Technical Efficiency of Cooperative and Non-Cooperative Dairies in Poland: Toward the First Link of the Supply Chain
Abstract
:1. Introduction
2. Theoretical Background
2.1. The Condition of the Dairy Sector in Poland
2.2. Efficiency of Dairies: Literature Review
3. Data and Methods
3.1. Data
3.2. Method
3.2.1. DEA Method
- Labor costs—due to the lack of data on labor inputs in physical terms, this cost category represents the factor of production in question; it consists of salaries and social security costs;
- Raw material costs—raw materials are of key importance for dairies; by including this cost category, we refer to the involvement of raw materials, mainly milk, in the production process of dairy products;
- Depreciation expense—capital is one of the major factors of production; given that net sales revenue is used as the output variable, for consistency purposes, depreciation expense is adopted as the input of capital factor due to its flow nature; this cost category can be seen as “the financial value of consumption of the long-term assets” [9], p. 177;
- Other operating costs—including other costs related to the production process.
3.2.2. Regional Analysis
- Identification of a set of potential diagnostic variables substantively related to the phenomenon under study;
- Selection of diagnostic variables meeting the following statistical criteria: coefficient of variation (CV) at least equal to 0.1; max to min ratio at least equal to 2 [88];
- Normalization of diagnostic variables (all selected variables are stimulants) according to the following formula [87]:
- Determination of a synthetic variable [87]:
- Division of provinces into three groups (according to the method presented in [87]):
- ◦
- Group I—provinces with a high level of milk production capacity:
- ◦
- Group II—provinces with a medium level of milk production capacity:
- ◦
- Group III—provinces with a low level of milk production capacity:
4. Results and Discussion
4.1. Technical Efficiency of Cooperative and Non-Cooperative Dairies
4.2. Technical Efficiency of Cooperative and Non-Cooperative Dairies: The Spatial Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Source Publication | DEA Model | Output Variables | Input Variables | Sample | Year/Period | Country |
---|---|---|---|---|---|---|
Singh et al. (2001) [18] | VRS, IO | (1) aggregate dairy products’ variable | (1) raw material (mainly raw milk); (2) labor; (3) capital—depreciation, repairs, maintenance, and interests of the machinery and building; (4) other inputs (administration, fuel, power, insurance, etc.) | 13 cooperative and 10 private dairy plants from Haryana and Punjab states | 1992/93 and 1996/97 | India |
Baran and Kołyska (2009) [70] | M | (1) net sales revenue | (1) number of staff; (2) fixed assets | 205–248 dairy processing firms, including cooperatives | 1998–2005 | Poland |
Gradziuk (2009) [71] | CRS, VRS, OO; M | (1) net sales revenue | (1) sum of depreciation, material and energy consumption, and contracted services costs; (2) labor costs | 12 large dairy processing companies from the Mazowieckie province | 2001–2007 | Poland |
Soboh et al. (2012) [22] | VRS, IO | (1) total turnover | (1) fixed assets; (2) material costs; (3) labor costs | 133 dairy processing companies: 90 investor-owned firms and 43 cooperatives | 2004 | Belgium, Denmark, France, Germany, Ireland, the Netherlands |
Baran (2013) [72] | CRS, VRS, IO | (1) net sales revenue | (1) labor costs; (2) costs of material and energy consumption; (3) fixed assets | 743 observations of dairy processing firms, including cooperatives | 1999–2010 | Poland |
Ohlan (2013) [85] | CRS, VRS, IO | (1) net value added | (1) fixed capital; (2) working capital; (3) labor; (4) raw materials; (5) fuel | Data obtained from Annual Survey of Industry, Ministry of Commerce and Industry, Government of India | 1980–2008 | India |
Kapelko and Oude Lansink (2013) [66] | VRS, IO | (1) turnover | (1) employee costs; (2) material costs; (3) fixed assets | Unbalanced panel of 3509 observations of 264–380 dairy processing firms | 2000–2009 | Spain |
Vlontzos and Theodoridis (2013) [20] | CRS, VRS, IO, M | (1) revenue; (2) mixed profit | (1) overall depreciation; (2) costs of sold products; (3) shared capital; (4) value of stock; (5) short-term liabilities | 29 dairy companies, 20% of them cooperatives | 2006–2007 for CRS, VRS, IO; 2003–2007 for M | Greece |
Domańska et al. (2015) [73] | VRS, IO | (1) net sales revenue | (1) fixed assets; (2) number of staff | 12 dairy processing companies from the Lubelskie province, including 10 cooperatives | 2010–2012 | Poland |
Špička (2015) [9] | VRS, IO, M | (1) sales revenue | (1) material and energy costs; (2) staff costs; (3) depreciation and amortization | 130 dairy processors | 2008–2013 | Czech Republic, Poland, Slovakia |
Lima et al. (2018) [46] | CRS, VRS, IO, MS | (1) revenue | (1) payroll; (2) processed milk volume; (3) boiler, fuel, and electricity costs | 40 dairy establishments, of which 85% were private and 15% were cooperatives | 2014/2015 | Brazil |
Popović and Panić (2019) [19] | VRS, IO, MS | (1) sales revenue | (1) costs of material (mainly raw milk); (2) labor costs; (3) energy costs; (4) other costs (depreciation, costs of purchased commodities, contracted services, non-material costs, and interest paid) | 79 non-cooperative dairy processing companies | 2016 | Serbia |
Ruales Guzmán et al. (2021) [102] | VRS, IO, OO | (1) revenue (2) profit | (1) current assets; (2) property, plant, and equipment; (3) non-current liabilities; (4) equity | 19 dairy industry companies | 2017 | Colombia |
References
- Hooks, T.; Macken-Walsh, Á.; McCarthy, O.; Power, C. Farm-Level Viability, Sustainability and Resilience: A Focus on Cooperative Action and Values-Based Supply Chains. Stud. Agric. Econ. 2017, 119, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Orr, D.W. Four Challenges of Sustainability. Conserv. Biol. 2002, 16, 1457–1460. [Google Scholar]
- Augustin, M.A.; Udabage, P.; Juliano, P.; Clarke, P.T. Towards a More Sustainable Dairy Industry: Integration across the Farm–Factory Interface and the Dairy Factory of the Future. Int. Dairy J. 2013, 31, 2–11. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 6 November 2021).
- Bricas, N. The Scope of the Analysis: Food Systems. In Food Systems at Risk. New Trends and Challenges; Dury, S., Bendjebbar, P., Hainzelin, E., Giordano, T., Bricas, N., Eds.; FAO: Rome, Italy; CIRAD: Montpellier, France; European Commission: Brussels, Belgium, 2019; pp. 15–18. ISBN 978-92-5-131732-7. [Google Scholar]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Kruetli, P.; Grant, M.; Six, J. Food System Resilience: Defining the Concept. Glob. Food Sec. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Nguyen, H. Sustainable Food Systems: Concept and Framework. Available online: https://www.fao.org/3/ca2079en/CA2079EN.pdf (accessed on 6 November 2021).
- Čechura, L.; Žáková Kroupová, Z. Technical Efficiency in the European Dairy Industry: Can We Observe Systematic Failures in the Efficiency of Input Use? Sustainability 2021, 13, 1830. [Google Scholar] [CrossRef]
- Špička, J. The Efficiency Improvement of Central European Corporate Milk Processors in 2008–2013. Agris -Online Pap. Econ. Inform. 2015, 7, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Feil, A.A.; Schreiber, D.; Haetinger, C.; Haberkamp, Â.M.; Kist, J.I.; Rempel, C.; Maehler, A.E.; Gomes, M.C.; da Silva, G.R. Sustainability in the Dairy Industry: A Systematic Literature Review. Environ. Sci. Pollut. Res. 2020, 27, 33527–33542. [Google Scholar] [CrossRef]
- Miller, G.D.; Auestad, N. Towards a Sustainable Dairy Sector: Leadership in Sustainable Nutrition. Int. J. Dairy Technol. 2013, 66, 307–316. [Google Scholar] [CrossRef]
- Ang, S.; Zhu, Y.; Yang, F. Efficiency Evaluation and Ranking of Supply Chains Based on Stochastic Multicriteria Acceptability Analysis and Data Envelopment Analysis. Int. Trans. Oper. Res. 2021, 28, 3190–3219. [Google Scholar] [CrossRef]
- Rao, K.H.; Raju, P.N.; Reddy, G.P.; Hussain, S.A. Public-Private Partnership and Value Addition: A Two-Pronged Approach for Sustainable Dairy Supply Chain Management. IUP J. Supply Chain. Manag. 2013, 10, 15–25. [Google Scholar]
- Zorn, A.; Esteves, M.; Baur, I.; Lips, M. Financial Ratios as Indicators of Economic Sustainability: A Quantitative Analysis for Swiss Dairy Farms. Sustainability 2018, 10, 2942. [Google Scholar] [CrossRef] [Green Version]
- Wilczyński, A. Farm Economic Sustainability—Financial Ratio Analysis. Res. Pap. Wroc. Univ. Econ. Bus. 2020, 64, 120–131. [Google Scholar] [CrossRef]
- Bórawski, P.; Pawlewicz, A.; Mickiewicz, B.; Pawlewicz, K.; Bełdycka-Bórawska, A.; Holden, L.; Brelik, A. Economic Sustainability of Dairy Farms in the EU. Eur. Res. Stud. J. 2020, 23, 955–978. [Google Scholar] [CrossRef]
- Bánkuti, F.I.; Prizon, R.C.; Damasceno, J.C.; Brito, M.M.D.; Pozza, M.S.S.; Lima, P.G.L. Farmers’ Actions toward Sustainability: A Typology of Dairy Farms According to Sustainability Indicators. Animal 2020, 14, s417–s423. [Google Scholar] [CrossRef]
- Singh, S.; Coelli, T.; Fleming, E. Performance of Dairy Plants in the Cooperative and Private Sectors in India. Ann. Public Coop. Econ. 2001, 72, 453–479. [Google Scholar] [CrossRef]
- Popović, R.; Panić, D. Economic Sustainability of Dairy Processing Sector in Serbia. In Sustainable Agriculture and Rural Development in Terms of the Republic of Serbia Strategic Goals Realization within the Danube Region. Sustainability and Multifunctionality; Subić, J., Jeločnik, M., Kuzman, B., Andrei, J.V., Eds.; Institute of Agricultural Economics: Belgrade, Serbia, 2019; pp. 686–700. ISBN 978-86-6269-068-5. [Google Scholar]
- Vlontzos, G.; Theodoridis, A. Efficiency and Productivity Change in the Greek Dairy Industry. Agric. Econ. Rev. 2013, 14, 14–28. [Google Scholar]
- Jansik, C.; Irz, X.; Kuosmanen, N. Competitiveness of Northern European Dairy Chains; MTT Economic Research, Agrifood Research Finland: Helsinki, Finland, 2014; ISBN 978-951-687-177-9. [Google Scholar]
- Soboh, R.; Oude Lansink, A.; Van Dijk, G. Efficiency of Cooperatives and Investor Owned Firms Revisited. J. Agric. Econ. 2012, 63, 142–157. [Google Scholar] [CrossRef]
- Hirsch, S.; Mishra, A.; Möhring, N.; Finger, R. Revisiting Firm Flexibility and Efficiency: Evidence from the EU Dairy Processing Industry. Eur. Rev. Agric. Econ. 2020, 47, 971–1008. [Google Scholar] [CrossRef]
- Eurostat. Cows’ Milk Collection and Products Obtained-Annual Data. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mk_cola&lang=en (accessed on 2 November 2021).
- Parzonko, A. Globalne i Lokalne Uwarunkowania Rozwoju Produkcji Mleka; Wydawnictwo SGGW: Warszawa, Poland, 2013; ISBN 978-83-7583-461-1. [Google Scholar]
- Boyle, G.E. The Economic Efficiency of Irish Dairy Marketing Co-Operatives. Agribusiness 2004, 20, 143–153. [Google Scholar] [CrossRef]
- Gardijan Kedžo, M.; Lukač, Z. The Financial Efficiency of Small Food and Drink Producers across Selected European Union Countries Using Data Envelopment Analysis. Eur. J. Oper. Res. 2021, 291, 586–600. [Google Scholar] [CrossRef]
- Madau, F.A.; Furesi, R.; Pulina, P. Technical Efficiency and Total Factor Productivity Changes in European Dairy Farm Sectors. Agric. Food Econ. 2017, 5, 17:1–17:14. [Google Scholar] [CrossRef]
- Thomson, A.; Metz, M. Implications of Economic Policy for Food Security: A Training Manual; FAO: Rome, Italy, 1999; ISBN 92-5-104379-5. [Google Scholar]
- Zuba-Ciszewska, M. Structural Changes in the Milk Production Sector and Food Security—The Case of Poland. Ann. Pol. Assoc. Agric. Agribus. Econ. 2019, 21, 318–327. [Google Scholar] [CrossRef]
- Zuba-Ciszewska, M. Rola spółdzielni w zapewnieniu dostępności żywności w Polsce − na przykładzie produktów mleczarskich. Wieś Rolnictwo 2020, 186, 93–119. [Google Scholar] [CrossRef]
- Seremak-Bulge, J.; Hryszko, K.; Pieniążek, K.; Rembeza, J.; Szajner, P.; Świetlik, K. Rozwój Rynku Mleczarskiego i Zmiany Jego Funkcjonowania w Latach 1990–2005; Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej—Państwowy Instytut Badawczy: Warszawa, Poland, 2005; ISBN 83-89666-34-0. [Google Scholar]
- Szajner, P. (Ed.) Rynek Mleka. Stan i Perspektywy; Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej: Warszawa, Poland, 2019; Volume 57. [Google Scholar]
- Eurostat. Bovine Animals by NUTS 2 Regions—Annual Data. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ef_lsk_bovine&lang=en (accessed on 2 November 2021).
- Szajner, P. (Ed.) Rynek Mleka. Stan i Perspektywy; Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej: Warszawa, Poland, 2020; Volume 58. [Google Scholar]
- Zuba-Ciszewska, M. Structural Changes in the Dairy Industry and Their Impact on the Efficiency of Dairies—A Polish Example. In Proceedings of the 2018 International Scientific Conference ‘Economic Sciences for Agribusiness and Rural Economy’, Warsaw, Poland, 7 June 2018; Volume 2, pp. 116–123. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, I.; Tereszczuk, M. Confronting the Polish Dairy Industry with the International Competition in the EU Food Market. Rev. Socio Econ. Perspect. 2017, 2, 31–51. [Google Scholar] [CrossRef]
- Urban, S. Trzeci agregat agrobiznesu—Przetwórstwo surowców rolniczych żywnościowych i nieżywnościowych. In Agrobiznes i Biobiznes. Teoria i Praktyka; Urban, S., Ed.; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu: Wrocław, Poland, 2014; pp. 46–58. ISBN 978-83-7695-408-0. [Google Scholar]
- Kraciuk, J. Koncentracja produkcji w polskim przemyśle spożywczym. Zeszyty Naukowe SGGW w Warszawie. Problemy Rolnictwa Światowego 2008, 5, 33–41. [Google Scholar]
- Chechelski, P. Ocena procesów koncentracji struktur podmiotowych w branżach przetwórstwa produktów pochodzenia zwierzęcego w Polsce. Ann. Pol. Assoc. Agric. Agribus. Econ. 2017, 19, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Baran, J. Intensywność i Zasięg Geograficzny Internacjonalizacji Sektora Przetwórstwa Mleka; Wydawnictwo SGGW: Warszawa, Poland, 2019; ISBN 978-83-7583-848-0. [Google Scholar]
- Zuba-Ciszewska, M. Rola przemysłu spożywczego w gospodarce Polski. Nierówności Społeczne a Wzrost Gospodarczy 2020, 64, 69–86. [Google Scholar] [CrossRef]
- Mroczek, R. Pozycja przemysłu spożywczego w łańcuchu żywnościowym w Polsce na przełomie XX/XXI wieku. Zeszyty Naukowe SGGW w Warszawie. Problemy Rolnictwa Światowego 2018, 18, 23–37. [Google Scholar] [CrossRef]
- Chechelski, P. Ewolucja łańcucha żywnościowego. In Przemysł Spożywczy—Makrootoczenie, Inwestycje, Ekspansja Zagraniczna; Firlej, K., Szczepaniak, I., Eds.; Fundacja Uniwersytetu Ekonomicznego w Krakowie: Kraków, Poland, 2015; pp. 45–64. ISBN 978-83-65173-07-2. [Google Scholar]
- Nazarko, J.; Chodakowska, E. Labour Efficiency in Construction Industry in Europe Based on Frontier Methods: Data Envelopment Analysis and Stochastic Frontier Analysis. J. Civ. Eng. Manag. 2017, 23, 787–795. [Google Scholar] [CrossRef]
- Lima, L.P.; Ribeiro, G.B.D.; Silva, C.A.B.; Perez, R. An Analysis of the Brazilian Dairy Industry Efficiency Level. Int. Food Res. J. 2018, 25, 2478–2485. [Google Scholar]
- Alem, H. The Role of Technical Efficiency Achieving Sustainable Development: A Dynamic Analysis of Norwegian Dairy Farms. Sustainability 2021, 13, 1841. [Google Scholar] [CrossRef]
- Mbaga, M.D.; Romain, R.; Larue, B.; Lebel, L. Assessing Technical Efficiency of Québec Dairy Farms. Can. J. Agric. Econ. 2003, 51, 121–137. [Google Scholar] [CrossRef]
- Le, S.; Jeffrey, S.; An, H. Greenhouse Gas Emissions and Technical Efficiency in Alberta Dairy Production: What Are the Trade-Offs? J. Agric. Appl. Econ. 2020, 52, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Skevas, I.; Emvalomatis, G.; Brümmer, B. Heterogeneity of Long-Run Technical Efficiency of German Dairy Farms: A Bayesian Approach*. J. Agric. Econ. 2018, 69, 58–75. [Google Scholar] [CrossRef] [Green Version]
- Theodoridis, A.M.; Psychoudakis, A. Efficiency Measurement in Greek Dairy Farms: Stochastic Frontier vs. Data Envelopment Analysis. Int. J. Econ. Sci. Appl. Res. 2008, 1, 53–67. [Google Scholar]
- Kelly, E.; Shalloo, L.; Geary, U.; Kinsella, A.; Wallace, M. Application of Data Envelopment Analysis to Measure Technical Efficiency on a Sample of Irish Dairy Farms. Ir. J. Agric. Food Res. 2012, 51, 63–77. [Google Scholar]
- Mohd Suhaimi, N.A.B.; de Mey, Y.; Oude Lansink, A. Measuring and Explaining Multi-Directional Inefficiency in the Malaysian Dairy Industry. Br. Food J. 2017, 119, 2788–2803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skevas, I.; Oude Lansink, A. Dynamic Inefficiency and Spatial Spillovers in Dutch Dairy Farming. J. Agric. Econ. 2020, 71, 742–759. [Google Scholar] [CrossRef]
- Jaforullah, M.; Whiteman, J. Scale Efficiency in the New Zealand Dairy Industry: A Non-Parametric Approach. Aust. J. Agric. Resour. Econ. 1999, 43, 523–541. [Google Scholar] [CrossRef] [Green Version]
- Soliman, T.; Djanibekov, U. Assessing Dairy Farming Eco-Efficiency in New Zealand: A Two-Stage Data Envelopment Analysis. N. Z. J. Agric. Res. 2021, 64, 411–428. [Google Scholar] [CrossRef]
- Syp, A.; Osuch, D. Zmiany efektywności i produktywności gospodarstw polowych i mlecznych w województwie lubelskim w latach 2014–2016. Ann. Pol. Assoc. Agric. Agribus. Econ. 2018, 20, 137–142. [Google Scholar] [CrossRef]
- Wilczyński, A.; Kołoszycz, E.; Świtłyk, M. Technical Efficiency of Dairy Farms: An Empirical Study of Producers in Poland. Eur. Res. Stud. J. 2020, 23, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Świtłyk, M.; Sompolska-Rzechuła, A.; Kurdyś-Kujawska, A. Measurement and Evaluation of the Efficiency and Total Productivity of Dairy Farms in Poland. Agronomy 2021, 11, 2095. [Google Scholar] [CrossRef]
- Silva, E.; Almeida, B.; Marta-Costa, A.A. Efficiency of the Dairy Farms: A Study from Azores (Portugal). Eur. Countrys. 2018, 10, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.P. Does Multi-Functionality Affect Technical Efficiency? A Non-Parametric Analysis of the Scottish Dairy Industry. J. Environ. Manage. 2006, 80, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Demircan, V.; Binici, T.; Zulauf, C.R. Assessing Pure Technical Efficiency of Dairy Farms in Turkey. Agric. Econ. Czech 2010, 56, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Tauer, L.W. Productivity of New York Dairy Farms Measured by Nonparametric Malmquist Indices. J. Agric. Econ. 1998, 49, 234–249. [Google Scholar] [CrossRef]
- Stokes, J.R.; Tozer, P.R.; Hyde, J. Identifying Efficient Dairy Producers Using Data Envelopment Analysis. J. Dairy Sci. 2007, 90, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mugera, A.W. Measuring Technical Efficiency of Dairy Farms with Imprecise Data: A Fuzzy Data Envelopment Analysis Approach. Aust. J. Agric. Resour. Econ. 2013, 57, 501–520. [Google Scholar] [CrossRef]
- Kapelko, M.; Oude Lansink, A. Technical Efficiency of the Spanish Dairy Processing Industry: Do Size and Exporting Matter? In Efficiency Measures in the Agricultural Sector: With Applications; Mendes, A.B., Soares da Silva, E.L.D.G., Azevedo Santos, J.M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 93–106. ISBN 978-94-007-5739-4. [Google Scholar]
- Doucouliagos, H.; Hone, P. The Efficiency of the Australian Dairy Processing Industry. Aust. J. Agric. Resour. Econ. 2000, 44, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Soboh, R.A.M.E.; Oude Lansink, A.; Van Dijk, G. Efficiency of European Dairy Processing Firms. NJAS Wagen. J. Life Sc. 2014, 70–71, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Beber, C.L.; Lakner, S.; Skevas, I. Organizational Forms and Technical Efficiency of the Dairy Processing Industry in Southern Brazil. Agric. Food Econ. 2021, 9, 23:1–23:22. [Google Scholar] [CrossRef]
- Baran, J.; Kołyska, J. Porównanie wykorzystania zasobów małych, średnich i dużych przedsiębiorstw przemysłu mleczarskiego w latach 1998–2005. EQUIL 2009, 2, 159–169. [Google Scholar] [CrossRef]
- Gradziuk, K. Efektywność przedsiębiorstw przemysłu spożywczego na przykładzie branży mleczarskiej. Ann. Pol. Assoc. Agric. Agribus. Econ. 2009, 11, 117–122. [Google Scholar]
- Baran, J. Efficiency of the Production Scale of Polish Dairy Companies Based on Data Envelopment Analysis. Acta Sci. Pol., Oecon. 2013, 12, 5–13. [Google Scholar]
- Domańska, K.; Kijek, T.; Tomczyńska-Mleko, M. Efektywność przedsiębiorstw przemysłu mleczarskiego w województwie lubelskim. Ann. Pol. Assoc. Agric. Agribus. Econ. 2015, 17, 29–34. [Google Scholar]
- Berger, A.N.; Mester, L.J. Inside the Black Box: What Explains Differences in the Efficiencies of Financial Institutions? J. Bank. Financ. 1997, 21, 895–947. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak, M. Fenomen Spółdzielni Rolników. Pomiędzy Rynkiem, Hierarchią i Klanem; CeDeWu: Warszawa, Poland, 2019; ISBN 978-83-8102-191-3. [Google Scholar]
- Grashuis, J.; Su, Y. A Review of the Empirical Literature on Farmer Cooperatives: Performance, Ownership and Governance, Finance, and Member Attitude. Ann. Public Coop. Econ. 2019, 90, 77–102. [Google Scholar] [CrossRef]
- Emerging Markets Information Service (EMIS). Available online: https://www.emis.com/ (accessed on 6 November 2021).
- Guzik, B. Podstawowe Modele DEA w Badaniu Efektywności Gospodarczej i Społecznej; Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu: Poznań, Poland, 2009; ISBN 978-83-7417-368-1. [Google Scholar]
- Prędki, A. Modelowanie Zmienności Danych w Ramach Metody DEA; Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie: Kraków, Poland, 2016; ISBN 978-83-7252-725-7. [Google Scholar]
- Cooper, W.W.; Li, S.; Seiford, L.M.; Zhu, J. Sensitivity Analysis in DEA. In Handbook on Data Envelopment Analysis; Cooper, W.W., Seiford, L.M., Zhu, J., Eds.; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2011; pp. 71–91. ISBN 978-1-4419-6151-8. [Google Scholar]
- Nowak, E. Analiza Sprawozdań Finansowych, 4th ed.; Polskie Wydawnictwo Ekonomiczne: Warszawa, Poland, 2017; ISBN 978-83-208-2256-4. [Google Scholar]
- Coelli, T. A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer) Program. CEPA Work. Pap. 1996, 96/08, 1–49. [Google Scholar]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer: New York, NY, USA, 2005; ISBN 978-0-387-24266-8. [Google Scholar]
- Pai, P.; Khan, B.M.; Kachwala, T. Data Envelopment Analysis—Is BCC Model Better than CCR Model? Case of Indian Life Insurance Companies. NMIMS Manag. Rev. 2020, 38, 17–35. [Google Scholar]
- Ohlan, R. Efficiency and Total Factor Productivity Growth in Indian Dairy Sector. Q. J. Int. Agric. 2013, 52, 51–77. [Google Scholar]
- Kumar, S.; Gulati, R. An Examination of Technical, Pure Technical, and Scale Efficiencies in Indian Public Sector Banks Using Data Envelopment Analysis. Eurasian J. Bus. Econ. 2008, 1, 33–69. [Google Scholar]
- Jędrzejczyk, Z.; Kukuła, K.; Skrzypek, J.; Walkosz, A. Badania Operacyjne w Przykładach i Zadaniach, 6th ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2011; ISBN 978-83-01-16483-6. [Google Scholar]
- Kukuła, K.; Luty, L. O wyborze metody porządkowania liniowego do oceny gospodarki odpadami w Polsce w ujęciu przestrzennym. Zeszyty Naukowe SGGW w Warszawie. Problemy Rolnictwa Światowego 2018, 18, 183–192. [Google Scholar] [CrossRef] [Green Version]
- GUS [Statistics Poland]. Fizyczne Rozmiary Produkcji Zwierzęcej w 2019 roku. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/produkcja-zwierzeca-zwierzeta-gospodarskie/fizyczne-rozmiary-produkcji-zwierzecej-w-2019-roku,3,15.html (accessed on 6 November 2021).
- GUS [Statistics Poland]. Zwierzęta Gospodarskie w 2019 Roku. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/produkcja-zwierzeca-zwierzeta-gospodarskie/zwierzeta-gospodarskie-w-2019-roku,6,20.html (accessed on 6 November 2021).
- GUS [Statistics Poland]. Charakterystyka Gospodarstw Rolnych w 2016 r. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/rolnictwo/charakterystyka-gospodarstw-rolnych-w-2016-r-,5,5.html (accessed on 6 November 2021).
- Singh, S.; Fleming, E.; Coelli, T. Efficiency and Productivity Analysis of Cooperative Dairy Plants in Haryana and Punjab States of India. Work. Pap. Ser. Agric. Resour. Econ. 2000, 2000-2, 1–18. [Google Scholar]
- Ohlan, R. Productivity and Efficiency Analysis of Haryana’s Dairy Industry. Productivity 2011, 52, 42–50. [Google Scholar]
- Ozcan, Y.A. Health Care Benchmarking and Performance Evaluation. An Assessment Using Data Envelopment Analysis (DEA), 2nd ed.; Springer: New York, NY, USA, 2014; ISBN 978-1-4899-7472-3. [Google Scholar]
- Kapelko, M. Measuring Inefficiency for Specific Inputs Using Data Envelopment Analysis: Evidence from Construction Industry in Spain and Portugal. Cent. Eur. J. Oper. Res. 2018, 26, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Malak-Rawlikowska, A.; Milczarek-Andrzejewska, D.; Fałkowski, J. Restrukturyzacja sektora mleczarskiego w Polsce—Przyczyny i skutki. Roczniki Nauk Rolniczych, Seria G 2007, 94, 95–108. [Google Scholar]
- Brodziński, M.G. Oblicza Polskiej Spółdzielczości Wiejskiej. Geneza-Rozwój-Przyszłość; Wydawnictwo FREL: Warszawa, Poland, 2014; ISBN 978-83-64691-04-1. [Google Scholar]
- Mahajan, V.; Nauriyal, D.K.; Singh, S.P. Technical Efficiency Analysis of the Indian Drug and Pharmaceutical Industry: A Non-Parametric Approach. Benchmarking Int. J. 2014, 21, 734–755. [Google Scholar] [CrossRef]
- Nowak, M.M. Wpływ spółdzielni mleczarskich na przemiany przestrzenne, ekonomiczne i środowiskowe we współczesnej gospodarce. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu 2013, 296, 251–260. [Google Scholar]
- Roman, M. Uwarunkowania i Kierunki Zmian Zasięgu Geograficznego Rynku Mleka Surowego w Polsce; Wydawnictwo SGGW: Warszawa, Poland, 2017; ISBN 978-83-7583-756-8. [Google Scholar]
- Rudziński, R. Organizacja logistyki w zakładach przetwórstwa mleka. Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach, Seria: Administracja i Zarządzanie 2010, 87, 157–177. [Google Scholar]
- Ruales Guzmán, B.V.; Rodríguez Lozano, G.I.; Castellanos Domínguez, O.F. Measuring Productivity of Dairy Industry Companies: An Approach with Data Envelopment Analysis. J. Agribus. Dev. Emerg. Econ. 2021, 11, 160–177. [Google Scholar] [CrossRef]
Financial Ratio | Formula | Form | Mean | Med | Mann–Whitney | ||||
---|---|---|---|---|---|---|---|---|---|
Mean Rank | U | Z | p | ||||||
liquidity ratios | |||||||||
current ratio | current assets/current liabilities | cooperative | 65 | 2.419 | 1.668 | 58.00 | 1170.00 | −1.428 | 0.153 |
non-cooperative | 43 | 1.659 | 1.269 | 49.21 | |||||
cash ratio | cash/current liabilities | cooperative | 65 | 1.026 | 0.356 | 59.26 | 1088.00 | −1.942 | 0.052 |
non-cooperative | 43 | 0.455 | 0.054 | 47.30 | |||||
profitability ratios | |||||||||
return on sales | net profit/net sales | cooperative | 65 | −0.039 | 0.002 | 46.80 | 897.00 | −3.141 | 0.002 |
non-cooperative | 43 | −0.003 | 0.014 | 66.14 | |||||
return on assets | net profit/total assets | cooperative | 65 | −0.025 | 0.003 | 47.29 | 929.00 | −2.940 | 0.003 |
non-cooperative | 43 | 0.049 | 0.025 | 65.40 | |||||
return on equity | net profit/equity | cooperative | 65 | −0.086 | 0.009 | 46.66 | 888.00 | −3.198 | 0.001 |
non-cooperative | 43 | 0.162 | 0.065 | 66.35 | |||||
return on sales II | operating profit/net sales | cooperative | 65 | −0.037 | 0.000 | 45.94 | 841.00 | −3.494 | <0.001 |
non-cooperative | 43 | 0.001 | 0.017 | 67.44 | |||||
return on assets II | operating profit/total assets | cooperative | 65 | −0.023 | 0.001 | 46.42 | 872.00 | −3.300 | <0.001 |
non-cooperative | 43 | 0.052 | 0.029 | 66.72 | |||||
return on equity II | operating profit/equity | cooperative | 65 | −0.074 | 0.009 | 46.65 | 887.00 | −3.206 | 0.001 |
non-cooperative | 43 | 0.165 | 0.060 | 66.37 | |||||
capital structure | |||||||||
equity to assets ratio | equity/total assets | cooperative | 65 | 0.541 | 0.571 | 57.71 | 1189.00 | −1.309 | 0.191 |
non-cooperative | 43 | 0.463 | 0.526 | 49.65 | |||||
long-term debt to assets ratio | long-term debt/total assets | cooperative | 65 | 0.095 | 0.076 | 53.22 | 1314.00 | −0.524 | 0.600 |
non-cooperative | 43 | 0.113 | 0.056 | 56.44 | |||||
short-term debt to assets ratio | short-term debt/total assets | cooperative | 65 | 0.364 | 0.347 | 51.98 | 1234.00 | −1.026 | 0.305 |
non-cooperative | 43 | 0.444 | 0.392 | 58.30 | |||||
equity to fixed assets ratio | equity/fixed assets | cooperative | 65 | 1.727 | 1.306 | 58.48 | 1139.00 | −1.622 | 0.105 |
non-cooperative | 43 | 1.336 | 1.029 | 48.49 | |||||
activity ratios | |||||||||
total asset turnover ratio | net sales/total assets | cooperative | 65 | 2.846 | 2.730 | 57.75 | 1186.00 | −1.327 | 0.184 |
non-cooperative | 43 | 2.681 | 2.377 | 49.58 | |||||
fixed asset turnover ratio | net sales/fixed assets | cooperative | 65 | 10.058 | 6.200 | 57.09 | 1229.00 | −1.058 | 0.290 |
non-cooperative | 43 | 10.783 | 5.053 | 50.58 | |||||
equity turnover ratio | net sales/equity | cooperative | 65 | 5.512 | 5.008 | 56.06 | 1296.00 | −0.637 | 0.524 |
non-cooperative | 43 | 5.164 | 3.602 | 52.14 | |||||
wage efficiency ratio | net sales/labor cost | cooperative | 65 | 9.303 | 7.966 | 44.18 | 727.00 | −4.208 | <0.001 |
non-cooperative | 43 | 17.363 | 11.730 | 70.09 | |||||
raw material efficiency ratio | net sales/raw materials | cooperative | 65 | 2.643 | 1.357 | 52.66 | 1278.00 | −0.750 | 0.453 |
non-cooperative | 43 | 3.120 | 1.446 | 57.28 | |||||
days inventory outstanding (DIO) | (inventory/net sales) × 365 | cooperative | 65 | 16.093 | 12.884 | 46.45 | 874.00 | −3.286 | 0.001 |
non-cooperative | 43 | 25.211 | 20.857 | 66.67 | |||||
days receivables outstanding (DRO) | (short-term receivables/net sales) × 365 | cooperative | 65 | 34.865 | 32.508 | 45.42 | 807.00 | −3.706 | <0.001 |
non-cooperative | 43 | 40.816 | 39.782 | 68.23 | |||||
days payables outstanding (DPO) | (current liabilities/net sales) × 365 | cooperative | 65 | 70.344 | 42.158 | 47.92 | 970.00 | −2.683 | 0.007 |
non-cooperative | 43 | 77.130 | 52.799 | 64.44 | |||||
cash conversion cycle (CCC) | DIO+DRO-DPO | cooperative | 65 | −19.386 | 2.915 | 53.91 | 1359.00 | −0.242 | 0.809 |
non-cooperative | 43 | –11.103 | 1.658 | 55.40 |
Form | Variable | Mean | Med | SD | Min | Max | Q1 | Q3 |
---|---|---|---|---|---|---|---|---|
cooperative (n = 65) | output | |||||||
NS | 268,525.49 | 38,130.18 | 833,695.80 | 341.98 | 5,182,216.01 | 18,958.07 | 131,452.70 | |
inputs | ||||||||
LC | 18,956.04 | 5282.10 | 49,499.37 | 242.75 | 336,432.51 | 2707.10 | 14,289.93 | |
RM | 207,015.94 | 26,569.23 | 654,858.48 | 53.33 | 4,060,276.85 | 9255.83 | 106,025.00 | |
DE | 5063.03 | 580.20 | 15,447.84 | 7.90 | 96,878.00 | 193.45 | 4247.92 | |
OC | 35,502.32 | 5031.30 | 107,198.03 | 109.01 | 641,033.23 | 2540.70 | 20,564.88 | |
non-cooperative (n = 43) | output | |||||||
NS | 228,647.14 | 87,096.48 | 347,286.35 | 423.85 | 1,486,375.50 | 22,870.88 | 281,108.00 | |
inputs | ||||||||
LC | 13,675.55 | 6566.71 | 23,725.76 | 238.24 | 131,231.00 | 2209.23 | 14,671.11 | |
RM | 144,554.43 | 48,073.75 | 224,947.70 | 95.42 | 1,192,281.50 | 14,737.43 | 175,026.00 | |
DE | 4230.19 | 1609.79 | 8957.35 | 5.46 | 42,231.00 | 547.61 | 3585.27 | |
OC | 56,911.08 | 12,529.71 | 116,628.46 | 140.32 | 499,853.94 | 3540.48 | 51,947.02 | |
total (n = 108) | output | |||||||
NS | 252,648.00 | 60,269.39 | 680,776.08 | 341.98 | 5,182,216.01 | 21,605.88 | 191,143.70 | |
inputs | ||||||||
LC | 16,853.62 | 5551.52 | 41,148.91 | 238.24 | 336,432.51 | 2572.14 | 14,462.88 | |
RM | 182,147.00 | 34,267.88 | 526,600.50 | 53.33 | 4,060,276.85 | 10,448.64 | 143,293.50 | |
DE | 4731.44 | 890.42 | 13,205.95 | 5.46 | 96,878.00 | 250.82 | 3697.86 | |
OC | 44,026.18 | 6809.61 | 111,010.84 | 109.01 | 641,033.23 | 2876.41 | 26,339.29 |
Form | n | Mean | Med | SD | Min | Max | Q1 | Q3 | Mann–Whitney | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Rank | U | Z | p | ||||||||||
TE | cooperative | 65 | 0.879 | 0.884 | 0.081 | 0.543 | 1.000 | 0.832 | 0.927 | 48.32 | 995.50 | −2.534 | 0.011 |
non-cooperative | 43 | 0.920 | 0.932 | 0.082 | 0.747 | 1.000 | 0.845 | 1.000 | 63.85 | ||||
total | 108 | 0.895 | 0.899 | 0.084 | 0.543 | 1.000 | 0.839 | 0.978 |
Form | TE | df | |||
---|---|---|---|---|---|
Efficient | Inefficient | ||||
cooperative | 8 (12.3%) | 57 (87.7%) | 6.543 | 1 | 0.011 |
non-cooperative | 14 (32.6%) | 29 (67.4%) |
Form | n | Mean | Med | SD | Min | Max | Q1 | Q3 | Mann–Whitney | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Rank | U | Z | p | ||||||||||
PTE | cooperative | 65 | 0.926 | 0.949 | 0.083 | 0.549 | 1.000 | 0.877 | 1.000 | 49.81 | 1092.50 | −1.957 | 0.050 |
non-cooperative | 43 | 0.947 | 0.994 | 0.075 | 0.755 | 1.000 | 0.902 | 1.000 | 61.59 | ||||
total | 108 | 0.935 | 0.958 | 0.080 | 0.549 | 1.000 | 0.881 | 1.000 |
Form | PTE | df | |||
---|---|---|---|---|---|
Efficient | Inefficient | ||||
cooperative | 17 (26.2%) | 48 (73.8%) | 5.84 | 1 | 0.016 |
non-cooperative | 21 (48.8%) | 22 (51.2%) |
Input | Form | Potential Input Reduction (%) | Mann–Whitney | ||||
---|---|---|---|---|---|---|---|
Mean | Med | Mean Rank | U | Z | p | ||
LC | cooperative | 26.1 | 24.8 | 34.15 | 463.00 | −0.822 | 0.411 |
non-cooperative | 22.4 | 22.2 | 38.45 | ||||
RM | cooperative | 10.0 | 7.7 | 35.75 | 516.00 | −0.152 | 0.879 |
non-cooperative | 10.3 | 9.6 | 34.95 | ||||
DE | cooperative | 18.7 | 12.5 | 36.33 | 488.00 | −0.506 | 0.613 |
non-cooperative | 25.5 | 17.3 | 33.68 | ||||
OC | cooperative | 10.0 | 7.7 | 35.75 | 516.00 | −0.152 | 0.879 |
non-cooperative | 10.3 | 9.6 | 34.95 |
Form | n | Mean | Med | SD | Min | Max | Q1 | Q3 | |
---|---|---|---|---|---|---|---|---|---|
SE | cooperative | 65 | 0.951 | 0.962 | 0.048 | 0.818 | 1.000 | 0.923 | 0.993 |
non-cooperative | 43 | 0.971 | 0.989 | 0.042 | 0.803 | 1.000 | 0.957 | 1.000 | |
total | 108 | 0.959 | 0.977 | 0.046 | 0.803 | 1.000 | 0.930 | 0.999 |
Form | drs | crs | irs | df | p | |
---|---|---|---|---|---|---|
cooperative | 46 (70.8%) | 8 (12.3%) | 11 (16.9%) | 7.92 | 2 | 0.019 |
non-cooperative | 22 (51.2%) | 15 (34.9%) | 6 (14.0%) | |||
total | 68 (63.0%) | 23 (21.3%) | 17 (15.7%) |
Case | TE = 1 | TE < 1 | ||
---|---|---|---|---|
PTE = 1 | PTE < 1 | PTE < 1 | ||
SE < 1 | SE = 1 | SE < 1 | ||
total | 22 (20.4%) | 16 (14.8%) | 1 (0.9%) | 69 (63.9%) |
cooperatives | 8 (7.4%) | 9 (8.3%) | 0 (0.0%) | 48 (44.4%) |
non-cooperatives | 14 (13.0%) | 7 (6.5%) | 1 (0.9%) | 21 (19.4%) |
Recommendation | no action required | adjustment in the scale of operations | improvement in managerial performance | both adjustment in the scale of operations and improvement in managerial performance |
Variable | Mean | Med | SD | CV | Min | Max | Max/Min |
---|---|---|---|---|---|---|---|
X1 | 12.83 | 10.85 | 9.25 | 0.72 | 2.80 | 40.20 | 14.36 |
X2 | 739,243.69 | 294,841.00 | 826,913.82 | 1.12 | 77,853.00 | 2,604,942.00 | 33.46 |
X3 | 82.80 | 85.55 | 11.73 | 0.14 | 47.36 | 94.02 | 1.99 |
X4 | 5129.50 | 5416.50 | 1200.12 | 0.23 | 2678.00 | 6760.00 | 2.52 |
X5 | 796.63 | 546.00 | 613.09 | 0.77 | 190.00 | 2579.00 | 13.57 |
X6 | 28.03 | 29.28 | 13.91 | 0.50 | 6.60 | 53.14 | 8.05 |
X7 | 0.18 | 0.13 | 0.14 | 0.77 | 0.04 | 0.46 | 12.87 |
Rank | Province | Group | |
---|---|---|---|
1 | Podlaskie | 0.7541 | I: high milk production capacity |
2 | Mazowieckie | 0.6077 | |
3 | Wielkopolskie | 0.5964 | |
4 | Opolskie | 0.5131 | II: medium milk production capacity |
5 | Dolnośląskie | 0.4592 | |
6 | Kujawsko-Pomorskie | 0.4582 | |
7 | Warmińsko-Mazurskie | 0.4581 | |
8 | Śląskie | 0.4180 | |
9 | Łódzkie | 0.4095 | |
10 | Zachodniopomorskie | 0.4016 | |
11 | Lubuskie | 0.3764 | |
12 | Pomorskie | 0.3627 | |
13 | Lubelskie | 0.3083 | III: low milk production capacity |
14 | Świętokrzyskie | 0.2550 | |
15 | Podkarpackie | 0.2300 | |
16 | Małopolskie | 0.1169 | |
Milk Production Capacity of Region | n | Mean | Med | Kruskal–Wallis | ||||
---|---|---|---|---|---|---|---|---|
Mean Rank | H | df | p | |||||
cooperative | low | 9 | 0.919 | 0.924 | 27.06 | 1.051 | 2 | 0.591 |
medium | 30 | 0.930 | 0.951 | 33.93 | ||||
high | 26 | 0.924 | 0.955 | 33.98 | ||||
non-cooperative | low | 5 | 0.990 | 1.000 | 29.40 | 2.482 | 2 | 0.289 |
medium | 19 | 0.944 | 0.987 | 20.05 | ||||
high | 19 | 0.940 | 1.000 | 22.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziętek-Kwaśniewska, K.; Zuba-Ciszewska, M.; Nucińska, J. Technical Efficiency of Cooperative and Non-Cooperative Dairies in Poland: Toward the First Link of the Supply Chain. Agriculture 2022, 12, 52. https://doi.org/10.3390/agriculture12010052
Ziętek-Kwaśniewska K, Zuba-Ciszewska M, Nucińska J. Technical Efficiency of Cooperative and Non-Cooperative Dairies in Poland: Toward the First Link of the Supply Chain. Agriculture. 2022; 12(1):52. https://doi.org/10.3390/agriculture12010052
Chicago/Turabian StyleZiętek-Kwaśniewska, Katarzyna, Maria Zuba-Ciszewska, and Joanna Nucińska. 2022. "Technical Efficiency of Cooperative and Non-Cooperative Dairies in Poland: Toward the First Link of the Supply Chain" Agriculture 12, no. 1: 52. https://doi.org/10.3390/agriculture12010052
APA StyleZiętek-Kwaśniewska, K., Zuba-Ciszewska, M., & Nucińska, J. (2022). Technical Efficiency of Cooperative and Non-Cooperative Dairies in Poland: Toward the First Link of the Supply Chain. Agriculture, 12(1), 52. https://doi.org/10.3390/agriculture12010052