sauropus androgynus (L.) Merr: Effects on Milk Production and the Possibilities of Induced Pulmonary Disorder in Lactating Sheep; Cuvillier: Göttingen, Germany, 2000. [Google Scholar]
- El-Essawy, A.M.; Anele, U.; Abdel-Wahed, A.; Abdou, A.R.; Khattab, I. Effects of anise, clove and thyme essential oils supplementation on rumen fermentation, blood metabolites, milk yield and milk composition in lactating goats. Anim. Feed Sci. Technol. 2021, 271, 114760. [Google Scholar] [CrossRef]
- Hashem, N.M.; El-Zarkouny, S.Z. Effect of short-term supplementation with rumen-protected fat during the late luteal phase on reproduction and metabolism of ewes. J. Anim. Physiol. Anim. Nutr. 2014, 98, 65–71. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Essential oils and phytogenic feed additives in ruminant diet: Chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. 2021, 1–22. [Google Scholar] [CrossRef]
Component | Chemical Class | Retention Time | Molecular Formula | Molecular Weight (g/mol) | Proportion of Total Area (%) |
---|---|---|---|---|---|
(min) | |||||
Limonen-6-ol, pivalate | Cyclic monoterpene | 26.34 | C15H24O2 | 236.3 | 25.6 |
cis-(Z)-α-Bisabolene epoxide | Sesquiterpenes | 25.99 | C15H24O | 220.3 | 23.5 |
β-Amyrin | Triterpenoid | 41.26 | C30H50O | 426.7 | 15.7 |
Geranyl-α-terpinene | Terpenoids | 23.293 | C20H32 | 136.2 | 9.31 |
α-Amyrin | Triterpenoid | 40.13 | C30H50O | 426.7 | 8.70 |
Cycloartanyl acetate | Triterpenoid/sterol | 48.22 | C32H54O2 | 470.8 | 8.64 |
Vitamin A acid methyl ester | - | 39.74 | C21H30O2 | 314.4 | 3.27 |
Cembrene | Diterpenoids | 25.99 | C20H32 | 272.4 | 2.40 |
n-Octyl acetate | Fatty alcohol esters | 8.407 | C10H20O2 | 172.2 | 1.44 |
Androstan-17-one, 3-ethyl-3-hydroxy-5 alpha | Sterol | 22.10 | C21H34O2 | 318.5 | 1.32 |
Item | Treatment (T) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
nBS | BsL | BsH | T | Time (Ti) | T × Ti | ||
Hematological variables | |||||||
RBC (106/mm3) | 20.70 | 20.25 | 20.80 | 0.5752 | 0.773 | <0.001 | 0.803 |
Hb (g/dL) | 12.25 | 12.21 | 12.30 | 0.226 | 0.961 | <0.001 | 0.651 |
Ht (%) | 37.40 | 36.90 | 37.40 | 0.720 | 0.852 | <0.001 | 0.738 |
Immunological variables | |||||||
WBC (103/mm3) | 25.10 | 24.80 | 25.05 | 0.363 | 0.823 | 0.015 | 0.950 |
Lymphocytes (%) | 41.25 | 41.40 | 41.30 | 0.453 | 0.972 | <0.001 | 0.469 |
Neutrophils (%) | 26.80 | 26.50 | 26.250 | 0.729 | 0.866 | <0.001 | 0.166 |
Eosinophils (%) | 13.50 | 13.50 | 14.00 | 0.435 | 0.648 | 0.027 | 0.910 |
Basophils (%) | 0.80 | 0.80 | 0.75 | 0.094 | 0.909 | 0.065 | 0.906 |
Monocytes (%) | 17.65 | 17.90 | 17.60 | 0.295 | 0.7451 | <0.001 | 0.036 |
PA (%) | 19.81 | 20.54 | 20.91 | 0.258 | 0.057 | 0.678 | 0.029 |
PI | 2.01 b | 2.88 a | 2.96 a | 0.377 | 0.036 | <0.001 | 0.087 |
BA (S.I.) | 42.94 | 41.81 | 41.74 | 0.300 | 0.089 | <0.001 | 0.022 |
LA (Unit/mL) | 13.90 b | 13.75 ab | 13.21 a | 0.258 | 0.047 | 0.678 | 0.029 |
Interleukin-1β (pg/mL) | 11.95 a | 11.05 b | 10.98 b | 0.244 | 0.013 | <0.001 | 0.135 |
Item | Treatment (T) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
nBS | BsL | BsH | T | Time (Ti) | T × Ti | ||
Total protein (g/dL) | 6.41 | 6.28 | 6.24 | 0.061 | 0.117 | 0.820 | 0.847 |
Albumin (g/dL) | 3.41 | 3.41 | 3.49 | 0.040 | 0.280 | 0.095 | <0.001 |
Glucose (mg/dL) | 84.08a | 83.83 b | 81.70 c | 0.483 | <0.001 | 0.276 | 0.076 |
Cholesterol (mg/dL) | 210.00 | 210.92 | 210.50 | 1.782 | 0.937 | 0.999 | 0.293 |
Urea (mg/dL) | 14.95 a | 13.64 ab | 13.30 b | 0.513 | 0. 030 | 0.5063 | 0.059 |
NEFAs (mmol/L) | 0.564 a | 0.528 b | 0.519 b | 0.769 | <0.001 | 0.1567 | 0.028 |
BHB (mmol/L) | 0.323 a | 0.307 b | 0.301 b | 0.005 | 0.015 | <0.001 | <0.001 |
TAC (µmol/L) | 418.46 b | 420.85 a | 421.50 a | 0.646 | 0.044 | <0.001 | 0.024 |
MDA (Umol/L) | 14.15 | 14.05 | 13.44 | 0.281 | 0.091 | <0.001 | 0.483 |
Item | Treatment (T) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
nBs | BsL | BsH | T | Time (Ti) | T × Ti | ||
Uterus health indicators | |||||||
Uterine horn diameter (cm) | 3.68 a | 3.198 b | 2.89 c | 0.106 | <0.001 | <0.001 | 0.147 |
Intrauterine fluid score | 1.92 | 1.24 | 1.35 | 0.256 | 0.064 | <0.001 | 0.006 |
Udder health indicators | |||||||
Linear somatic cell count score (×103 cell/mL) | 4.044 a | 2.894 b | 2.876 b | 0.272 | 0.004 | 0.002 | 0.308 |
BA (SI) | 47.33 a | 45.87 b | 45.27b | 0.865 | 0.009 | 0.392 | 0.080 |
LA (unit/mL) | 20.07 | 20.137 | 20.20 | 0.255 | 0.934 | <0.001 | 0.052 |
TAC (µmol/L) | 427.40 b | 428.73 ab | 430.40 a | 0.648 | 0.012 | <0.001 | 0.334 |
Interleukin-1β | 15.30 a | 13.96 b | 14.90 ab | 0.404 | 0.029 | <0.001 | 0.609 |
Item | Treatment (T) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
nBS | BsL | BsH | T | Time (Ti) | T × Ti | ||
Daily feed intake (g DM/goat) | 801.05 | 799.82 | 795.03 | 15.74 | 0.517 | 0.147 | 0.287 |
Body weight one week postpartum (kg) | 25.59 | 26.24 | 26.56 | 1.24 | 0.841 | - | - |
Body weight seven weeks postpartum (kg) | 23.72 | 24.51 | 23.80 | 2.47 | 0.637 | - | - |
Colostrum composition (%) | |||||||
Fat | 6.41 b | 6.72 b | 8.82 a | 0.349 | 0.041 | - | - |
Protein | 4.83 b | 5.24 a | 5.26 a | 0.390 | 0.046 | - | - |
Lactose | 5.78 b | 8.36 a | 7.75 a | 0.421 | 0.008 | - | - |
Solids-not-fat | 11.52 b | 14.15 a | 14.42 a | 0.632 | 0.043 | - | - |
Total solids | 17.93 b | 20.87 ab | 23.24 a | 0.977 | 0.021 | - | - |
Colostrum immunoglobulin contents(mg/dL) | |||||||
IgG | 270.60 | 273.61 | 276.40 | 6.40 | 0.386 | - | - |
IgM | 987.40 b | 993.20 a | 986.80 b | 3.60 | <0.001 | - | - |
Milk yield and composition | |||||||
Milk yield (kg/day) | 1.278 b | 1.480 a | 1.569 a | 0.077 | 0.020 | <0.001 | <0.001 |
ECM (kg/day) | 1.187 b | 1.351 a | 1.389 a | 0.069 | 0.031 | <0.001 | <0.001 |
Milk composition (%) | |||||||
Fat | 3.57 | 3.54 | 3.36 | 0.359 | 0.894 | <0.001 | 0.083 |
Protein | 3.04 | 3.00 | 3.07 | 0.046 | 0.463 | <0.001 | 0.937 |
Lactose | 4.02 | 4.49 | 4.64 | 0.058 | 0.061 | <0.001 | 0.632 |
Solids-not-fat | 7.03 | 7.42 | 7.622 | 0.099 | 0.201 | <0.001 | 0.517 |
Total solids | 11.29 | 11.66 | 11.72 | 0.909 | 0.407 | <0.001 | 0.140 |
Energy status indicators | |||||||
Fat–protein ratio | 1.17 | 1.18 | 1.09 | 0.116 | 0.802 | <0.001 | 0.106 |
MEV (Mcal/kg) | 0.253 | 0.252 | 0.251 | 0.003 | 0.925 | <0.001 | 0.089 |
NEL (Mcal/kg) | 0.861 b | 1.01 a | 1.03 a | 0.056 | 0.041 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, N.M.; Morsy, A.S.; Soltan, Y.A.; Sallam, S.M. Potential Benefits of Boswellia sacra Resin on Immunity, Metabolic Status, Udder and Uterus Health, and Milk Production in Transitioning Goats. Agriculture 2021, 11, 900. https://doi.org/10.3390/agriculture11090900
Hashem NM, Morsy AS, Soltan YA, Sallam SM. Potential Benefits of Boswellia sacra Resin on Immunity, Metabolic Status, Udder and Uterus Health, and Milk Production in Transitioning Goats. Agriculture. 2021; 11(9):900. https://doi.org/10.3390/agriculture11090900
Chicago/Turabian StyleHashem, Nesrein M., Amr S. Morsy, Yosra A. Soltan, and Sobhy M. Sallam. 2021. "Potential Benefits of Boswellia sacra Resin on Immunity, Metabolic Status, Udder and Uterus Health, and Milk Production in Transitioning Goats" Agriculture 11, no. 9: 900. https://doi.org/10.3390/agriculture11090900
APA StyleHashem, N. M., Morsy, A. S., Soltan, Y. A., & Sallam, S. M. (2021). Potential Benefits of Boswellia sacra Resin on Immunity, Metabolic Status, Udder and Uterus Health, and Milk Production in Transitioning Goats. Agriculture, 11(9), 900. https://doi.org/10.3390/agriculture11090900