A Dose–Response Analysis of Rice Yield to Agrochemical Use in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Econometric Framework and Estimation Strategy
2.2. Theoretical Model
2.3. Empirical Model
2.4. Estimation and Identification
2.5. Data and Descriptive Statistics
3. Results and Discussion
3.1. Levels of Agrochemical Use and Rice Yield
3.2. Rice Yield Response to Chemical Fertilizer Use
3.3. Rice Yield Response to the Level of Herbicide Use
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA. Rice Summary Statistics; USDA: Washington, DC, USA, 2019. [Google Scholar]
- Asravor, J.; Onumah, E.E.; Wiredu, A.N.; Siddig, K. Rice Productivity and Technical Efficiency: A Meta-Frontier Analysis of Rice Farms in Northern Ghana. In Proceedings of the Conference on International Research on Food Security, Natural Resource Management and Rural Development, Hamburg, Germany, 6–8 October 2009; pp. 1–5. [Google Scholar]
- Ragasa, C.; Chapoto, A. Limits to Green Revolution in rice in Africa: The case of Ghana. Land Use Policy 2017, 66, 304–321. [Google Scholar] [CrossRef]
- Asuming Brempong, S. Profitability, competitiveness, and welfare effects of trade liberalisation on the rice subsector in Ghana. Struct. Adjust. Agric. West Afr. 1998, 217–246. [Google Scholar]
- Mukai, S. Data on farmers’ determinants of manure and inorganic fertiliser use in the semi-arid Ethiopian Rift Valley. Data Brief 2017, 14, 804–812. [Google Scholar] [CrossRef]
- Njoroge, R.; Otinga, A.N.; Okalebo, J.R.; Pepela, M.; Merckx, R. Maize (Zea mays L.) response to secondary and micronutrients for profitable N, P and K fertilizer use in poorly responsive soils. Agronomy 2018, 8, 49. [Google Scholar] [CrossRef]
- Uri, N.D. The use of fertilizer and its environmental consequences. Energy Environ. 1997, 8, 191–205. [Google Scholar] [CrossRef]
- Djebbari, H.; Smith, J. Heterogeneous impacts in PROGRESA. J. Econom. 2008, 145, 64–80. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Mattei, A. Evaluating the impact of improved maize varieties on food security in Rural Tanzania: Evidence from a continuous treatment approach. Food Secur. 2014, 6, 217–230. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef]
- Amoako, P.K.; Kumah, P.; Appiah, F. Pesticides usage in Cabbage (Brassica oleracea) Cultivation in the Ejisu-Juaben Municipality of the Ashanti Region of Ghana. Int. J. Res. Chem. Environ. 2012, 2, 26–31. [Google Scholar]
- Cerulli, G. Ctreatreg: Command for fitting dose–response models under exogenous and endogenous treatment. Stata J. 2015, 15, 1019–1045. [Google Scholar] [CrossRef]
- Ng’ombe, J.; Kalinda, T. A stochastic frontier analysis of technical efficiency of maize production under minimum tillage in Zambia. Sustain. Agric. Res. 2015, 4, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Ng’ombe, J.; Kalinda, T.; Tembo, G.; Kuntashula, E. Econometric analysis of the factors that affect adoption of conservation farming practices by smallholder farmers in Zambia. J. Sustain. Dev. 2014, 7, 124. [Google Scholar] [CrossRef]
- Lu, W.; Addai, N.K.; Ng’ombe, N.J. Does the use of multiple agricultural technologies affect household welfare? Evidence from Northern Ghana. Agrekon 2021, 60, 370–387. [Google Scholar] [CrossRef]
- Guardabascio, B.; Ventura, M. Estimating the Dose–Response Function through a Generalized Linear Model Approach. Stata J. Promot. Commun. Stat. Stata 2014, 14, 141–158. [Google Scholar] [CrossRef]
- Imai, K.; van Dyk, A.D. Causal inference with general treatment regimes: Generalizing the propensity score. J. Am. Stat. Assoc. 2004, 99, 854–866. [Google Scholar] [CrossRef]
- Hirano, K.; Imbens, C.G. The propensity score with continuous treatments. In Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives; Gelman, A., Menged, X.-L., Eds.; John Wiley and Sons: Chichester, UK, 2004; pp. 73–84. [Google Scholar]
- Adorno, V.; Bernini, C.; Pellegrini, G. The impact of capital subsidies: New estimations under continuous treatment. G. Degli Econ. E Ann. Di Econ. 2007, 66, 66–92. [Google Scholar]
- Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
- Amemiya, T. Advanced Econometrics; Harvard University Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Martey, E.; Wiredu, N.A.; Etwire, M.P.; Fosu, M.; Buah, J.S.S.; Bidzakin, J.; Ahiabor, K.B.D.; Kusi, F. Fertilizer Adoption and Use Intensity Among Smallholder Farmers in Northern Ghana: A Case Study of the AGRA Soil Health Project. Sustain. Agric. Res. 2013, 3, 24. [Google Scholar]
- Moe, K.; Htwe, A.Z.; Thu, T.T.P.; Kajihara, Y.; Yamakawa, T. Effects on NPK status, growth, dry matter and yield of rice (Oryza sativa) by organic fertilizers applied in field condition. Agriculture 2019, 9, 109. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 6th ed; Economica; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Obianefo, C.A.; Ng’ombe, J.N.; Mzyece, A.; Masasi, B.; Obiekwe, N.J.; Anumudu, O.O. Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria. Agriculture 2021, 11, 1240. [Google Scholar] [CrossRef]
- Amadu, F.O.; Miller, D.C.; McNamara, P.E. Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecol. Econ. 2020, 167, 106443. [Google Scholar] [CrossRef]
- Chao, Z.; Shi, G.; Jian, S.; Rui-fa, H.U.; Zhang, C.; Guanming, S.; Shen, J.; Hu, R.F. Productivity effect and overuse of pesticide in crop production in China. J. Integr. Agric. 2015, 14, 1903–1910. [Google Scholar]
- Lu, W.; Addai, K.N.; Ng’ombe, J.N. Impact of improved rice varieties on household food security in Northern Ghana: A doubly robust analysis. J. Int. Dev. 2021, 33, 342–359. [Google Scholar] [CrossRef]
- Singh, V.; Jat, M.L.; Ganie, Z.A.; Chauhan, B.S.; Gupta, R.K. Herbicide options for effective weed management in dry direct-seeded rice under scented rice-wheat rotation of western Indo-Gangetic Plains. Crop Prot. 2016, 81, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Ng’ombe, J.N.; Kalinda, T.H.; Tembo, G. Does adoption of conservation farming practices result in increased crop revenue? Evidence from Zambia. Agrekon 2017, 56, 205–221. [Google Scholar] [CrossRef]
- Ali, E.B.; Awuni, J.A.; Danso-Abbeam, G. Determinants of fertilizer adoption among smallholder cocoa farmers in the Western Region of Ghana. Cogent Food Agric. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Katung, E.; Akankwasa, K. Community-based organizations and their effect on the adoption of agricultural technologies in Uganda: A study of banana (Musa spp.) pest management technology. Acta Hortic. 2010, 879, 719–726. [Google Scholar] [CrossRef]
- Addai, K.N.; Temoso, O.; Ng’ombe, J.N. Participation in farmer organizations and adoption of farming technologies among rice farmers in Ghana. Int. J. Soc. Econ. 2021, 49, 529–545. [Google Scholar] [CrossRef]
- Ali, J.; Yusof, N.; Fadzli, F.S. Factors influencing farmer’s perceptions and behavior toward pesticide use in Malaysia. Int. J. Soc. Econ. 2018, 45, 775–791. [Google Scholar] [CrossRef]
- Danlami, A.H.; Islam, R.; Applanaidu, S.D.; Tsauni, A.M. An empirical analysis of fertiliser use intensity in rural Sub-Saharan Africa: Evidence from Tofa local government area, Kano State, Nigeria. Int. J. Soc. Econ. 2016, 43, 1400–1419. [Google Scholar] [CrossRef]
- Beshir, H.; Emana, B.; Kassa, B.; Haji, J. Determinants of chemical fertilizer technology adoption in North eastern highlands of Ethiopia: The double hurdle approach. J. Res. Econ. Int. Financ. 2012, 1, 39–49. [Google Scholar]
- Mulungu, K.; Mudege, N.N. Effect of group and leader attributes on men and women farmers’ participation in group activities in Zambia. Fem. Econ. 2020, 26, 178–204. [Google Scholar] [CrossRef]
- Addai, K.N.; Lu, W.; Temoso, O. Are Female Rice Farmers Less productive than Male Farmers? Micro-evidence from Ghana. Eur. J. Dev. Res. 2021, 33, 1997–2039. [Google Scholar] [CrossRef]
- Addai, K.N.; Ng’ombe, J.N.; Temoso, O. Food Poverty, Vulnerability, and Food Consumption Inequality Among Smallholder Households in Ghana: A Gender-Based Perspective. Soc. Indic. Res. 2022, 163, 661–689. [Google Scholar] [CrossRef]
- FAO. Guidelines for Measuring Household and Individual Dietary Diversity; FAO: Rome, Italy, 2011. [Google Scholar]
- Rahji, M.; Akintola, J.; Tiamiyu, S. Technology Adoption and Productivity Difference among Growers of New Rice for Africa in Savanna Zone of Nigeria. Tropicultura 2009, 27, 193–197. [Google Scholar]
- Mensah, M.; Villamor, G.; Vlek, P.L.G. Gender specific determinants of inorganic fertilizer adoption in the semi-arid region of Ghana. West Afr. J. Appl. Ecol. 2018, 26, 179–192. [Google Scholar]
- Idrisa, L.Y.; Ogunbameru, O.B.; Madukwe, C.M. Logit and Tobit analyses of the determinants of likelihood of adoption and extent of adoption of improved soybean seed in Borno State, Nigeria. Greener J. Agric. Sci. 2012, 2, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Danso-Abbeam, G.; Baiyegunhi, L.J.S. Welfare impact of pesticides management practices among smallholder cocoa farmers in Ghana. Technol. Soc. 2018, 54, 10–19. [Google Scholar] [CrossRef]
- Ahmed, M.H. Adoption of multiple agricultural technologies in maize production of the Central Rift Valley of Ethiopia. Stud. Agric. Econ. 2015, 117, 162–168. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Danso-Abbeam, G.; Baiyegunhi, L.J.S. Adoption of agrochemical management practices among smallholder cocoa farmers in Ghana. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 717–728. [Google Scholar] [CrossRef]
- Kumar, A.; Takeshima, H.; Thapa, G.; Adhikari, N.; Saroj, S.; Karkee, M.; Joshi, K.P. Adoption and diffusion of improved technologies and production practices in agriculture: Insights from a donor-led intervention in Nepal. Land Use Policy 2020, 95, 104621. [Google Scholar] [CrossRef]
- McArthur, J.W.; McCord, G.C. Fertilizing growth: Agricultural inputs and their effects in economic development. J. Dev. Econ. 2017, 127, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Petit, S.; Munier-Jolain, N.; Bretagnolle, V.; Bockstaller, C.; Gaba, S.; Cordeau, S.; Lechenet, M.; Mézière, D.; Colbach, N. Ecological Intensification Through Pesticide Reduction: Weed Control, Weed Biodiversity and Sustainability in Arable Farming. Environ. Manag. 2015, 56, 1078–1090. [Google Scholar] [CrossRef] [PubMed]
- Kaitibie, S.; Nganje, E.W.; Brorsen, W.B.; Epplin, M.F. A Cox Parametric Bootstrap Test of the von Liebig Hypotheses. Can. J. Agric. Econ. 2007, 55, 15–25. [Google Scholar] [CrossRef]
- Tembo, G.; Brorsen, B.W.; Epplin, F.M.; Tostão, E. Crop input response functions with stochastic plateaus. Am. J. Agric. Econ. 2008, 90, 424–434. [Google Scholar] [CrossRef]
- Ng’ombe, J.N.; Lambert, D.M. Using Hamiltonian Monte Carlo via Stan to estimate crop input response functions with stochastic plateaus. J. Agric. Food Res. 2021, 6, 100226. [Google Scholar] [CrossRef]
- Boyer, C.N.; Wade Brorsen, B.; Solie, J.B.; Raun, W.R. Profitability of variable rate nitrogen application in wheat production. Precis. Agric. 2011, 12, 473–487. [Google Scholar] [CrossRef]
- Wu, Y.W.; Bo, Z.H.A.O.; Li, X.L.; Liu, Q.L.; Feng, D.J.; Lan, T.Q.; Yuan, J.C. Nitrogen application affects maize grain filling by regulating grain water relations. J. Integr. Agric. 2022, 21, 977–994. [Google Scholar] [CrossRef]
Variables | Description | Pooled Sample | |
---|---|---|---|
Mean | Standard Deviation | ||
Outcome | |||
Rice yield | Rice yield in kg ha−1 | 1413.77 | 1158.61 |
Treatment | |||
Chemical fertilizer | Quantity of chemical fertilizer used in kg ha−1 | 5.18 | 3.82 |
Herbicide | Quantity of herbicides used in liters ha−1 | 4.69 | 2.63 |
Socioeconomic characteristics | |||
Gender | 1 if household head is a male, 0 otherwise | 0.92 | 0.26 |
Age | Household head’s age in years | 53.19 | 11.78 |
Marital status | 1 if married, 0 otherwise | 0.89 | 0.31 |
Years of schooling | Household head years of formal education | 3.02 | 4.50 |
Household size | Summation of the members of a household | 9.67 | 4.26 |
Off-farm income | Total off-farm income in Ghana Cedis (GHS) | 425.49 | 1902.57 |
Years of rice farming | Years of rice farming | 9.70 | 5.43 |
Resource Constraints/Institutional factors | |||
Farm size | Total rice farm size in hectares | 0.65 | 0.59 |
Total livestock | Total livestock units | 45.00 | 44.44 |
Asset value | Total value of assets in Ghana Cedis (GHS) | 18,177.98 | 270,288.2 |
Credit access | 1 if the household head had access to credit, 0 otherwise | 0.07 | 0.25 |
FBO membership | 1 if household head is a member of FBO, 0 otherwise | 0.37 | 0.48 |
Market distance | Distance from farm to market in km | 11.98 | 12.90 |
Farm distance | Distance from home to the farm in km | 6.22 | 8.15 |
Extension access | 1 if the household head had access to extension service, 0 otherwise | 0.39 | 0.48 |
Land ownership | 1 if household head is the landowner, 0 otherwise | 0.54 | 0.50 |
Variable | Chemical Fertilizer | Herbicide | ||||
---|---|---|---|---|---|---|
Adopters (n = 527) | Non-Adopters (n = 373) | Mean Difference | Adopters (n = 696) | Non-Adopters (n = 204) | Mean Difference | |
Rice yield | 1955.30 (1143.95) | 648.64 (625.53) | 1306.66 *** | 1590.65 (1158.40) | 810.29 (936.71) | 780.36 *** |
Gender | 0.93 (0.25) | 0.91 (0.29) | 0.03 | 0.93 (0.26) | 0.90 (0.31) | 0.03 |
Age | 51.38 (11.06) | 55.75 (12.30) | −4.37 *** | 52.24 (11.33) | 56.46 (12.71) | −4.22 *** |
Marital Status | 0.90 (0.30) | 0.88 (0.33) | 0.02 | 0.90 (0.30) | 0.86 (0.35) | 0.04 ** |
Years of schooling | 2.99 (4.34) | 3.05 (4.71) | −0.06 | 3.04 (4.50) | 2.94 (4.50) | 0.10 |
Household size | 9.87 (4.23) | 9.39 (4.32) | 0.47 | 9.70 (4.28) | 9.56 (4.25) | 0.14 |
Off-farm income | 599.02 (2456.74) | 180.32 (332.73) | 418.70 *** | 472.11 (2071.08) | 266.46 (1145.58) | 205.65 |
Years of rice farming | 9.35 (5.36) | 10.21 (5.50) | −0.86 ** | 9.22 (5.26) | 11.35 (5.69) | −2.14 *** |
Farm size | 0.83 (0.65) | 0.40 (0.38) | 0.43 *** | 0.74 (0.62) | 0.36 (0.35) | 0.38 *** |
Total livestock | 42.88 (44.50) | 47.99 (44.25) | −5.12 * | 43.99 (43.60) | 48.43 (47.15) | −4.43 |
Total asset value | 28,896.78 (352,781.90) | 3033.71 (13,483.36) | 25,863.07 | 20,954.86 (304,647.43) | 8703.91 (75,280.23) | 12,250.95 |
Credit access | 0.09 (0.28) | 0.03 (0.18) | 0.05 ** | 0.07 (0.26) | 0.05 (0.22) | 0.02 |
FBO membership | 0.48 (0.50) | 0.21 (0.41) | 0.28 *** | 0.42 (0.49) | 0.19 (0.39) | 0.23 *** |
Market distance | 16.38 (13.42) | 5.76 (9.04) | 10.62 *** | 14.14 (13.01) | 4.61 (9.36) | 9.53 *** |
Extension access | 0.55 (0.50) | 0.21 (0.36) | 0.40 *** | 0.43 (0.50) | 0.23 (0.42) | 0.21 *** |
Land ownership | 0.46 (0.50) | 0.64 (0.48) | −0.18 *** | 0.53 (0.50) | 0.56 (0.50) | −0.03 |
Chemical Fertilizer | Herbicides | |
---|---|---|
Coeff. (SE) | Coeff. (SE) | |
Agrochemical (Adoption) | ||
Farmer-based organization | 1.239 (0.775) | 2.693 *** (0.932) |
Extension access | 3.333 *** (0.803) | 0.706 (0.946) |
Credit access | 0.563 (1.405) | −0.320 (1.730) |
Years of rice farming | 0.172 ** (0.070) | 0.088 (0.084) |
Household head’s gender | −1.071 (1.645) | 0.584 (1.837) |
Household head’s age | 0.001 (0.036) | −0.087 ** (0.042) |
Household head’s marital status | −3.056 ** (1.440) | 2.419 (1.646) |
Household size | −0.149 (0.097) | 0.387 *** (0.112) |
Years of schooling | 0.132 (0.087) | −0.117 (0.098) |
Total livestock units | 0.015 * (0.009) | 0.001 (0.010) |
Off-farm income | 2.00 × 10−4 (2.00 × 10−4) | 0.001 ** (2.4 × 10−4) |
Land ownership | −4.094 *** (0.717) | −1.392 * (0.838) |
Asset value | 2.16 × 10−6 * (1.25 × 10−6) | −1.41E-06 (1.58 × 10−6) |
Farm size | −1.537 *** (0.493) | −5.668 *** (0.666) |
Constant | 10.008 *** (2.489) | 16.216 *** (2.957) |
Treatment (Intensity of use) | ||
Farmer-based organization | 0.387 *** (0.095) | 0.331 *** (0.105) |
Extension access | 0.561 *** (0.097) | 0.068 (0.103) |
Credit access | 0.155 (0.181) | 0.132 (0.199) |
Years of rice farming | 0.001 (0.008) | −0.012 (0.008) |
Household head’s gender | 0.501 *** (0.185) | 0.451 ** (0.177) |
Household head’s age | −0.007 (0.004) | −0.005 (0.004) |
Household head’s marital status | −0.530 *** (0.160) | −0.009 (0.161) |
Household size | −0.018 (0.0.11) | 0.014 (0.013) |
Years of schooling | −0.002 (0.010) | 0.010 (0.010) |
Total livestock units | −0.002 (0.001) | −0.001 (0.001) |
Off-farm income | 1.00 × 10−4 (7.00 × 10−5) | 2.6 × 10−5 (3.4 × 10−5) |
Land ownership | −0.326 *** (0.086) | −0.088 (0.090) |
Asset value | 2.43 × 10−7 (4.93 × 10−7) | −1.75 × 10−7 (1.97 × 10−7) |
Market distance | 0.031 *** (0.004) | 0.035 *** (0.006) |
Constant | 0.199 (0.300) | 0.100 (0.318) |
Model diagnostics | ||
Athrho | 2.487 *** (0.201) | 2.050 *** (0.182) |
Lnsigma | 2.223 *** (0.034) | 2.453 *** (0.031) |
Wald Chi (2) | 100.39 *** | 109.56 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addai, K.N.; Ng’ombe, J.N.; Kaitibie, S. A Dose–Response Analysis of Rice Yield to Agrochemical Use in Ghana. Agriculture 2022, 12, 1527. https://doi.org/10.3390/agriculture12101527
Addai KN, Ng’ombe JN, Kaitibie S. A Dose–Response Analysis of Rice Yield to Agrochemical Use in Ghana. Agriculture. 2022; 12(10):1527. https://doi.org/10.3390/agriculture12101527
Chicago/Turabian StyleAddai, Kwabena Nyarko, John N. Ng’ombe, and Simeon Kaitibie. 2022. "A Dose–Response Analysis of Rice Yield to Agrochemical Use in Ghana" Agriculture 12, no. 10: 1527. https://doi.org/10.3390/agriculture12101527
APA StyleAddai, K. N., Ng’ombe, J. N., & Kaitibie, S. (2022). A Dose–Response Analysis of Rice Yield to Agrochemical Use in Ghana. Agriculture, 12(10), 1527. https://doi.org/10.3390/agriculture12101527