Response of Plant Immunity Markers to Early and Late Application of Extracellular DNA from Different Sources in Tomato (Solanum lycopersicum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Extraction and Fragmentation of DNA
2.3. Biological Assays
2.4. Plant Immunity Indicator Measurements
2.5. Data and Statistical Analysis
3. Results
3.1. Plant Immunity Marker Levels by Self eDNA Treatment
3.2. Plant Immunity Markers Levels by Non-Self eDNA Treatment
3.3. Principal Component Analysis of Plant Immune Responses to eDNA Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting future food demand with current agricultural resources. Glob. Environ. Chang. 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Vázquez-Hernández, M.C.; Parola-Contreras, I.; Montoya-Gómez, L.M.; Torres-Pacheco, I.; Schwarz, D.; Guevara-González, R.G. Eustressors: Chemical and physical stress factors used to enhance vegetables production. Sci. Hortic. 2019, 250, 223–229. [Google Scholar] [CrossRef]
- Boonlertnirun, S.; Meechoui, S.; Sarobol, E. Physiological and morphological responses of field corn seedlings to chitosan under hypoxic conditions. Scienceasia 2010, 36, 89–93. [Google Scholar] [CrossRef]
- Huffaker, A.; Pearce, G.; Ryan, C. A An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA 2006, 103, 10098–10103. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Chen, F.; Wang, X.; Rajapakse, N. C Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 2006, 54, 2327–2332. [Google Scholar] [CrossRef]
- Mejía-Teniente, L.; Durán-Flores, F.d.D.; Chapa-Oliver, A.M.; Torres-Pacheco, I.; Cruz-Hernández, A.; González-Chavira, M.M.; Ocampo-Velázquez, R.V.; Guevara-González, R.G. Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int. J. Mol. Sci. 2013, 14, 10178–10196. [Google Scholar] [CrossRef] [Green Version]
- Mejía-Teniente, L.; Durán-Flores, B.A.; Torres-Pacheco, I.; González-Chavira, M.M.; Rivera-Bustamante, R.F.; Feregrino-Perez, A.A.; Pérez-Ramírez, I.; Rocha-Guzmán, N.E.; Reynoso-Camacho, R.; Guevara-González, R.G. Hydrogen peroxide protects pepper (Capsicum annuum L.) against pepper golden mosaic geminivirus (PepGMV) infections. Physiol. Mol. Plant Pathol. 2019, 106, 23–29. [Google Scholar] [CrossRef]
- Xue, L.J.; Guo, W.; Yuan, Y.; Anino, E.O.; Nyamdari, B.; Wilson, M.C.; Frost, C.J.; Chen, H.-Y.; Babst, B.A.; Harding, S.A.; et al. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic Populus. Plant Cell 2013, 25, 2714–2730. [Google Scholar] [CrossRef] [Green Version]
- Barbero, F.; Guglielmotto, M.; Capuzzo, A.; Maffei, M.E. Extracellular self-DNA (esDNA), but not heterologous plant or insect DNA (etDNA), induces plasma membrane depolarization and calcium signaling in lima bean (Phaseolus lunatus) and maize (Zea mays). Int. J. Mol. Sci. 2016, 17, 1659. [Google Scholar] [CrossRef] [Green Version]
- Duran-Flores, D.; Heil, M. Extracellular self-DNA as a damage-associated molecular pattern (DAMP) that triggers self-specific immunity induction in plants. Brain Behav. Immun. 2018, 72, 78–88. [Google Scholar] [CrossRef]
- Vega-Muñoz, I.; Feregrino-Pérez, A.A.; Torres-Pacheco, I.; Guevara-González, R.G. Exogenous fragmented DNA acts as a damage-Associated molecular pattern (DAMP) inducing changes in CpG DNA methylation and defence-related responses in Lactuca sativa. Funct. Plant Biol. 2018, 45, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Barbero, F.; Guglielmotto, M.; Islam, M.; Maffei, M.E. Extracellular Fragmented Self-DNA Is Involved in Plant Responses to Biotic Stress. Front. Plant Sci. 2021, 12, 1558. [Google Scholar] [CrossRef]
- Chiusano, M.L.; Incerti, G.; Colantuono, C.; Termolino, P.; Palomba, E.; Monticolo, F.; Benvenuto, G.; Foscari, A.; Esposito, A.; Marti, L.; et al. Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. Plants 2021, 10, 1744. [Google Scholar] [CrossRef] [PubMed]
- Rassizadeh, L.; Cervero, R.; Flors, V.; Gamir, J. Plant Science Extracellular DNA as an elicitor of broad-spectrum resistance in Arabidopsis thaliana. Plant Sci. 2021, 312, 111036. [Google Scholar] [CrossRef]
- Duran-Flores, D.; Heil, M. Damaged-self recognition in common bean (Phaseolus vulgaris) shows taxonomic specificity and triggers signaling via reactive oxygen species (ROS). Front. Plant Sci. 2014, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ferrusquía-Jiménez, N.I.; Chandrakasan, G.; Torres-Pacheco, I.; Rico-Garcia, E.; Feregrino-Perez, A.A.; Guevara-González, R.G. Extracellular DNA: A Relevant Plant Damage-Associated Molecular Pattern (DAMP) for Crop Protection Against Pests—A Review. J. Plant Growth Regul. 2020, 40, 451–463. [Google Scholar] [CrossRef]
- Serrano-Jamaica, L.M.; Villordo-Pineda, E.; González-Chavira, M.M.; Guevara-González, R.G.; Medina-Ramos, G. Effect of Fragmented DNA From Plant Pathogens on the Protection Against Wilt and Root Rot of Capsicum annuum L. Plants. Front. Plant Sci. 2021, 11, 581891. [Google Scholar] [CrossRef] [PubMed]
- Le Mire, G.; Siah, A.; Marolleau, B.; Gaucher, M.; Maumené, C.; Brostaux, Y.; Massart, S.; Brisset, M.-N.; Jijakli, M.H. Evaluation of l-carrageenan, CpG-ODN, glycine betaine, spirulina platensis, and ergosterol as elicitors for control of zymoseptoria tritici in wheat. Phytopathology 2019, 109, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Meitha, K.; Esyanti, R.R.; Iriawati; Hanisia, R.H. Rohyani. Green pesticide: Tapping to the promising roles of plant secreted small RNAs and responses towards extracellular DNA. Non-Coding RNA Res. 2021, 6, 42–50. [Google Scholar] [CrossRef]
- Carbajal-valenzuela, I.A.; Medina-ramos, G.; Caicedo-lopez, L.H.; Jim, A.; Ortega-torres, A.E.; Contreras-medina, L.M.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Guevara-González, R.G. Extracellular DNA: Insight of a Signal Molecule in Crop Protection. Biology 2021, 10, 1022. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: A fundamental concept in biology. Microb. Cell 2014, 1, 145–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, P.; Venâncio, A.; Lima, N. Toxic reagents and expensive equipment: Are they really necessary for the extraction of good quality fungal DNA? Lett. Appl. Microbiol. 2018, 66, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junglee, S.; Urban, L.; Sallanon, H.; Lopez-Lauri, F. Optimized Assay for Hydrogen Peroxide Determination in Plant Tissue Using Potassium Iodide. Am. J. Anal. Chem. 2014, 5, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Horst, W.J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 1991, 83, 463–468. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Dickerson, D.P.; Pascholati, S.F.; Hagerman, A.E.; Butler, L.G.; Nicholson, R.L. Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol. Plant Pathol. 1984, 25, 111–123. [Google Scholar] [CrossRef]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L.). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Hammond, J.B.; Kruger, N.J. Chapter 2 The Bradford Met Hod for Protein Quantitation; Walk, J.M., Ed.; Humana Press: Totowa, NJ, USA, 1988; Volume 10, pp. 25–32. [Google Scholar]
- Ampofo, J.; Ngadi, M.; Ramaswamy, H.S. Elicitation kinetics of phenolics in common bean (Phaseolus vulgaris) sprouts by thermal treatments. Legume Sci. 2020, 2, e56. [Google Scholar] [CrossRef]
- García-Mier, L.; Guevara-González, R.G.; Mondragón-Olguín, V.M.; Verduzco-Cuellar, B.d.R.; Torres-Pacheco, I. Agriculture and bioactives: Achieving both crop yield and phytochemicals. Int. J. Mol. Sci. 2013, 14, 4203–4222. [Google Scholar] [CrossRef]
- Hilker, M.; Schmülling, T. Stress priming, memory, and signalling in plants. Plant Cell Environ. 2019, 42, 753–761. [Google Scholar] [CrossRef]
- Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; van Dam, N.M.; Conrath, U. Recognizing Plant Defense Priming. Trends Plant Sci. 2016, 21, 818–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, M.; Pati, D.; Mohapatra, R.; Sahu, B.B.; Singh, P. The Impact of Microbes in Plant Immunity and Priming Induced Inheritance: A Sustainable Approach for Crop protection. Plant Stress 2022, 4, 100072. [Google Scholar] [CrossRef]
- Kalischuk, M.L.; Johnson, D.; Kawchuk, L.M. Priming with a double-stranded DNA virus alters Brassica rapa seed architecture and facilitates a defense response. Gene 2015, 557, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Desmedt, W.; Vanholme, B.; Kyndt, T. Plant defense priming in the field: A review. Recent Highlights Discov. Optim. Crop Prot. Prod. 2021, 1, 87–124. [Google Scholar] [CrossRef]
DNA Source | Role | Biomass Source |
---|---|---|
Tomato (Solanum lycopersicum var. Rio grande). | Self eDNA | From crop pruning |
Pathogen (Fusarium oxysporum) | Non-self eDNA | Micelia grown in PDB and incubated at room temperature with agitation (30 RPM) for 3 weeks. |
Mixed plants | Non-self eDNA | 20% of lettuce (Lactuca sativa) leaves, 40% of celery (Apium graveolens) leaves, and 40% of cucumber (Cucumis sativus) leaves; from crop pruning. |
TIME | VARIABLE | CONTROL | SELF | MIX | FUSARIUM 150 | FUSARIUM 15 | LATE SELF |
---|---|---|---|---|---|---|---|
1 HPA | PHEN | 0.202 | 0.241 | 0.182 | 0.228 | 0.284 | 0.202 |
FLAV | 3.313 | 3.425 | 3.808 | 3.551 | 4.844 * | 3.313 | |
HP | 0.003 | 0.008 * | 0.010 * | 0.007 * | 0.003 | 0.003 | |
PAL | 253.149 | 454.699 * | 363.757 * | 464.851 * | 133.536 * | 253.149 | |
SOD | 1.78 × 10−4 | 3.19 × 10−4 * | 1.29 × 10−6 * | 4.54 × 10−5 * | 5.08 × 10−5 * | 1.78 × 10−4 | |
CAT | 3.145 | 65.462 * | 48.141 * | 78.179 * | 57.957 * | 3.145 | |
5 HPA | PHEN | 0.219 | 0.210 | 0.223 | 0.219 | 0.309 * | 0.219 |
FLAV | 4.289 | 4.016 | 4.163 | 4.063 | 4.691 | 4.289 | |
HP | 0.004 | 0.004 | 0.004 | 0.004 | 0.003 | 0.004 | |
PAL | 183.561 | 394.401 * | 436.755 * | 249.234 | 128.307 | 183.561 | |
SOD | 2.17 × 10−7 | 1.69 × 10−4 * | 1.1 × 10−4 * | 8.06 × 10−7 | 7.25 × 10−6 | 2.17 × 10−7 | |
CAT | 4.915 | 64.325 * | 78.921 * | 76.581 * | 75.060 * | 4.915 | |
1 DPA | PHEN | 0.222 | 0.207 | 0.219 | 0.241 | 0.192 | 0.222 |
FLAV | 3.505 | 4.020 | 3.776 | 2.820 | 4.013 | 3.505 | |
HP | 0.006 | 0.009 | 0.005 | 0.004 | 0.005 | 0.006 | |
PAL | 193.512 | 519.680 * | 308.430 * | 260.832 * | 144.734 * | 193.512 | |
SOD | 1.83 × 10−4 | 3.19 × 10−5 * | 3.24 × 10−7 * | 5.46 × 10−6 | 1.95 × 10−6 | 1.95 × 10−6 | |
CAT | 3.667 | 60.252 * | 47.908 * | 79.210 * | 83.077 * | 3.667 | |
5 DPA | PHEN | 0.217 | 0.237 | 0.323 * | 0.219 | 0.156 | 0.217 |
FLAV | 3.585 | 3.760 | 3.600 | 2.369 * | 3.467 | 3.585 | |
HP | 0.001 | 0.012 * | 0.003 | 0.000 | 0.005 | 0.001 | |
PAL | 186.810 | 453.329 * | 273.590 * | 241.233 | 188.490 | 186.810 | |
SOD | 3.6 × 10−4 | 2.5 × 10−4 * | 4.11 × 10−6 * | 7.16 × 10−7 | 1.45 × 10−6 | 1.45 × 10−6 | |
CAT | 8.846 | 54.872 * | 49.055 * | 80.364 * | 94.675 * | 8.846 | |
10 DPA | PHEN | 0.156 | 0.332 * | 0.152 | 0.266 * | 0.162 | 0.156 |
FLAV | 3.771 | 5.839 * | 2.833 * | 4.693 * | 3.710 | 3.771 | |
HP | 0.008 | 0.012 | 0.009 | 0.002 | 0.007 | 0.008 | |
PAL | 230.104 | 449.059 * | 171.834 | 449.639 * | 318.652 * | 230.104 | |
SOD | 3.67 × 10−7 | 2.4 × 10−4 * | 3.29 × 104 * | 1.81 × 10−6 | 1.65 × 10−7 | 9.23 × 107 | |
CAT | 13.957 | 64.675 * | 40.184 * | 7.903 | 3.617 | 13.957 | |
1 HPSA | PHEN | 0.256 | 0.464 * | 0.180 | 0.329 | 0.315 | 0.247 |
FLAV | 4.681 | 6.478 * | 3.765 | 5.131 | 4.519 | 3.781 | |
HP | 0.015 | 0.020 | 0.022 | 0.055 * | 0.012 | 0.028 | |
PAL | 356.371 | 707.890 * | 732.710 * | 583.202 * | 353.717 | 336.848 | |
SOD | 1.13 × 10−6 | 3.17 × 10−7 | 5.95 × 10−5 | 6.04 × 10−6 * | 1.85 × 10−7 | 1.53 × 10−6 | |
CAT | 14.645 | 5.486 | 9.027 | 22.044 | 28.959 * | 20.549 | |
5 DPSA | PHEN | 0.271 | 0.419 | 0.276 | 0.393 | 0.712 * | 0.277 |
FLAV | 5.096 | 4.472 * | 4.327 * | 5.170 | 5.138 | 8.291 * | |
HP | 0.002 | 0.012 | 0.014 * | 0.036* | 0.007 | 0.021 * | |
PAL | 325.189 | 436.558 * | 828.892 * | 360.748 | 266.180 * | 351.545 | |
SOD | 1.42 × 10−6 | 7.59 × 10−7 | 4.72 × 10−7 | 3.10 × 10−6 | 4.99 × 10−6 | 1.54 × 10−4 * | |
CAT | 12.187 | 6.006 | 21.231 * | 4.117 * | 13.941 | 17.168 | |
10 DPSA | PHEN | 0.260 | 0.420 * | 0.552 * | 0.386 | 0.317 | 0.297 |
FLAV | 5.786 | 4.600 * | 7.119 * | 5.067 | 6.746 * | 9.614 * | |
HP | 0.005 | 0.003 | 0.002 | 0.007 | 0.018 * | 0.027 * | |
PAL | 281.315 | 456.569 * | 997.859 * | 364.336 * | 760.619 * | 288.871 | |
SOD | 5.14 × 10−5 | 2.8 × 10−4 * | 1.1 × 10−5 | 2.67 × 10−7 | 1.49 × 10−7 | 1.78 × 10−6 | |
CAT | 12.524 | 5.937 | 1.072 * | 4.572 | 16.041 | 22.765 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbajal-Valenzuela, I.A.; Guzmán-Cruz, R.; González-Chavira, M.M.; Medina-Ramos, G.; Serrano-Jamaica, L.M.; Torres-Pacheco, I.; Vázquez, L.; Feregrino-Pérez, A.A.; Rico-García, E.; Guevara-González, R.G. Response of Plant Immunity Markers to Early and Late Application of Extracellular DNA from Different Sources in Tomato (Solanum lycopersicum). Agriculture 2022, 12, 1587. https://doi.org/10.3390/agriculture12101587
Carbajal-Valenzuela IA, Guzmán-Cruz R, González-Chavira MM, Medina-Ramos G, Serrano-Jamaica LM, Torres-Pacheco I, Vázquez L, Feregrino-Pérez AA, Rico-García E, Guevara-González RG. Response of Plant Immunity Markers to Early and Late Application of Extracellular DNA from Different Sources in Tomato (Solanum lycopersicum). Agriculture. 2022; 12(10):1587. https://doi.org/10.3390/agriculture12101587
Chicago/Turabian StyleCarbajal-Valenzuela, Ireri Alejandra, Rosario Guzmán-Cruz, Mario M. González-Chavira, Gabriela Medina-Ramos, Luz María Serrano-Jamaica, Irineo Torres-Pacheco, Lucía Vázquez, Ana Angelica Feregrino-Pérez, Enrique Rico-García, and Ramón Gerardo Guevara-González. 2022. "Response of Plant Immunity Markers to Early and Late Application of Extracellular DNA from Different Sources in Tomato (Solanum lycopersicum)" Agriculture 12, no. 10: 1587. https://doi.org/10.3390/agriculture12101587
APA StyleCarbajal-Valenzuela, I. A., Guzmán-Cruz, R., González-Chavira, M. M., Medina-Ramos, G., Serrano-Jamaica, L. M., Torres-Pacheco, I., Vázquez, L., Feregrino-Pérez, A. A., Rico-García, E., & Guevara-González, R. G. (2022). Response of Plant Immunity Markers to Early and Late Application of Extracellular DNA from Different Sources in Tomato (Solanum lycopersicum). Agriculture, 12(10), 1587. https://doi.org/10.3390/agriculture12101587