Legume Species Alter the Effect of Biochar Application on Microbial Diversity and Functions in the Mixed Cropping System—Based on a Pot Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Experimental Design and Soil Sampling
2.3. Chemical Property Analysis
2.4. DNA Extraction and 16S rRNA Sequencing
2.5. Sequence Processing
2.6. Measurement of Prokaryotes Abundance
2.7. Statistical Analysis
3. Results
3.1. Alpha Diversity
3.2. Soil Microbial Community Abundance and Structure
3.3. 16S rRNA Gene Abundance
3.4. Gene Function Prediction by Tax4Fun2
3.5. Soil Chemical Properties
3.6. Legume Nodulation and Plant Biomass
4. Discussion
4.1. Changes in Microbial Diversity and Community after Biochar Application
4.2. Soil Microbial Functions Related to the N Cycle
4.3. Effects of the Legume Varieties and Biochar Application on Soil Microbes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S.; et al. Emerging Human Infectious Diseases and the Links to Global Food Production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Le Provost, G.; Thiele, J.; Westphal, C.; Penone, C.; Allan, E.; Neyret, M.; van der Plas, F.; Ayasse, M.; Bardgett, R.D.; Birkhofer, K.; et al. Contrasting Responses of Above- and Belowground Diversity to Multiple Components of Land-Use Intensity. Nat. Commun. 2021, 12, 3918. [Google Scholar] [CrossRef] [PubMed]
- Wagg, C.; Hautier, Y.; Pellkofer, S.; Banerjee, S.; Schmid, B.; van der Heijden, M.G. Diversity and Asynchrony in Soil Microbial Communities Stabilizes Ecosystem Functioning. eLife 2021, 10, e62813. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, R.S.; Voolstra, C.R.; Sweet, M.; Duarte, C.M.; Carvalho, S.; Villela, H.; Lunshof, J.E.; Gram, L.; Woodhams, D.C.; Walter, J.; et al. Harnessing the Microbiome to Prevent Global Biodiversity Loss. Nat. Microbiol. 2022, 1–10. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial Diversity and Soil Functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Li, X.; Mu, Y.; Cheng, Y.; Liu, X.; Nian, H. Effects of Intercropping Sugarcane and Soybean on Growth, Rhizosphere Soil Microbes, Nitrogen and Phosphorus Availability. Acta Physiol. Plant. 2013, 7, 1113–1119. [Google Scholar] [CrossRef]
- Lian, T.; Mu, Y.; Jin, J.; Ma, Q.; Cheng, Y.; Cai, Z.; Nian, H. Impact of Intercropping on the Coupling between Soil Microbial Community Structure, Activity, and Nutrient-Use Efficiencies. PeerJ 2019, 7, e6412. [Google Scholar] [CrossRef]
- Yu, L.; Tang, Y.; Wang, Z.; Gou, Y.; Wang, J. Nitrogen-Cycling Genes and Rhizosphere Microbial Community with Reduced Nitrogen Application in Maize/Soybean Strip Intercropping. Nutr. Cycl. Agroecosyst. 2019, 113, 35–49. [Google Scholar] [CrossRef]
- Horner, A.; Browett, S.S.; Antwis, R.E. Mixed-Cropping Between Field Pea Varieties Alters Root Bacterial and Fungal Communities. Sci. Rep. 2019, 9, 16953. [Google Scholar] [CrossRef]
- Granzow, S.; Kaiser, K.; Wemheuer, B.; Pfeiffer, B.; Daniel, R.; Vidal, S.; Wemheuer, F. The Effects of Cropping Regimes on Fungal and Bacterial Communities of Wheat and Faba Bean in a Greenhouse Pot Experiment Differ between Plant Species and Compartment. Front. Microbiol. 2017, 8, 902. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shen, J.; Zhang, F.; Marschner, P.; Cawthray, G.; Rengel, Z. Phosphorus Uptake and Rhizosphere Properties of Intercropped and Monocropped Maize, Faba Bean, and White Lupin in Acidic Soil. Biol. Fertil. Soils 2010, 46, 79–91. [Google Scholar] [CrossRef]
- Zhang, N.N.; Sun, Y.M.; Li, L.; Wang, E.T.; Chen, W.X.; Yuan, H.L. Effects of Intercropping and Rhizobium Inoculation on Yield and Rhizosphere Bacterial Community of Faba Bean (Vicia faba L.). Biol. Fertil. Soils 2010, 46, 625–639. [Google Scholar] [CrossRef]
- Baumann, D.T.; Bastiaans, L.; Kropff, M.J. Competition and Crop Performance in a Leek–Celery Intercropping System. Crop Sci. 2001, 41, 764–774. [Google Scholar] [CrossRef]
- Zhang, F.; Li, L. Using Competitive and Facilitative Interactions in Intercropping Systems Enhances Crop Productivity and Nutrient-Use Efficiency. Plant Soil 2003, 248, 305–312. [Google Scholar] [CrossRef]
- Chang, D.; Gao, S.; Zhou, G.; Deng, S.; Jia, J.; Wang, E.; Cao, W. The Chromosome-Level Genome Assembly of Astragalus Sinicus and Comparative Genomic Analyses Provide New Resources and Insights for Understanding Legume-Rhizobial Interactions. Plant Commun. 2022, 3, 100263. [Google Scholar] [CrossRef]
- Chen, Q.-L.; Ding, J.; Zhu, D.; Hu, H.-W.; Delgado-Baquerizo, M.; Ma, Y.-B.; He, J.-Z.; Zhu, Y.-G. Rare Microbial Taxa as the Major Drivers of Ecosystem Multifunctionality in Long-Term Fertilized Soils. Soil Biol. Biochem. 2020, 141, 107686. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct Soil Microbial Diversity under Long-Term Organic and Conventional Farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Lu, M.; Qin, C.; Chen, Y.; Yang, L.; Huang, Q.; Wang, J.; Shen, Z.; Shen, Q. Microbial Communities of an Arable Soil Treated for 8 Years with Organic and Inorganic Fertilizers. Biol. Fertil. Soils 2016, 52, 455–467. [Google Scholar] [CrossRef]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef]
- Yu, L.; Homyak, P.M.; Kang, X.; Brookes, P.C.; Ye, Y.; Lin, Y.; Muhammad, A.; Xu, J. Changes in Abundance and Composition of Nitrifying Communities in Barley (Hordeum vulgare L.) Rhizosphere and Bulk Soils over the Growth Period Following Combined Biochar and Urea Amendment. Biol. Fertil. Soils 2020, 56, 169–183. [Google Scholar] [CrossRef]
- Kochanek, J.; Soo, R.M.; Martinez, C.; Dakuidreketi, A.; Mudge, A.M. Biochar for Intensification of Plant-Related Industries to Meet Productivity, Sustainability and Economic Goals: A Review. Resour. Conserv. Recycl. 2022, 179, 106109. [Google Scholar] [CrossRef]
- Liu, G.; Chen, L.; Jiang, Z.; Zheng, H.; Dai, Y.; Luo, X.; Wang, Z. Aging Impacts of Low Molecular Weight Organic Acids (LMWOAs) on Furfural Production Residue-Derived Biochars: Porosity, Functional Properties, and Inorganic Minerals. Sci. Total Environ. 2017, 607–608, 1428–1436. [Google Scholar] [CrossRef]
- Akobundu, I.O.; Udensi, U.E.; Chikoye, D. Velvetbean (Mucuna Spp.) Suppresses Speargrass (Imperata Cylindrica (L.) Raeuschel) and Increases Maize Yield. Int. J. Pest Manag. 2000, 46, 103–108. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Nogueira, M.A.; Ferraz, S.M.G. Biological N-2 Fixation and Mineral N in Common Bean-Maize Intercropping or Sole Cropping in Southeastern Brazi. Exp. Agric. 2007, 43, 319–330. [Google Scholar] [CrossRef]
- Dahmardeh, M.; Ghanbari, A.; Baratali, S.; Mahmood, R. Effect of Intercropping Maize (Zea mays L.) With Cow Pea (Vigna unguiculata L.) on Green Forage Yield and Quality Evaluation. Asian J. Plant Sci. 2009, 8, 235–239. [Google Scholar] [CrossRef]
- Chan, K.Y.; Zwieten, L.V.; Meszaros, I.; Downie, A.; Joseph, S.; Chan, K.Y.; Zwieten, L.V.; Meszaros, I.; Downie, A.; Joseph, S. Using Poultry Litter Biochars as Soil Amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn Growth and Nitrogen Nutrition after Additions of Biochars with Varying Properties to a Temperate Soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Géant, C.B.; Francine, S.B.; Adrien, B.N.; Wasolu, N.; Mulalisi, B.; Espoir, M.B.; Jean, M.M.; Antoine, K.L.; Gustave, M.N. Optimal Fertiliser Dose and Nutrients Allocation in Local and Biofortified Bean Varieties Grown on Ferralsols in Eastern Democratic Republic of the Congo. Cogent Food Agric. 2020, 6, 1805226. [Google Scholar] [CrossRef]
- Susila, A.D.; Prasetyo, T.; Kartika, J.G. Optimum Fertilizer Rate for Yard Long Bean (Vigna unguilata L.) Production in Ultisol Jasinga; Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase, Virginia Tech: Blacksburg, VA, USA, 2008. [Google Scholar]
- Hu, F.; Zhao, C.; Feng, F.; Chai, Q.; Mu, Y.; Zhang, Y. Improving N Management through Intercropping Alleviates the Inhibitory Effect of Mineral N on Nodulation in Pea. Plant Soil 2017, 412, 235–251. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Vlachostergios, D.N.; Dordas, C.A.; Damalas, C.A. Dry Matter Yield, Nitrogen Content, and Competition in Pea–Cereal Intercropping Systems. Eur. J. Agron. 2011, 34, 287–294. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Wemheuer, F.; Taylor, J.A.; Daniel, R.; Johnston, E.; Meinicke, P.; Thomas, T.; Wemheuer, B. Tax4Fun2: Prediction of Habitat-Specific Functional Profiles and Functional Redundancy Based on 16S RRNA Gene Sequences. Environ. Microbiome 2020, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yin, H.; Fang, C.; Xiong, J.; Han, L.; Yang, Z.; Huang, G. Metagenomic and Q-PCR Analysis Reveals the Effect of Powder Bamboo Biochar on Nitrous Oxide and Ammonia Emissions during Aerobic Composting. Bioresour. Technol. 2021, 323, 124567. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Long, Z.; Min, W.; Hou, Z. Metagenomic Analysis Reveals the Effects of Cotton Straw–Derived Biochar on Soil Nitrogen Transformation in Drip-Irrigated Cotton Field. Environ. Sci. Pollut. Res. 2020, 27, 43929–43941. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Jackson, R.B. The Diversity and Biogeography of Soil Bacterial Communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef]
- Santoyo, G.; Pacheco, C.H.; Salmerón, J.H.; León, R.H. The Role of Abiotic Factors Modulating the Plant-Microbe-Soil Interactions: Toward Sustainable Agriculture. A Review. Span. J. Agric. Res. 2017, 15, 13. [Google Scholar] [CrossRef]
- Lu, X.; Seuradge, B.J.; Neufeld, J.D. Biogeography of Soil Thaumarchaeota in Relation to Soil Depth and Land Usage. FEMS Microbiol. Ecol. 2017, 93, fiw246. [Google Scholar] [CrossRef]
- Shen, C.; Ge, Y.; Yang, T.; Chu, H. Verrucomicrobial Elevational Distribution Was Strongly Influenced by Soil PH and Carbon/Nitrogen Ratio. J. Soils Sediments 2017, 17, 2449–2456. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhu, L. Biochar Alters Microbial Community and Carbon Sequestration Potential across Different Soil PH. Sci. Total Environ. 2018, 622–623, 1391–1399. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic Root Exudate Chemistry and Microbial Substrate Preferences Drive Patterns in Rhizosphere Microbial Community Assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Li, Y.; Yao, H. Biochar Amendment Stimulates Utilization of Plant-Derived Carbon by Soil Bacteria in an Intercropping System. Front. Microbiol. 2019, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
- Imparato, V.; Hansen, V.; Santos, S.S.; Nielsen, T.K.; Giagnoni, L.; Hauggaard-Nielsen, H.; Johansen, A.; Renella, G.; Winding, A. Gasification Biochar Has Limited Effects on Functional and Structural Diversity of Soil Microbial Communities in a Temperate Agroecosystem. Soil Biol. Biochem. 2016, 99, 128–136. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere Microbiome Assemblage Is Affected by Plant Development. ISME J. 2014, 8, 790–803. [Google Scholar] [CrossRef]
- Wolińska, A.; Kuźniar, A.; Zielenkiewicz, U.; Izak, D.; Szafranek-Nakonieczna, A.; Banach, A.; Błaszczyk, M. Bacteroidetes as a Sensitive Biological Indicator of Agricultural Soil Usage Revealed by a Culture-Independent Approach. Appl. Soil Ecol. 2017, 119, 128–137. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; Zhou, S.; Bai, N.; Zheng, X.; Li, S.; Zhang, J.; Lv, W. Effect of Straw and Straw Biochar on the Community Structure and Diversity of Ammonia-Oxidizing Bacteria and Archaea in Rice-Wheat Rotation Ecosystems. Sci. Rep. 2019, 9, 9367. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, Y.; He, Q.; Hu, X.; Chen, Y. Biochar Remediates Denitrification Process and N2O Emission in Pesticide Chlorothalonil-Polluted Soil: Role of Electron Transport Chain. Chem. Eng. J. 2019, 370, 587–594. [Google Scholar] [CrossRef]
- Nicol, G.W.; Leininger, S.; Schleper, C.; Prosser, J.I. The Influence of Soil PH on the Diversity, Abundance and Transcriptional Activity of Ammonia Oxidizing Archaea and Bacteria. Environ. Microbiol. 2008, 10, 2966–2978. [Google Scholar] [CrossRef]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient Properties and Their Enhancement. In Biochar for Environmental Management; Routledge: Abingdon, UK, 2009; ISBN 978-1-84977-055-2. [Google Scholar]
- Brochier-Armanet, C.; Gribaldo, S.; Forterre, P. Spotlight on the Thaumarchaeota. ISME J. 2012, 6, 227–230. [Google Scholar] [CrossRef]
- Fuerst, J.A.; Sagulenko, E. Beyond the Bacterium: Planctomycetes Challenge Our Concepts of Microbial Structure and Function. Nat. Rev. Microbiol. 2011, 9, 403–413. [Google Scholar] [CrossRef]
- Bayer, K.; Jahn, M.T.; Slaby, B.M.; Moitinho-Silva, L.; Hentschel, U. Marine Sponges as Chloroflexi Hot Spots: Genomic Insights and High-Resolution Visualization of an Abundant and Diverse Symbiotic Clade. mSystems 2018, 3, e00150-18. [Google Scholar] [CrossRef] [PubMed]
- Sangakkara, U.R.; Hartwig, U.A.; Nösberger, J. Soil Moisture and Potassium Affect the Performance of Symbiotic Nitrogen Fixation in Faba Bean and Common Bean. Plant Soil 1996, 184, 123–130. [Google Scholar] [CrossRef]
- Moulin, L.; Munive, A.; Dreyfus, B.; Boivin-Masson, C. Nodulation of Legumes by Members of the β-Subclass of Proteobacteria. Nature 2001, 411, 948–950. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Sun, D.; Crowley, D.; Hayat, R.; Hussain, Q.; Ali, A.; Tahir, M.I.; Jeyasundar, P.G.S.A.; Rinklebe, J.; Zhang, Z. Crop Types Have Stronger Effects on Soil Microbial Communities and Functionalities than Biochar or Fertilizer during Two Cycles of Legume-Cereal Rotations of Dry Land. Sci. Total Environ. 2020, 715, 136958. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; de Hollander, M.; Ramírez, C.A.; Mendes, R.; Raaijmakers, J.M.; Carrión, V.J. Deciphering Rhizosphere Microbiome Assembly of Wild and Modern Common Bean (Phaseolus vulgaris) in Native and Agricultural Soils from Colombia. Microbiome 2019, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; Gao, Y.; Sun, B. Short-Term N Transfer from Alfalfa to Maize Is Dependent More on Arbuscular Mycorrhizal Fungi than Root Exudates in N Deficient Soil. Plant Soil 2020, 446, 23–41. [Google Scholar] [CrossRef]
- Hu, J.; Li, M.; Liu, H.; Zhao, Q.; Lin, X. Intercropping with Sweet Corn (Zea mays L. Var. Rugosa Bonaf.) Expands P Acquisition Channels of Chili Pepper (Capsicum annuum L.) via Arbuscular Mycorrhizal Hyphal Networks. J. Soils Sediments 2019, 19, 1632–1639. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.-Y.; Wu, H.-M.; Zhang, F.-F.; Li, C.-J.; Li, X.-X.; Lambers, H.; Li, L. Root Exudates Drive Interspecific Facilitation by Enhancing Nodulation and N2 Fixation. Proc. Natl. Acad. Sci. USA 2016, 113, 6496–6501. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Yan, X.; Li, J.; Jiao, N.; Hu, S. Biochar Amendments Increase the Yield Advantage of Legume-Based Intercropping Systems over Monoculture. Agric. Ecosyst. Environ. 2017, 237, 16–23. [Google Scholar] [CrossRef]
Chemical Properties | Soil | CM |
---|---|---|
Water content (%) | 19.5 ± 0.1 | 19.1 ± 1.2 |
C/N | 14.7 ± 0.2 | 10.0 ± 0.4 |
pH (1:10) | 6.3 ± 0.0 | 10.4 ± 0.3 |
EC (μs/cm) | 78.5 ± 3.5 | 12740 ± 793 |
Total nitrogen (%) | 0.25 ± 0.01 | 4.06 ± 0.45 |
Total carbon (%) | 3.9 ± 0.1 | 40.5 ±3.4 |
P g kg−1 soil | 0.21 ± 0.01 | 36.8 ± 1.0 |
Ca g kg−1 soil | 5.9 ± 0.3 | 134 ± 5 |
Mg g kg−1 soil | 0.53 ± 0.01 | 15.1 ± 0.3 |
K g kg−1 soil | 0.56 ± 0.01 | 45.3 ± 0.9 |
Treatment | Relative Abundance (%) | |||||
---|---|---|---|---|---|---|
Thaumarchaeota | Gemmatimonadetes | Chloroflexi | Planctomycetes | Verrucomicrobia | Proteobacteria | |
Ctr | ||||||
SM | 3.2 a | 5.2 a | 7.8 ab | 6.8 a | 2.9 a | 27 b |
MM | 4.7 ab | 5.3 a | 7.6 a | 8.5 b | 4.4 b | 26 ab |
PM | 5.2 ab | 4.7 a | 7.8 ab | 8.2 ab | 4.2 b | 25 b |
VM | 5.7 b | 4.4 a | 8.7 b | 11 c | 4.6 b | 27 b |
CF | ||||||
SM | 4.9 a | 4.6 a | 8.8 b | 9.8 b | 4.1 a | 24 a |
MM | 4.2 a | 5.2 a | 8.0 ab | 8.5 ab | 4.4 a | 24 a |
PM | 4.7 a | 5.4 a | 7.9 ab | 8.7 ab | 3.9 a | 24 a |
VM | 4.2 a | 5.3 a | 7.7 a | 7.6 a | 3.8 a | 26 a |
CM | ||||||
SM | 5.5 ab | 5.1 ab | 12 c | 11 b | 5.9 b | 20 ab |
MM | 6.7 b | 4.3 a | 12 c | 11 b | 6.2 b | 17 a |
PM | 4.0 a | 6.0 b | 11 b | 9.1 a | 4.6 a | 22 b |
VM | 6.2 b | 5.3 ab | 8.7 a | 7.9 a | 4.5 a | 23 b |
Treatment | pH (H2O) | NO3−-N (mg kg−1) | NH4+-N (mg kg−1) | |||||||||
SM | ||||||||||||
Ctr | 6.7 ± 0.03 | 8.2 ± 1.6 | 4.7 ± 0.30 | |||||||||
CF | 6.7 ± 0.04 | 7.1 ± 0.4 | 3.4 ± 0.75 | |||||||||
CM | 7.6 ± 0.09 | 15.9 ± 2.4 | 5.4 ± 1.22 | |||||||||
MM | ||||||||||||
Ctr | 6.7 ± 0.02 | 10.9 ± 4.2 | 4.2 ± 2.64 | |||||||||
CF | 6.7 ± 0.02 | 6.3 ± 3.3 | 4.7 ± 1.37 | |||||||||
CM | 7.3 ± 0.10 | 19.7 ± 6.2 | 5.1 ± 2.48 | |||||||||
PM | ||||||||||||
Ctr | 6.7 ± 0.02 | 12.8 ± 2.2 | 6.0 ± 2.80 | |||||||||
CF | 6.6 ± 0.02 | 7.9 ± 3.2 | 5.7 ± 0.98 | |||||||||
CM | 7.2 ± 0.12 | 35.0 ± 19.3 | 2.6 ± 0.37 | |||||||||
VM | ||||||||||||
Ctr | 6.7 ± 0.02 | 10.6 ± 3.2 | 4.5 ± 1.35 | |||||||||
CF | 6.7 ± 0.03 | 6.7 ± 3.1 | 4.9 ± 0.68 | |||||||||
CM | 7.2 ± 0.08 | 30.8 ± 13.2 | 5.4 ± 2.22 | |||||||||
Two-way ANOVA | p | |||||||||||
Legume | <0.001 | 0.45 | 0.92 | |||||||||
Fertilizer | <0.001 | <0.001 | 0.90 | |||||||||
Legume × fertilizer | <0.01 | 0.91 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, A.; Uchida, Y.; Madegwa, Y.M. Legume Species Alter the Effect of Biochar Application on Microbial Diversity and Functions in the Mixed Cropping System—Based on a Pot Experiment. Agriculture 2022, 12, 1548. https://doi.org/10.3390/agriculture12101548
Kimura A, Uchida Y, Madegwa YM. Legume Species Alter the Effect of Biochar Application on Microbial Diversity and Functions in the Mixed Cropping System—Based on a Pot Experiment. Agriculture. 2022; 12(10):1548. https://doi.org/10.3390/agriculture12101548
Chicago/Turabian StyleKimura, Akari, Yoshitaka Uchida, and Yvonne Musavi Madegwa. 2022. "Legume Species Alter the Effect of Biochar Application on Microbial Diversity and Functions in the Mixed Cropping System—Based on a Pot Experiment" Agriculture 12, no. 10: 1548. https://doi.org/10.3390/agriculture12101548
APA StyleKimura, A., Uchida, Y., & Madegwa, Y. M. (2022). Legume Species Alter the Effect of Biochar Application on Microbial Diversity and Functions in the Mixed Cropping System—Based on a Pot Experiment. Agriculture, 12(10), 1548. https://doi.org/10.3390/agriculture12101548