Water Management of Czech Crop Production in 1961–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Water Scarcity & Droughts in the European Union. 2016. Available online: https://ec.europa.eu/environment/water/quantity/about.htm (accessed on 21 November 2020).
- Zahradníček, P.; Brázdil, R.; Štěpánek, P.; Trnka, M. Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. Int. J. Climatol. 2020, 41, 1211–1229. [Google Scholar] [CrossRef]
- European Commission. Water Scarcity and Droughts in the European Union. 2010. Available online: https://ec.europa.eu/environment/pubs/pdf/factsheets/water_scarcity.pdf (accessed on 21 November 2020).
- FAO. Towards a Water and Food Secure Future: Critical Perspectives for Policy-Makers. 2015. Available online: http://www.fao.org/3/a-i4560e.pdf (accessed on 20 November 2020).
- Mozny, M.; Trnka, M.; Vlach, V.; Vizina, A.; Potopova, V.; Zahradnicek, P.; Stepanek, P.; Hajkova, L.; Staponites, L.; Zalud, Z. Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. J. Hydrol. 2020, 590, 125390. [Google Scholar] [CrossRef]
- Trnka, M.; Brázdil, R.; Mozny, M.; Štěpánek, P.; Dobrovolný, P.; Zahradníček, P.; Balek, J.; Semerádová, D.; Dubrovský, M.; Hlavinka, P.; et al. Souil moisture trends in the Czech Republc between 1961 and 2012. Int. J. Climatol. 2015, 35, 3733–3747. [Google Scholar] [CrossRef]
- Grillakis, M.G. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 2019, 660, 1245–1255. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Report on the State of Agriculture of the Czechia; Ministry of Agriculture of the Czechia: Prague, Czech Republic, 2019. [Google Scholar]
- Technor. Meliorace. Potřeba Vody pro Doplňkovou Závlahu ČSN 75 0434 (750434). 2017. Available online: 750434-csn-75-0434_4_15406.html (accessed on 12 November 2020).
- Český Hydrometeorologický Ustav. Uzemní Srážky. 2017. Available online: https://www.chmi.cz/historicka-data/pocasi/uzemni-srazky (accessed on 13 November 2020).
- Czech Statistical Office. Osevní Plochy Zemědělských Plodin Podle Krajů. 2020. Available online: https://www.czso.cz/csu/czso/osevni-plochy-zemedelskych-plodin-podle-kraju (accessed on 14 November 2020).
- BPEJ eCatalogue. Available online: https://bpej.vumop.cz/ (accessed on 18 November 2019).
- Zakonyprolidi. Available online: https://www.zakonyprolidi.cz/cs/2018-227 (accessed on 15 November 2020).
- Czech Statistical Office. Public Database. 2020. Available online: https://vdb.czso.cz/vdbvo2/faces/index.jsf?page=statistiky&&katalog=30840&&akt (accessed on 11 November 2020).
- SPKK. Výměry Zemědělských Plodin v Letech 1961–2001. 2016. Available online: http://www.spkk.cz/images/statistika/Osevn%C3%AD_plochy_%C4%8CR_16.xls (accessed on 20 March 2021).
- Hlavinka, P.; Trnka, M.; Semerádová, D.; Dubrovský, M.; Zalud, Z.; Mozný, M. Effect of drought on yield variability of key crops in Czech Republic. Agric. For. Meteorol. 2009, 149, 431–442. [Google Scholar] [CrossRef]
- Potopová, V.; Štěpánek, P.; Možný, M.; Türkott, L.; Soukup, J. Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agric. For. Meteorol. 2015, 202, 26–38. [Google Scholar] [CrossRef]
- Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Rötter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; et al. Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Sci. Adv. 2019, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procházkova, B.; Dovrtěl, J.; Dryšlová, T.; Křen, J.; Lukas, V.; Neudert, L.; Smutný, V.; Winkler, J. Význam a moţnosti optimalizace struktury a střídání plodin v systémech hospodaření na půdě. Mendelova Univerzita V Brně 2011, 5, 5–35. [Google Scholar]
- Porcelli, C.; Gutierrez, F.H.; Lavado, R. The K/Na and Ca/Na rations and rapeseed yield, under soil salinity or sodicity. Plant Soil 1995, 175, 251–255. [Google Scholar] [CrossRef]
- Fehér, A.; Končeková, L.; Halmová, D.; Prus, P.; Izakovičová, Z.; Dragoi. M. Vascular plants diversity in short rotation coppices: A reliable source of ecosystem services or farmland dead losss. Iforest—Biodeosciences For. 2020, 4, 345–350. [Google Scholar] [CrossRef]
- Kaminski, R.; Marcysiak, T.; Prus, P. The Development of Green Care in Poland. In Proceedings of the 2018 International Conference “Economic Science for Rural Development”, Jelgava, Latvia, 9–11 May 2018; pp. 307–315. [Google Scholar] [CrossRef]
- McGregor, K.C.; Mutchler, C.K.; Romkens, M.J.M. Effects of tilage with different crop residues on runoff and soil loss. Trans. ASAE 1990, 33, 1551–15556. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Mozny, M.; Tolasz, R.; Nekovar, J.; Sparks, T.; Trnka, M.; Zalud, Z. The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agric. For. Meteorol. 2009, 149, 913–919. [Google Scholar] [CrossRef]
- Manners, R.; Etten, J. Are agricultural researchers working on the right crops to enable food and nutrition security under future climatest? Glob. Environ. Change 2018, 53, 182–194. [Google Scholar] [CrossRef]
- Kotyza, P.; Smutka, L.; Pawlak, K. Changes in sugar beet production in the Czech republic and Poland after the year 2000. J. Cent. Eur. Agric. 2019, 20, 1023–1043. [Google Scholar] [CrossRef] [Green Version]
- Lorencová, E.; Frélichová, J.; Nelson, E.; Vačkář, D. Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic. Land Use Policy 2013, 33, 183–194. [Google Scholar] [CrossRef]
- Procházka, P.; Hönig, V.; Maitah, M.; Pljučarská, I.; Kleindienst, J. Evaluation of water scarcity in selected countries of the Middle East. Water 2018, 10, 1482. [Google Scholar] [CrossRef] [Green Version]
- Eitzinger, J.; Štastná, M.; Žalud, Z.; Dubrovský, M. A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agric. Water Manag. 2003, 61, 195–217. [Google Scholar] [CrossRef]
- Gebeltová, Z.; Malec, K.; Maitah, M.; Smutka, L.; Appiah-Kubi, S.N.K.; Maitah, K.; Sahatqija, J.; Sirohi, J. The Impact of Crop Mix on Decreasing Soil Price and Soil Degradation: A Case Study of Selected Regions in Czechia (2002–2019). Sustainability 2020, 12, 444. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Zabaloy, M.C.; Guan, K.; Villamil, M.B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Chem. 2020, 142, 107701. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.; Shaaban, M.; Zhu, D.; Hu, C.; Chen, Z.; Wang, Y. Evaluation of microbial inoculants pretreatment in straw and manure co-composting process enhancement. J. Clean. Prod. 2019, 239, 118078. [Google Scholar] [CrossRef]
- Hu, S.; Lv, Z.; Zuo, X.; Liu, H.; Vymazal, J.; Chen, Z. Effects of loading rates and plant species on sludge characteristics in earthworm assistant sludge treatment wetlands. Sci. Total Environ. 2020, 730, 139142. [Google Scholar] [CrossRef]
- Tvarůžek, L.; Svobodová, I.; Hambálková, M.; Míša, P. Vliv kombinovaných aplikací regulátoru růstu Cerone 480 SL s DMI fungicidy u ozimé pšenice. Obilnářské Listy 2016, 14, 1–7. [Google Scholar]
- Haberle, J.; Mikysková, J. Relation of cereals yields and variability to soil-climate and production characteristics of districts of the Czech Republic. J. Cent. Eur. Agric. 2007, 7, 661–668. [Google Scholar]
- Hůla, J.; Procházková, B. Minimalizace Zpracování Půdy, 1st ed.; Profi Press: Prague, Czech Republic, 2008; p. 248. [Google Scholar]
- Murillo, J.M.; Moreno, F.; Pelegrin, F.; Fernandez, J.E. Responses of sunflower to traditional and conservation tillage under rainfed conditions in southern Spain. Soil Tillage Res. 1998, 3, 233–241. [Google Scholar] [CrossRef]
- Strong, W.M.; Dalal, R.C.; Weston, E.J.; Cooper, J.E.; Lehane, K.J.; King, A.J.; Chicken, C.J. Sustaining productivity of a Vertisol at Warra, Queensland, with fertilisers, no-tillage or legumes. 2. Long-term fertiliser nitrogen needs to engance what yields and grain protein. Aust. J. Exp. Agric. 1996, 36, 665–674. [Google Scholar] [CrossRef]
- Christian, D.G.; Ball, B.C. Reduced cultivation and direct drilling for cereals in Great Britain. In Conservation Tillage in Temperate Agroecosystems, 1st ed.; Carter, M.R., Ed.; Lewis Publishers: Coca Ratorn, FL, USA, 1992; pp. 117–140. [Google Scholar]
- Hůla, J.; Procházková, B.; Badalíková, B.; Dryšlová, T.; Horáček, J.; Javůrek, M.; Kovaříček, P.; Kroulík, M.; Kumhála, F.; Smutný, V.; et al. Dopad Netradičních Technologií Zpracování Půdy na Půdní Prostředí. [Impact of Unconventional Technologies of Soil Cultivation on Soil Environment]. Certifikovaná Metodika Vznikla za Finanční Podpory Ministerstva Zemědělství ČR, je Etapou PUV (Plán Uplatnění Výsledků) Projektu č. 1G57042 Péče o Půdu v Podmínkách se Zvýšenými Nároky na Ochranu Životního Prostředí; Výzkumný ústav zemědělské techniky: Praha, Czech Republic, 2010; Volume 58, pp. 1–60. ISBN 978-80-86884-53-0. [Google Scholar]
- Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 2018, 9, 4249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Hoof, C.; Lambert, F. Mitigation of drought negative effect on ecosystem productivity by vegetation mixing. J. Geogr. Res. 2016, 121, 2667–2683. [Google Scholar] [CrossRef]
- Aslam, Z.; Bashir, S.; Hassan, W.; Bellitürk, K.; Ahmad, N.; Niazi, N.K.; Khan, A.; Khan, M.I.; Chen, Z.; Maitah, M. Unveiling the Efficiency of Vermicompost Derived from Different Biowastes on Wheat (Triticum aestivum L.) Plant Growth and Soil Health. Agronomy 2019, 9, 791. [Google Scholar] [CrossRef] [Green Version]
Line | Crop/Item/Month | Unit |
---|---|---|
1 | Temperature Standard (TS) | °C |
2 | Observed temperature | °C |
3 | Rounded to whole numbers (ROT) | °C |
4 | Temperature difference (td)(Line2–Line1) | °C |
5 | Optimal rainfall | mm |
6 | Adjustment1) for OR (aor) | mm |
7 | Adjusted OR (AOR) (Line5 + Line 4), Correspond with water requirement (WR) | mm |
8 | Observed rainfall | mm |
9 | Deficit d (−) /surplus water e (+) (Line7–Line6) | mm |
Month | IV | V | VI | VII | VIII | IX | X |
---|---|---|---|---|---|---|---|
Normal temperature (°C) | 9 | 14 | 17 | 19 | 18 | 14 | 12 |
Crop | Average Deficit for Period 1961–1970 (v mm) | Average Deficit for Period 2010–2019 (v mm) | Sig. (Two-Tailed) |
---|---|---|---|
Wheat | 4.2 | 29.1 | 0.009 |
Barley | 3.5 | 28.9 | 0.013 |
Rye | 1.4 | 24.0 | 0.008 |
Oats | 9.8 | 39.8 | 0.025 |
Maize | 6.5 | 21.9 | 0.173 |
Legumes | 7.55 | 37.55 | 0.013 |
Rapeseed | 10.3 | 35.9 | 0.009 |
Sugar beet | 36.3 | 69.5 | 0.160 |
Potatoes | 22.7 | 54.3 | 0.332 |
Fodder crops | 23.7 | 59.6 | 0.081 |
Total Deficit in thousands of m3 | 448,978.68 | 8,651,117.4 | 0.028 |
Crop | Acreage 1961–1970 (in Thousand ha) | Acreage 2010–2019 (in Thousand ha) | Change (in %) (Please Reduce the Decimal Places) | Sig. (Two-Tailed) |
---|---|---|---|---|
Wheat | 570.8 | 833.8 | 146.07 | 0.000 |
Barley | 404.9 | 350.7 | 86.62 | 0.017 |
Rye | 306.2 | 27 | 8.82 | 0.000 |
Oats | 321.7 | 44.4 | 13.79 | 0.000 |
Maize | 14.7 | 94.6 | 642.45 | 0.005 |
Legumes | 75.5 | 29.2 | 38.72 | 0.000 |
Rapeseed | 34.4 | 389.7 | 1132.69 | 0.005 |
Sugar beet | 156.4 | 61 | 38.98 | 0.000 |
Potatoes | 298.7 | 24 | 8.02 | 0.005 |
Fodder crops | 1014.3 | 453.0 | 44.7 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malec, K.; Gebeltová, Z.; Maitah, M.; Appiah-Kubi, S.N.K.; Sirohi, J.; Maitah, K.; Phiri, J.; Pańka, D.; Prus, P.; Smutka, L.; et al. Water Management of Czech Crop Production in 1961–2019. Agriculture 2022, 12, 22. https://doi.org/10.3390/agriculture12010022
Malec K, Gebeltová Z, Maitah M, Appiah-Kubi SNK, Sirohi J, Maitah K, Phiri J, Pańka D, Prus P, Smutka L, et al. Water Management of Czech Crop Production in 1961–2019. Agriculture. 2022; 12(1):22. https://doi.org/10.3390/agriculture12010022
Chicago/Turabian StyleMalec, Karel, Zdeňka Gebeltová, Mansoor Maitah, Seth Nana Kwame Appiah-Kubi, Jitka Sirohi, Kamil Maitah, Joseph Phiri, Dariusz Pańka, Piotr Prus, Luboš Smutka, and et al. 2022. "Water Management of Czech Crop Production in 1961–2019" Agriculture 12, no. 1: 22. https://doi.org/10.3390/agriculture12010022
APA StyleMalec, K., Gebeltová, Z., Maitah, M., Appiah-Kubi, S. N. K., Sirohi, J., Maitah, K., Phiri, J., Pańka, D., Prus, P., Smutka, L., & Janků, J. (2022). Water Management of Czech Crop Production in 1961–2019. Agriculture, 12(1), 22. https://doi.org/10.3390/agriculture12010022