Wettability and Water Uptake Improvement in Plasma-Treated Alfalfa Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Material
2.2. Plasma Reactor
2.3. Plasma Treatment
2.4. Water Contact Angle
2.5. Water Uptake
2.6. Scanning Electron Microscopy
2.7. X-ray Photoelectron Spectroscopy
2.8. Statistical Analysis
3. Results and Discussion
3.1. Water Contact Angle
3.2. Water Uptake
3.3. Scanning Electron Microscopy
3.4. X-ray Photoelectron Spectroscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Putnam, D.H.; Orloff, S.B. Forage crops. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: London, UK, 2014; pp. 381–405. [Google Scholar] [CrossRef]
- Wojciechowski, M.F.; Lavin, M.; Sanderson, M.J. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am. J. Bot. 2004, 91, 1846–1862. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.N.; Stout, D.G.; Brooke, B.; Thompson, D. Cultivar and storage effects on germination and hard seed content of alfalfa. Can. J. Plant Sci. 1999, 79, 201–208. [Google Scholar] [CrossRef]
- Copeland, L.O.; McDonald, M. Principles of Seed Science and Technology, 4th ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Uradni list Republike Slovenije. Pravilnik o trženju semena krmnih rastlin in pese. 2003. Available online: www.uradni-list.si/glasilo-uradni-list-rs/vsebina/2003-01-4130/pravilnik-o-trzenju-semena-krmnih-rastlin-in-pese (accessed on 25 August 2021).
- Nelson, S.O.; Stetson, L.E. Long-term effects of radiofrequency, infrared, and gas-plasma treatments on alfalfa seed. Trans. ASAE 1983, 26, 1516–1521. [Google Scholar] [CrossRef]
- Ghaleb, W.; Ahmed, L.Q.; Escobar-Gutierrez, A.J.; Julier, B. The history of domestication and selection of lucerne: A new perspective from the genetic diversity for seed germination in response to temperature and scarification. Front. Plant Sci. 2021, 11, 578121. [Google Scholar] [CrossRef]
- Hall, J.W.; Stout, D.G.; Brooke, B.M. Alfalfa seed germination tests and stand establishment: The role of hard (water impermeable) seed. Can. J. Plant Sci. 1998, 78, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Alves-Junior, C.; da Silva, D.L.S.; Vitoriano, J.O.; Barbalho, A.; de Sousa, R.C. The water path in plasma-treated Leucaena seeds. Seed Sci. Res. 2020, 30, 13–20. [Google Scholar] [CrossRef]
- Ambrico, P.F.; Šimek, M.; Morano, M.; De Miccolis Angelini, R.M.; Minafra, A.; Trotti, P.; Ambrico, M.; Prukner, V.; Faretra, F. Reduction of microbial contamination and improvement of germination of sweet basil (Ocimum basilicum L.) seeds via surface dielectric barrier discharge. J. Phys. D: Appl. Phys. 2017, 50, 305401. [Google Scholar] [CrossRef]
- da Silva, A.R.M.; Farias, M.L.; da Silva, D.L.S.; Vitoriano, J.O.; de Sousa, R.C.; Alves-Junior, C. Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa caesalpiniafolia. Colloids Surf. B Biointerfaces 2017, 157, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Stolárik, T.; Henselová, M.; Martinka, M.; Novák, O.; Zahoranová, A.; Černák, M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem. Plasma Process. 2015, 35, 659–676. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhou, R.W.; Groot, G.; Bazaka, K.; Murphy, A.B.; Ostrikov, K.K. Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma. Sci. Rep. 2017, 7, 5601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holc, M.; Mozetič, M.; Recek, N.; Primc, G.; Vesel, A.; Zaplotnik, R.; Gselman, P. Wettability increase in plasma-treated agricultural seeds and its relation to germination improvement. Agronomy 2021, 11, 1467. [Google Scholar] [CrossRef]
- Misra, N.N.; Schlüter, O.; Cullen, P.J. Cold Plasma in Food and Agriculture; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Molina, R.; López-Santos, C.; Gómez-Ramírez, A.; Vilchez, A.; Espinós, J.P.; González-Elipe, A.R. Influence of irrigation conditions in the germination of plasma treated Nasturtium seeds. Sci. Rep. 2018, 8, 16442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butscher, D.; Van Loon, H.; Waskow, A.; Rudolf von Rohr, P.; Schuppler, M. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int. J. Food Microbiol. 2016, 238, 222–232. [Google Scholar] [CrossRef]
- Tang, X.; Liang, F.C.; Zhao, L.J.; Zhang, L.L.; Shu, J.; Zheng, H.M.; Qin, X.; Shao, C.Y.; Feng, J.K.; Du, K.S. Stimulating effect of low-temperature plasma (LTP) on the germination rate and vigor of alfalfa seed (Medicago sativa L.). In Computer and Computing Technologies in Agriculture IX; Li, D., Li, Z., Eds.; Springer International Publishing: Basel, Switzerland, 2016; pp. 522–529. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Wang, D.; Shao, C.; Zhang, L.; Tang, X. Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress. Plasma Sci. Technol. 2018, 20, 035505. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.Y.; Song, Z.Q.; Xu, W.Q.; Li, Y.B.; Ding, C.J.; Chen, H. Spectral characteristics on increasing hydrophilicity of alfalfa seeds treated with alternating current corona discharge field. Spectrochim. Acta A 2020, 236, 118350. [Google Scholar] [CrossRef] [PubMed]
- Machado-Moreira, B.; Tiwari, B.K.; Richards, K.G.; Abram, F.; Burgess, C.M. Application of plasma activated water for decontamination of alfalfa and mung bean seeds. Food Microbiol. 2021, 96, 103708. [Google Scholar] [CrossRef]
- Zaplotnik, R.; Vesel, A.; Mozetič, M. Transition from E to H mode in inductively coupled oxygen plasma: Hysteresis and the behaviour of oxygen atom density. Europhys. Lett. 2011, 95, 55001. [Google Scholar] [CrossRef] [Green Version]
- Recek, N.; Holc, M.; Vesel, A.; Zaplotnik, R.; Gselman, P.; Mozetič, M.; Primc, G. Germination of Phaseolus vulgaris L. Seeds after a short treatment with a powerful rf plasma. Int. J. Mol. Sci. 2021, 22, 6672. [Google Scholar] [CrossRef]
- Bormashenko, E.; Grynyov, R.; Bormashenko, Y.; Drori, E. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci. Rep. 2012, 2, 741. [Google Scholar] [CrossRef]
- Lonlua, R.; Sarapirom, S. The effect of low-pressure plasma treatment on sunflower seed germination and sprouts growth rate. J. Phys. Conf. Ser. 2019, 1380, 012157. [Google Scholar] [CrossRef]
- Srisonphan, S. Tuning surface wettability through hot carrier initiated impact ionization in cold plasma. ACS Appl. Mater. Interfaces 2018, 10, 11297–11304. [Google Scholar] [CrossRef]
- Srisonphan, S.; Ruangwong, K.; Thammaniphit, C. Localized electric field enhanced streamer cold plasma interaction on biological curved surfaces and its shadow effect. Plasma Chem. Plasma Process. 2020, 40, 1253–1265. [Google Scholar] [CrossRef]
- Ramkumar, M.C.; Cools, P.; Arunkumar, A.; De Geyter, N.; Morent, R.; Kumar, V.; Udaykumar, S.; Gopinath, P.; Jaganathan, S.K.; Pandiyaraj, K.N. Polymer coatings for biocompatibility and reduced nonspecific adsorption. In Functionalised Cardiovascular Stents; Wall, J.G., Podbielska, H., Wawrzyńska, M., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 155–198. [Google Scholar] [CrossRef]
- Šerá, B.; Scholtz, V.; Jirešová, J.; Khun, J.; Julák, J.; Šerý, M. Effects of non-thermal plasma treatment on seed germination and early growth of leguminous plants—A review. Plants 2021, 10, 1616. [Google Scholar] [CrossRef]
- Pérez-Pizá, M.C.; Cejas, E.; Zilli, C.; Prevosto, L.; Mancinelli, B.; Santa-Cruz, D.; Yannarelli, G.; Balestrasse, K. Enhancement of soybean nodulation by seed treatment with non-thermal plasmas. Sci. Rep. 2020, 10, 4917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bormashenko, E.; Shapira, Y.; Grynyov, R.; Whyman, G.; Bormashenko, Y.; Drori, E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J. Exp. Bot. 2015, 66, 4013–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solum, D.J.; Lockerman, R.H. Seed coat surface patterns and structures of Oxytropis riparia, Oxytropis campestris, Medicago sativa, and Astragalus cicer. Scanning Microsc. 1991, 5, 779–786. [Google Scholar]
- Švubová, R.; Kyzek, S.; Medvecká, V.; Slováková, L.; Gálová, E.; Zahoranová, A. Novel insight at the effect of cold atmospheric pressure plasma on the activity of enzymes essential for the germination of pea (Pisum sativum L. cv. Prophet) seeds. Plasma Chem. Plasma Process. 2020, 40, 1221–1240. [Google Scholar] [CrossRef]
- Gao, X.T.; Zhang, A.; Heroux, P.; Sand, W.; Sun, Z.Y.; Zhan, J.X.; Wang, C.H.; Hao, S.Y.; Li, Z.Y.; Li, Z.Y.; et al. Effect of dielectric barrier discharge cold plasma on pea seed growth. J. Agric. Food Chem. 2019, 67, 10813–10822. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhou, R.; Zhang, X.; Zhuang, J.; Yang, S.; Bazaka, K.; Ken Ostrikov, K. Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci. Rep. 2016, 6, 32603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Giorgi, J.; Piskurewicz, U.; Loubery, S.; Utz-Pugin, A.; Bailly, C.; Mène-Saffrané, L.; Lopez-Molina, L. An endosperm-associated cuticle is required for arabidopsis seed viability, dormancy and early control of germination. PLoS Genet. 2015, 11, e1005708. [Google Scholar] [CrossRef] [Green Version]
- Grzegorzewski, F.; Rohn, S.; Kroh, L.W.; Geyer, M.; Schlüter, O. Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem. 2010, 122, 1145–1152. [Google Scholar] [CrossRef]
- Billah, M.; Sajib, S.A.; Roy, N.C.; Rashid, M.M.; Reza, M.A.; Hasan, M.M.; Talukder, M.R. Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo L.) seed germination and growth. Arch. Biochem. Biophys. 2020, 681, 108253. [Google Scholar] [CrossRef]
- Zeng, L.W.; Cocks, P.S.; Kailis, S.G.; Kuo, J. Structure of the seed coat and its relationship to seed softening in mediterranean annual legumes. Seed Sci. Technol. 2005, 33, 351–362. [Google Scholar] [CrossRef]
- Zeng, L.W.; Cocks, P.S.; Kailis, S.G.; Kuo, J. The role of fractures and lipids in the seed coat in the loss of hardseededness of six mediterranean legume species. J. Agric. Sci. 2005, 143, 43–55. [Google Scholar] [CrossRef]
- Janská, A.; Pecková, E.; Sczepaniak, B.; Smýkal, P.; Soukup, A. The role of the testa during the establishment of physical dormancy in the pea seed. Ann. Bot. 2019, 123, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Galussi, A.A.; Arguello, J.A.; Cerana, M.M.; Maximino, M.; Moya, M.E. Anatomical and chemical characteristics of the seed coat of Medicago sativa L. (alfalfa) cv. Baralfa 85 seeds and their association with seed dormancy. Phyton-Int. J. Exp. Bot. 2015, 84, 163–175. [Google Scholar] [CrossRef]
- Fadhlalmawla, S.A.; Mohamed, A.A.H.; Almarashi, J.Q.M.; Boutraa, T. The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum). Plasma Sci. Technol. 2019, 21, 105503. [Google Scholar] [CrossRef]
- Boutraa, T.; Fadhlalmawla, S.A.; M. Almarashi, J.Q.; Mohamed, A.-A.H. Argon cold atmospheric pressure plasma jet enhancing seed germination of fenugreek (Trigonella foenum-graecum). In Proceedings of the IEEE Pulsed Power & Plasma Science, Orlando, FL, USA, 23–28 June 2019; pp. 1–5. [Google Scholar]
- Guo, Q.; Wang, Y.; Zhang, H.; Qu, G.; Wang, T.; Sun, Q.; Liang, D. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 2017, 7, 16680. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.H.; Choi, K.H.; Pengkit, A.; Im, J.S.; Kim, J.S.; Kim, Y.H.; Park, Y.; Hong, E.J.; Jung, S.K.; Choi, E.H.; et al. Effects of high voltage nanosecond pulsed plasma and micro dbd plasma on seed germination, growth development and physiological activities in spinach. Arch. Biochem. Biophys. 2016, 605, 117–128. [Google Scholar] [CrossRef]
- Ma, F.; Cholewa, E.; Mohamed, T.; Peterson, C.A.; Gijzen, M. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann. Bot. 2004, 94, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Molina, R.; Lalueza, A.; López-Santos, C.; Ghobeira, R.; Cools, P.; Morent, R.; de Geyter, N.; González-Elipe, A.R. Physicochemical surface analysis and germination at different irrigation conditions of DBD plasma-treated wheat seeds. Plasma Process. Polym. 2020, 18, e2000086. [Google Scholar] [CrossRef]
- Gómez-Ramírez, A.; López-Santos, C.; Cantos, M.; García, J.L.; Molina, R.; Cotrino, J.; Espinós, J.P.; González-Elipe, A.R. Surface chemistry and germination improvement of quinoa seeds subjected to plasma activation. Sci. Rep. 2017, 7, 5924. [Google Scholar] [CrossRef] [Green Version]
- Štěpánová, V.; Slavíček, P.; Kelar, J.; Prášil, J.; Smékal, M.; Stupavská, M.; Jurmanová, J.; Černák, M. Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement. Plasma Process. Polym. 2018, 15, 1700076. [Google Scholar] [CrossRef]
- Varnagiris, S.; Vilimaite, S.; Mikelionyte, I.; Urbonavicius, M.; Tuckute, S.; Milcius, D. The combination of simultaneous plasma treatment with Mg nanoparticles deposition technique for better mung bean seeds germination. Processes 2020, 8, 1575. [Google Scholar] [CrossRef]
- Holc, M.; Junkar, I.; Mozetič, M. Plasma Agriculture: Oxygen Plasma Effects on Garlic; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020. [Google Scholar]
Author | Year | Plasma | Gas | Pressure | Treatment Time [s] | Effect |
---|---|---|---|---|---|---|
Nelson [6] | 1983 | glow | air | low | / | ↑ germination; ↓ hard seed %; long-lasting effects |
Butscher [17] | 2016 | pulsed DBD | Ar | atm | 120–900 | decontamination; ↑ germination under mild conditions |
Tang [18] | 2016 | glow | Ne | low | 20 | ↑ germination; ↑ vigor |
Feng [19] | 2018 | CC RF | air/He | low | 15 | ↑ germination; ↑ vigor; under simulated drought stress |
Luan [20] | 2020 | corona | air | atm | / | ↓ WCA, ↑ water uptake, changes to surface chemistry (FTIR)/morphology (SEM) |
Machado-Moreira [21] | 2021 | arc | air | atm | 600 | PAW: decontamination; unaffected germination and growth |
E-Mode | F | Mg | Al | Si | P | S | K | Ca |
---|---|---|---|---|---|---|---|---|
CTRL | 0.2 ± 0.2 | 0.5 ± 0.2 | 1.4 ± 0.4 | 0.1 ± 0.1 | 0.6 ± 0.1 | |||
10 s | 0.1 ± 0.1 | 4.5 ± 1.0 | ||||||
30 s | 0.2 ± 0.1 | 0.3 ± 0.2 | 3.0 ± 0.3 | 0.1 ± 0.0 | 1.2 ± 0.1 | 0.4 ± 0.0 | ||
60 s | 0.4 ± 0.3 | 0.8 ± 0.4 | 1.1 ± 0.3 | 3.6 ± 0.7 | 0.4 ± 0.2 | 0.6 ± 0.2 | 1.9 ± 0.3 | 1.7 ± 0.5 |
90 s | 0.2 ± 0.1 | 0.4 ± 0.1 | 1.1 ± 0.2 | 3.3 ± 0.9 | 0.2 ± 0.1 | 0.4 ± 0.2 | 1.9 ± 0.2 | 1.1 ± 0.2 |
120 s | 0.8 ± 0.4 | 1.8 ± 1.1 | 4.6 ± 2.1 | 0.6 ± 0.3 | 0.6 ± 0.2 | 2.5 ± 0.4 | 1.8 ± 0.9 | |
H-mode | F | Mg | Al | Si | P | S | K | Ca |
CTRL | 0.2 ± 0.2 | 0.5 ± 0.2 | 1.4 ± 0.4 | 0.1 ± 0.1 | 0.6 ± 0.1 | |||
0.3 s | 0.1 ± 0.0 | 0.1 ± 0.0 | 1.7 ± 0.2 | 0.7 ± 0.1 | 0.3 ± 0.0 | |||
1 s | 0.9 ± 0.3 | 1.1 ± 0.1 | 2.9 ± 0.3 | 0.2 ± 0.0 | 0.6 ± 0.1 | 1.1 ± 0.2 | 1.9 ± 0.6 | |
3 s | 1.6 ± 0.2 | 2.0 ± 0.3 | 1.8 ± 0.4 | 5.0 ± 0.9 | 0.7 ± 0.2 | 1.1 ± 0.1 | 4.3 ± 0.6 | 5.2 ± 0.3 |
5 s | 2.0 ± 0.3 | 1.8 ± 0.1 | 1.1 ± 0.3 | 3.5 ± 0.6 | 0.5 ± 0.2 | 1.2 ± 0.0 | 4.3 ± 0.8 | 5.1 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holc, M.; Gselman, P.; Primc, G.; Vesel, A.; Mozetič, M.; Recek, N. Wettability and Water Uptake Improvement in Plasma-Treated Alfalfa Seeds. Agriculture 2022, 12, 96. https://doi.org/10.3390/agriculture12010096
Holc M, Gselman P, Primc G, Vesel A, Mozetič M, Recek N. Wettability and Water Uptake Improvement in Plasma-Treated Alfalfa Seeds. Agriculture. 2022; 12(1):96. https://doi.org/10.3390/agriculture12010096
Chicago/Turabian StyleHolc, Matej, Peter Gselman, Gregor Primc, Alenka Vesel, Miran Mozetič, and Nina Recek. 2022. "Wettability and Water Uptake Improvement in Plasma-Treated Alfalfa Seeds" Agriculture 12, no. 1: 96. https://doi.org/10.3390/agriculture12010096
APA StyleHolc, M., Gselman, P., Primc, G., Vesel, A., Mozetič, M., & Recek, N. (2022). Wettability and Water Uptake Improvement in Plasma-Treated Alfalfa Seeds. Agriculture, 12(1), 96. https://doi.org/10.3390/agriculture12010096