Harnessing the Phytase Production Potential of Soil-Borne Fungi from Wastewater Irrigated Fields Based on Eco-Cultural Optimization under Shake Flask Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Fungal Identification
2.2. Phytase Enzyme Assay
2.3. Eco-Cultural Conditions for Optimization of Phytase Production
2.3.1. Substrates and Their Concentrations Optimization
2.3.2. Culture Media PH, Temperature, and Inoculum Size Optimization
2.4. Phytase Enzyme Stability Analysis
2.5. Phytase Test in Soil
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azeem, M.; Riaz, A.; Chaudhary, A.N.; Hayatm, R.; Hussain, Q.; Tahir, M.I.; Imran, M. Microbial phytase activity and their role in organic P mineralization. Arch. Agron. Soil Sci. 2015, 61, 751–766. [Google Scholar] [CrossRef]
- Mahmood, S.; Shahid, M.G. Screening of phytate degrading fungi and optimization of culture conditions for phytase synthesis using agro-industrial by-products. Pak. J. Bot 2021, 53, 763–770. [Google Scholar] [CrossRef]
- Deng, G.; Yang, M.; Saleem, M.H.; Rehman, M.; Fahad, S.; Yang, Y.; Elshikh, M.S.; Alkahtani, J.; Ali, S.; Khan, S.M. Nitrogen fertilizer ameliorate the remedial capacity of industrial hemp (Cannabis sativa L.) grown in lead contaminated soil. J. Plant Nut. 2021, 44, 1770–1778. [Google Scholar] [CrossRef]
- Wali, S.; Syed, L.; Rahim, F.; Tariq, F.; Rahman, K.U. Comparative Effects of Manganese and Iron Stress on Seed Germination and Various Growth Parameters of Phaseolus lunatus L. Pak. J. Bot 2021, 53, 1193–1197. [Google Scholar] [CrossRef]
- Sajjadi, M.; Carter, C.G. Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar, L.). Aquac. Nutr. 2004, 10, 135–142. [Google Scholar] [CrossRef]
- Vorhra, A.; Satyanarayana, T. Phytases. Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 2003, 23, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Ali, Q.; Sohail, M.A.; Ashraf, M.F.; Saleem, M.H.; Hussain, S.; Zhou, L. Diversity and Taxonomic Distribution of Endophytic Bacterial Community in the Rice Plant and Its Prospective. Int. J. Mol. Sci. 2021, 22, 10165. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Ali, S.; Rehman, M.; Rizwan, M.; Kamran, M.; Mohamed, I.A.A.; Khan, Z.; Bamagoos, A.A.; Alharby, H.F.; Hakeem, K.R.; et al. Individual and combined application of EDTA and citric acid assisted phytoextraction of copper using jute (Corchorus capsularis L.) seedlings. Environ. Technol. Innov. 2020, 19, 100895. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Rehman, M.; Rana, M.S.; Rizwan, M.; Kamran, M.; Imran, M.; Riaz, M.; Soliman, M.H.; Elkelish, A.; et al. Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 2020, 248, 126032. [Google Scholar] [CrossRef] [PubMed]
- Mudge, S.R.; Frank, W.S.; Richardson, A.E. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Sci. 2003, 165, 871–878. [Google Scholar] [CrossRef]
- Neira-Vielma, A.A.; Aguilar, C.N.; Ilyina, A.; Contreras-Esquivel, J.C.; das Graça Carneiro-da-Cunha, M.; Michelena-Álvarez, G.; Martinez-Hernández, J.L. Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate. Biotechnol. Rep. 2018, 17, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kanti, A.; Sudiana, I.M. Production of phytase, amylase and cellulase by Aspergillus, Rhizophus and Neurospora on mixed rice straws powder and soybean curd residue. IOP Conf. Series. Earth Environ. Sci. 2018, 166, 012010. [Google Scholar] [CrossRef]
- Salmon, D.N.X.; Fendrich, R.C.; Cruz, M.A.; Montibeller, V.W.; Vandenberghe, L.P.S.; Soccol, C.R. Bioprocess for phytase production by Ganoderma sp. MR-56 in different types of bioreactors through submerged cultivation. Biochem. Eng. J. 2016, 114, 288–297. [Google Scholar] [CrossRef]
- Wang, X.; Upatham, S.; Panbangred, W.; Isarangkul, D.; Summpunn, P.; Wiyakrutta, S.; Meevootisom, V. Purification, characterization, gene cloning and sequence analysis of a phytase from Klebsiella pneumoniae subsp. pneumoniae XY-5. Sci. Asia 2007, 30, 383–390. [Google Scholar] [CrossRef]
- Sabu, A.; Sarita, S.; Pandey, A.; Bogar, B.; Szakacs, G.; Soccol, C. R: Solid state fermentation for production of phytase by Rhizopus oligosporus. Appl. Biochem. Biotechnol. 2002, 10, 251–260. [Google Scholar] [CrossRef]
- Awad, G.E.A.; Helal, M.M.I.; Danial, E.N.; Esawy, M.A. Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box–Behnken design. Saudi J. Biol. Sci. 2014, 21, 81–88. [Google Scholar] [CrossRef]
- Manghwar, H.; Hussain, A.; Ali, Q.; Saleem, M.H.; Abualreesh, M.H.; Alatawi, A.; Ali, S.; Munis, M.F.H. Disease Severity, Resistance Analysis, and Expression Profiling of Pathogenesis-Related Protein Genes after the Inoculation of Fusarium equiseti in Wheat. Agronomy 2021, 11, 2124. [Google Scholar] [CrossRef]
- Imran, M.; Sun, X.; Hussain, S.; Ali, U.; Rana, M.S.; Rasul, F.; Saleem, M.H.; Moussa, M.G.; Bhantana, P.; Afzal, J.; et al. Molybdenum-Induced Effects on Nitrogen Metabolism Enzymes and Elemental Profile of Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Sources. Int. J. Mol. Sci. 2019, 20, 3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azeem, M.; Haider, M.Z.; Javed, S.; Saleem, M.H.; Alatawi, A. Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains under Sterile Soil Conditions. Agriculture 2022, 12, 50. [Google Scholar] [CrossRef]
- Alves, N.M.; Guimaraes, L.H.S.; Piccoli, R.H.; Cardoso, P.C. Production and partial characterization of an extracellular phytase produced by Muscodor sp. under submerged fermentation. Adv. Microbiol. 2016, 6, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Salmon, D.N.X.; Piva, L.C.; Binati, R.L.; Rodrigues, C.; Vandenberghe, L.P.D.S.; Soccol, C.R.; Spier, M.R. A bioprocess for the production of phytase from Schizophyllum commune: Studies of its optimization, profile of fermentation parameters, characterization and stability. Bioproc. Biosyst. Eng. 2012, 35, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Kemme, P.A.; Jongbloed, A.W.; Mroz, Z.; Beynen, A.C. The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. J. Anim. Sci. 1997, 75, 2129–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.T.; Nakamura, K.; Matsuo, T.; Mino, T. Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors: Effect of P/C feeding ratio. Water Res. 1997, 31, 1430–1438. [Google Scholar] [CrossRef]
- Waksman, S.A. A method for counting the number of fungi in the soil. J. Bacteriol. 1922, 7, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayyab, D.-E.; Haider, M.Z.; Ali, Q.; Iftikhar, T.; Habib, N.; Niaz, M.; Akhtar, S.; Shahid, S. In silico phylogenetic analysis of fungal lipase genes and harnessing the inherent potential of Aspergillus niger IBP2013 for extracellular triglycerol acyl-hydrolase production under solid state fermentation. Pak. J. Bot. 2018, 50, 2019–2029. [Google Scholar]
- Iftikhar, T.; Niaz, M.; Haider, M.Z.; Sidra, A. Morpho-molecular identification of a novel Aspergillus spp. and its cultural optimization for lipases production. Pak. J. Bot. 2014, 46, 297–2304. [Google Scholar]
- Ellis, M.B. Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Kew, UK, 1971; Volume 9, pp. 173–176. [Google Scholar]
- Ellis, M.B. More Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Kew, UK, 1976. [Google Scholar]
- Carmichael, J.W.; Kendrick, W.B.; Conners, I.L.; Sigler, L. Genera of Hyphomycetes; Edmonton, A.B., Ed.; The University of Alberta Press: Edmonton, AB, Canada, 1980. [Google Scholar]
- Sutton, B.C. The Coelomycetes. Fungi Imperfect with Pycnidia, Acervuli and Stomata; CMI: Kew, UK, 1980; pp. 696–699. [Google Scholar]
- Pikovskaya, R.I. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 1948, 17, 362–370. [Google Scholar]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Premono, M.E.; Moawad, A.M.; Vlek, P.L.G. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones. J. Crop. Sci. 1996, 11, 13–23. [Google Scholar]
- Paul, D.; Sinha, S.N. Isolation of phosphate solubilizing bacteria and total heterotrophic bacteria from river water and study of phosphatase activity of phosphate solubilizing bacteria. Adv. Appl. Sci. Res. 2013, 4, 409–412. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ganesh, S.; Khan, F.; Ahmed, M.K.; Velavendan, P.; Pandey, N.K.; Kamachi Mudali, U. Spectrophotometric determination of trace amounts of phosphate in water and soil. Water Sci. Technol. 2012, 66, 2653–2658. [Google Scholar] [CrossRef]
- Ali, Q.; Ahmar, S.; Sohail, M.A.; Kamran, M.; Ali, M.; Saleem, M.H.; Rizwan, M.; Ahmed, A.M.; Mora-Poblete, F.; Júnior, A.T.D.A.; et al. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environ. Sci. Pollut. Res. 2021, 28, 9002–9019. [Google Scholar] [CrossRef]
- Surya, K.K.; Vanitha, S.; Suresh, S.; Radha, K.V. Production and optimization of phytase from Rhizopus oligosporus using agro residues by solid state fermentation Middle-East. J. Sci. Res. 2013, 17, 1839–1845. [Google Scholar]
- Akturk, S.; Güvenmez, H.; Dinçer, S. Purification and characterization of extracellular phytase from Aspergillus niger. Curr. Opin. Biotechnol. 2013, 24, 585. [Google Scholar] [CrossRef]
- Buddhiwant, P.; Bhavsar, K.; Kumar, R.; Khire, V. Phytase production by solid state fermentation of groundnut oil cake by Aspergillus niger a bioprocess optimization study for animal feedstock applications. Prep. Biochem. Biotechnol. 2016, 46, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ghosh, U. Effect of nutritional supplementation of solid-state fermentation medium on biosynthesis of phytase from Aspergillus niger NCIM612. J. Sci. Ind. Res. 2014, 73, 593–597. [Google Scholar]
- Suresh, S.; Radha, K.V. Statistical optimization and mutagenesis for high level of phytase production by Rhizopus oligosporus MTCC 556 under solid state fermentation. J. Environ. Biol. 2016, 37, 253–260. [Google Scholar] [PubMed]
- Wu, Y.B.; Ravindran, V.; Hendriks, W.H. Effects of microbial phytase, produced by solid-state fermentation, on the performance and nutrient utilization of broilers fed maize-and wheat-based diets. Br. Poult. Sci. 2003, 44, 7. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, B.; Gabriel, J. Copper and cadmium increase laccase activity in Pleurotus ostreatus. Lett. Br. Poult. Sci 2002, 44, 710–718. [Google Scholar]
- Maenz, D.D.; Engele-Schaan, C.M.; Newkirk, R.W.; Classen, H.L. The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim. Feed Sci. Technol. 1999, 81, 177–192. [Google Scholar] [CrossRef]
- Balaban, N.; Suleimanova, A.; Valeeva, L.; Chastukhina, I.; Rudakova, N.; Sharipova, M.; Shakirov, E.V. Microbial Phytases and Phytate: Exploring Opportunities for Sustainable Phosphorus Management in Agriculture. Am. J. Mol. Biol. 2017, 7, 11–29. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.; Floc’h, J.B.; Lahrach, Z.; Hijri, M. Phytate and Microbial Suspension Amendments Increased Soybean Growth and Shifted Microbial Community Structure. Microorganisms 2021, 9, 1803. [Google Scholar] [CrossRef] [PubMed]
Nature of Study | Main Effects | Df | Phytase Activity (MS) | Phytase Specific Activity (MS) | Nature of Study | Main Effects | Df | Phytase Activity (MS) | Phytase Specific Activity (MS) |
---|---|---|---|---|---|---|---|---|---|
Optimization of days | Fungi | 12 | 15.591 *** | 3.795 *** | Optimization of carbon sources | Fungi | 4 | 9.781 ** | 2.171 ns |
Days | 4 | 31.144 *** | 30.90 *** | Carbon sources | 7 | 66.94 *** | 2.171 ns | ||
Fungi × Days | 48 | 5.014 *** | 3.088 *** | Fungi × Carbon source | 28 | 6.465 *** | 2.171 ns | ||
Optimization of substrates | Fungi | 4 | 1.302 *** | 0.609 *** | Optimization of nitrogen sources | Fungi | 4 | 1.336 ns | 1.280 ns |
Substrate | 7 | 10.485 *** | 2.327 *** | Nitrogen sources | 7 | 14.52 *** | 8.357 *** | ||
Fungi × Substrate | 28 | 0.698 *** | 0.361 *** | Fungi × Nitrogen sources | 28 | 3.784 *** | 1.574 *** | ||
Optimization of substrates concentrations | Fungi | 4 | 2.833 *** | 0.038 *** | Stability analysis with inhibitors | Fungi | 1 | 0.886 ns | 52.290 *** |
Substrate concentrations | 7 | 2.913 *** | 0.020 *** | Inhibitor | 7 | 2.873 ** | 1.540 ns | ||
Fungi × Substrate concentrations | 28 | 3.206 *** | 0.003 *** | Fungi × Inhibitor | 7 | 2.344 ** | 4.413 *** | ||
Optimization of inoculum size | Fungi | 4 | 2.382 *** | 0.060 ** | Stability analysis with metal ions | Fungi | 1 | 7.535 *** | 15.978 *** |
Inoculum size | 7 | 14.142 *** | 16.65 *** | Metal ions | 4 | 1.517 * | 4.241 *** | ||
Fungi × Inoculum size | 28 | 29.458 *** | 0.209 *** | Fungi × Metal ions | 4 | 0.925 ns | 5.408 *** | ||
Optimization of Temperatures | Fungi | 4 | 2.886 ** | 0.562 *** | Stability analysis at various temperatures | Fungi | 1 | 0.890 ns | 0.071 ns |
Temperature | 3 | 229.76 *** | 1.055 *** | Temperature | 8 | 4.941 *** | 2.458 *** | ||
Fungi × Temperature | 12 | 1.040 * | 0.215 *** | Fungi × Temperature | 8 | 0.197 ns | 0.526 ns | ||
Optimization of pH | Fungi | 4 | 1.105 * | 6.761 *** | Stability analysis at various pH | Fungi | 1 | 2.163 ** | 12.682 *** |
pH | 7 | 39.502 *** | 29.30 *** | pH | 7 | 16.83 *** | 0.982 *** | ||
Fungi × pH | 28 | 1.240 *** | 5.127 *** | Fungi × pH | 7 | 1.094 ** | 1.247 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadaf, N.; Haider, M.Z.; Iqbal, N.; Abualreesh, M.H.; Alatawi, A. Harnessing the Phytase Production Potential of Soil-Borne Fungi from Wastewater Irrigated Fields Based on Eco-Cultural Optimization under Shake Flask Method. Agriculture 2022, 12, 103. https://doi.org/10.3390/agriculture12010103
Sadaf N, Haider MZ, Iqbal N, Abualreesh MH, Alatawi A. Harnessing the Phytase Production Potential of Soil-Borne Fungi from Wastewater Irrigated Fields Based on Eco-Cultural Optimization under Shake Flask Method. Agriculture. 2022; 12(1):103. https://doi.org/10.3390/agriculture12010103
Chicago/Turabian StyleSadaf, Naila, Muhammad Zulqurnain Haider, Naeem Iqbal, Muyassar H. Abualreesh, and Aishah Alatawi. 2022. "Harnessing the Phytase Production Potential of Soil-Borne Fungi from Wastewater Irrigated Fields Based on Eco-Cultural Optimization under Shake Flask Method" Agriculture 12, no. 1: 103. https://doi.org/10.3390/agriculture12010103
APA StyleSadaf, N., Haider, M. Z., Iqbal, N., Abualreesh, M. H., & Alatawi, A. (2022). Harnessing the Phytase Production Potential of Soil-Borne Fungi from Wastewater Irrigated Fields Based on Eco-Cultural Optimization under Shake Flask Method. Agriculture, 12(1), 103. https://doi.org/10.3390/agriculture12010103