Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Localization
2.2. Selection of Plant Material
2.3. Plant Material Sampling Method
2.4. Nutritional Composition Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Species Clusters by Nutritional Quality
3.2. Representation of Nutritional Data Variability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rippstein, G. Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia; N° 32; Centro Internacional de Agricultura Tropical: Cali, Columbia, 2001. [Google Scholar]
- Ocampo, A.; Peñuela, L. Manejo y Nutrición en Sabana Inundable como eje de la Producción y Reproducción de la Ganadería de cría.; Fortalecimiento Institucional y de Política para Incrementar la Conservación de la Biodiversidad en Predios Privados en Colombia; Red Colombiana de Reservas Naturales de la Sociedad, Fundación Natura, World Wildlife Fund, The Nature Conservancy, Parques Nacionales Naturales de Colombia: Bogotá, Colombia, 2014. [Google Scholar]
- Vélez-Terranova, O.M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecosyst. 2019, 22, 257–266. [Google Scholar]
- FAO. New Zealand Agricultural Greenhouse Gas Research Centre. In Low Emissions Development of the Beef Cattle Sector in Uruguay—Reducing Enteric Methane for Food Security and Livelihoods; FAO: Roma, Italy, 2017. [Google Scholar]
- Latawiec, A.E.; Strassburg, B.B.N.; Valentim, J.F.; Ramos, F.; Alves-Pinto, H.N. Intensification of cattle ranching production systems: Socioeconomic and environmental synergies and risks in Brazil. Animal 2014, 8, 1255–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B 2013, 280, 2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Moraes, A.; Carvalho, P.C.D.F.; Anghinoni, I.; Lustosa, S.B.C.; Costa, S.E.V.G.D.A.; Kunrath, T.R. Integrated crop–livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9. [Google Scholar] [CrossRef]
- Reiné, R.; Ascaso, J.; Barrantes, O. Nutritional quality of plant species in pyrenean hay Meadows of high diversity. Agronomy 2020, 10, 883. [Google Scholar] [CrossRef]
- Ramos, L.; Apráez, J.; Cortes, K.; Apráez, J. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Rev. Cienc. Agríc. 2021, 38, 86–96. [Google Scholar] [CrossRef]
- Arauca. Clima: Arauca, Colombia. Aeropuerto Sntiago Pérez Quiróz. Available online: http://es.allmetsat.com/clima/venezuela.php?code=80099 (accessed on 20 June 2020).
- Holdridge, L.R. Ecología Basada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987; p. 216. [Google Scholar]
- Schultze-kraft, R. Colección de Germoplasma en el Campo; Manual para la Colección, Preservación y Caracterización de Recursos Forrajeros Tropicales; Centro Internacional de Agricultura Tropical: Cali, Colombia, 1979. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International. Agricultural Chemicals. Contaminants and Drugs; Horwitz, W., Ed.; AOAC: Rockville, MD, USA, 2000; Volume 1. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber. Neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Linn, J.G.; Martin, N.P. Forage Quality Tests and Interpretation—AG-F0-2637. Minnesota Extension Service; University of Minnesota Agriculture: St. Paul, MN, USA, 1989; pp. 1–5. [Google Scholar]
- InfoStat. InfoStat, Versión 2020. Manual del Usuario; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. [Google Scholar]
- Al-Arif, M.A.; Suwanti, L.T.; Estoepangestie, A.S.; Lamid, M. The Nutrients Contents, Dry Matter Digestibility, Organic Matter Di-gestibility, Total Digestible Nutrient, and NH3 Rumen Production of Three Kinds of Cattle Feeding Models. In The Veterinary Medicine International Conference; KnE Life Sciences: Dubai, United Arab Emirates, 2017; pp. 338–343. [Google Scholar]
- Fasae, O.A.; Sowande, O.S.; Popoola, A.A. Evaluation of selected leaves of trees and foliage of shrubs as fodder in ruminant production. J. Agric. Sci. Environ. 2010, 10, 36–44. [Google Scholar]
- Zhou, H.; Li, M.; Zi, X.; Xu, T.; Hou, G. Nutritive Value of Several Tropical Legume Shrubs in Hai-nan Province of China. J. Anim. Vet. Adv. 2011, 10, 1640–1648. [Google Scholar]
- Apráez, E.; Gálvez, A.L.; Navia, J.F. Evaluación nutricional de arbóreas y arbustivas de bosque muy seco tropical (bms-T) en producción bovina. Rev. Cienc. Agríc. 2017, 34, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Holden, J.M.; Harnly, J.M.; Beecher, C.R. Composición de los Alimentos. Conocimientos Actuales Sobre Nutrición; ILSI: Washington, DC, USA, 2003; pp. 645–657. [Google Scholar]
- Bakshi, M.P.S.; Singh, M.P.; Wadhwa, M.; Singh, B. Nutritional evaluation of forest tree leaves as livestock feed in sub mountainous region of India. Indian J. Anim. Sci. 2011, 81, 276–281. [Google Scholar]
- Domínguez-Gómez, T.G.; González-Rodríguez, H.; Ramírez-Lozano, R.G.; Cantú-Silva, I.; Gómez-Meza, M.V.; Cantú-Ayala, C.M.; Alvarado, M.D.S. Nutritional Profile of Four Shrub Species, Northeastern Mexico. Int. J. Bio-Res. Stress Manag. 2013, 4, 001–008. [Google Scholar]
- Gulizia, J.P.; Downs, K.M. A Review of Kudzu’s Use and Characteristics as Potential Feedstock. Agriculture 2019, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta-analysis. Animal 2014, 8, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Anwar, K.; Kalim, K.; Saeed, A.; Shah, S.Z.; Ahmad, Z.; Ikram, H.M.; Khan, S.; Safirullah. Nutritional Evaluation of Some Top Fodder Tree Leaves and Shrubs of District Dir (Lower), Pakistan as a quality livestock feed. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 941–947. [Google Scholar]
- Debela, M.; Animut, G.; Eshetu, M. Evaluation of the Nutritional Composition of Selected Indigenous Fodder Trees and Shrubs in Daro Labu District, Eastern Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 58–61. [Google Scholar]
- Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Nutrients Profile of 52 Browse Species Found in Semi-Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants 2021, 10, 2127. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [Google Scholar] [CrossRef]
- Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy, Fundación Horizonte Verde, Fundación Biodiversidad de España, Corporación Autónoma Regional de la Orinoquia. Universidad de los Llanos: Villavicencio, Colombia, 2011. [Google Scholar]
- Gupta, A.R.; Bandyopadhyay, S.; Sultana, F.; Swarup, D. Heavy metal poisoning and its impact on livestock health and production system. Indian J. Anim. Health 2021, 60, 1–23. [Google Scholar] [CrossRef]
- Pereira, G.F.; Emerenciano Neto, J.V.; Difante, G.D.S.; Assis, L.C.D.S.L.C.; Lima, P.D.O.; Santos, R.D.S. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. 2021, 43, e52842. [Google Scholar] [CrossRef]
- Van Soest, P.J. Development of comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 1967, 26, 119–128. [Google Scholar] [CrossRef]
- Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Cortiana, T.A.A.; Regiani, S.M.; Cardoso, J.G.; Carvalho, F.J.L.; Henz, É.L.; Pedro, J.P. Production and chemical composition of grasses and legumes cultivated in pure form, mixed or in consortium. Acta Sci. Anim. Sci. 2017, 39, 235–241. [Google Scholar]
- Melo, C.D.; Maduro, D.C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358. [Google Scholar] [CrossRef]
- Patra, A.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef]
- Paciullo, D.S.C.; Pires, M.F.A.; Aroeira, L.J.M.; Morenz, M.J.F.; Maurício, R.M.; Gomide, C.A.M.; Silveira, S.R. Sward characteristics and performance of dairy cows in organic grass–legume pastures shaded by tropical trees. Animal 2014, 8, 1264–1271. [Google Scholar] [CrossRef] [Green Version]
- Leng, R.A. Evaluation of tropical feed resources for ruminant livestock. In Tropical Feeds and Feeding Systems; FAO: Rome, Italy, 1995; Available online: https://www.fao.org/ag/aga/agap/frg/econf95/pdf/evalu.pdf (accessed on 20 June 2020).
- Mlay, P.S.; Pereka, A.; Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arh. 2006, 76, 53–63. [Google Scholar]
- Flores, O.I.; Bolivar, D.M.; Botero, J.A.; Ibrahim, M.A. Parámetros nutricionales de algunas arbóreas leguminosas y no leguminosas con potencial forrajera para la suplementación de ruminantes en el trópico. Livest. Res. Rural. Dev. 1998, 10, 8–15. [Google Scholar]
- Indah, A.S.; Permana, I.G.; Despal, D. Determination dry matter digestibility of tropical forage using nutrient compisition. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012113. [Google Scholar] [CrossRef]
- Phelan, P.; Moloney, A.P.; McGeough, E.J.; Humphreys, J.; Bertilsson, J.; O’Riordan, E.G.; O’Kiely, P. Forage Legumes for Grazing and Conserving in Ruminant Production Systems. Crit. Rev. Plant Sci. 2014, 34, 281–326. [Google Scholar] [CrossRef]
- Fentahun, S.; Urge, M.; Mekuriaw, Y. Seasonal variation in Nutritional value of major browse species in North Western, Ethiopia. J. Plant Biotechnol. Microbiol. 2020, 3, 1–7. [Google Scholar]
- Ravhuhali, K.E.; Msiza, N.H.; Mudau, H.S. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agrofor. Syst. 2022, 96, 23–33. [Google Scholar] [CrossRef]
- Evitayani, W.L.; Fariani, A.; Ichinohe, T.; Fujihara, T. Study on Nutritive Value of Tropical Forages in North Sumatra, Indonesia. Asian-Australas. J. Anim. Sci. 2004, 17, 1518–1523. [Google Scholar]
- Vélez-Terranova, M.; Campos-Gaona, R.; Sánchez-Guerrero, H. Uso de metabolitos secundarios de las plantas para reducir la metanogénesis ruminal. Trop. Subtrop. Agroecosyst. 2014, 17, 489–499. [Google Scholar]
- Amiri, F.; Mohamed-Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586. [Google Scholar]
- Hutton, P.; White, C.L.; Durmic, Z.; Vercoe, P.E. Eremophila glabra is an Australian plant that reduces lactic acid accumulation in an in vitro glucose challenge designed to simulate lactic acidosis in ruminants. Animal 2009, 3, 1254–1263. [Google Scholar] [CrossRef]
Growth Habit | Specie | Botanical Family |
---|---|---|
Arboreal plants (n = 22) | Annona Jahnii | Annonaceae |
Annona montana | Annonaceae | |
Cochlospermum vitifolium | Bixaceae | |
Trema micrantha | Cannabaceae | |
Clusia cf minor grandiflora | Clusiaceae | |
Garcinia madruno | Clusiaceae | |
Connarus venezuelanus Var. orinocencsis | Connaraceae | |
Cordia collococca | Cordiaceae | |
Albizia niopoides | Fabaceae (Mimosoideae) | |
Hydrochorea chorymbosa | Fabaceae (Mimosoideae) | |
Machaerium cf aculeatum | Fabaceae (Caesalpinioideae) | |
Macrolobium multijugum | Fabaceae (Caesalpinioideae) | |
Platymiscium pinnatum | Fabaceae (Faboideae) | |
Vitex orinocensis | Lamiceae | |
Heliocarpus americanus | Malvaceae | |
Mutingia calabura | Muntingiaceae | |
Eugenia cribrata | Myrtaceae | |
Margaritaria nobilis | Phyllanthaceae | |
Phyllantus elsiae | Phyllanthaceae | |
Genipa americana | Rubiaceae | |
Casearia sylvestris | Salicaceae | |
Vochysia venezuelana | Vochysiaceae | |
Shrubs (n = 13) | Ipomoea carnea | Convolvulaceae |
Rhynchosia cf phaseoloides-reticulata | Fabaceae (Faboideae) | |
Senna reticulata | Fabaceae (Caesalpinioideae) | |
Hibiscus furcellatus | Malvaceae | |
Melochia spicata | Malvaceae | |
Triunmfetta lappula | Malvaceae | |
Urena lobata | Malvaceae | |
Miconia albicans | Melastomataceae | |
Miconia cf Afinis | Melastomataceae | |
Psidium maribense | Myrtaceae | |
Aegiphila molli | Lamiceae | |
Guapira guianensis | Nyctaginaceae | |
Piper hispidium | Piperaceae | |
Climbing plants (n = 5) | Peritassa cf laevigata | Celastraceae |
Entada polystachya | Fabaceae (Mimosoideae) | |
Lonchucarpus densiflorus | Fabaceae (Faboideae) | |
Vigna lasiocarpa | Fabaceae (Faboideae) | |
Cissus erosa | Vitaceae | |
Herbs (n = 2) | Heliotropium indicum | Heliotropiaceae |
Thalia geniculata | Marantaceae |
Specie | DM | OM | CP | Ash | NDF | ADF | Lignin | IVDMD |
---|---|---|---|---|---|---|---|---|
C. venezuelanus | 54.5 a | 96.7 ab | 9.7 fgh | 3.3 ij | 60.4 cde | 45.1 bc | 29.6 b | 25.6 i |
G. Americana | 34.4 fgh | 94.3 e | 15.2 cdef | 5.7 f | 45.8 ghij | 32.5 fgh | 20.3 d | 88.7 a |
M. cf aculeatum | 38.1 def | 96.2 bc | 15.8 cdef | 3.8 hi | 61.8 cd | 36.6 efg | 14.0 fg | 49.1 ef |
C. sylvestris | 41.2 cde | 91.1 h | 12.8 defgh | 9.0 c | 56.8 def | 41.1 bcde | 24.8 c | 36.8 gh |
V. orinocensis | 30.5 hi | 93.0 f | 15.2 cdef | 7.0 e | 59.6 cde | 37.5 def | 19.5 de | 42.9 fg |
C. cf minor-grandiflora | 18.2 k | 92.9 f | 8.8 gh | 7.2 e | 43.6 hij | 30.5 ghi | 12.3 fg | 74.5 b |
A. niopoides | 53.4 ab | 94.8 de | 25.3 a | 5.2 fg | 49.5 fghi | 28.5 hi | 13.1 fg | 44.4 fg |
M. multijugum | 44.4 cd | 96.3 bc | 15.6 cdef | 3.8 hi | 71.1 ab | 52.1 a | 31.8 b | 26.9 i |
P. elsiae | 35.6 efgh | 91.4 gh | 14.6 cdefg | 8.6 cd | 60.9 cde | 40.7 cde | 22.0 cd | 42.9 fg |
V. venezuelana | 31.9 fghi | 94.3 e | 8.0 h | 5.7 f | 54.6 def | 40.7 cde | 25.4 c | 29.4 hi |
H. chorymbosa | 47.0 bc | 97.6 a | 13.1 defgh | 2.4 j | 75.7 a | 54.3 a | 36.5 a | 27.1 i |
P. pinnatum | 36.2 efgh | 95.3 cde | 16.6 cde | 4.8 fgh | 53.3 efg | 34.1 efgh | 19.9 de | 59.2 d |
H. americanus | 22.5 jk | 90.4 h | 23.1 ab | 9.7 c | 61.2 cde | 37.2 defg | 22.1 cd | 69.2 bc |
M. nobilis | 25.7 ij | 92.5 fg | 17.7 bcde | 7.6 de | 38.4 j | 16.3 j | 5.0 i | 86.5 a |
T. micrantha | 36.9 efg | 83.9 j | 12.1 efgh | 16.1 a | 51.6 fgh | 37.7 def | 23.0 cd | 48.3 f |
M. calabura | 33.0 fghi | 92.6 f | 18.0 bcde | 7.4 e | 50.2 fghi | 23.4 ij | 10.3 gh | 39.3 g |
C. vitifolium | 31.9 fghi | 95.5 cd | 18.7 bcd | 4.5 gh | 42.4 ij | 23.4 ij | 15.7 ef | 42.1 fg |
A.montana | 31 ghi | 92.6 f | 12.7 defgh | 7.4 e | 52.7 efg | 30.9 fghi | 7.8 hi | 62.6 cd |
E. cribrata | 32.4 fghi | 95.0 de | 13.2 defgh | 5.1 fg | 66.3 bc | 48.6 ab | 29.6 b | 29.1 hi |
C. collococca | 31.7 fghi | 87.4 i | 16.7 cde | 12.6 b | 61.0 cde | 44.4 bcd | 22.2 cd | 43.7 fg |
A.Jahnii | 31.8 fghi | 94.2 e | 20.5 abc | 5.8 f | 52.9 efg | 24.2 i | 7.9 hi | 77.0 b |
G. madruno | 38.0 defg | 95.1 de | 9.9 fgh | 5.0 fg | 55.9 def | 40.6 cde | 19.8 de | 56.85 de |
SEM | 2.37 | 0.35 | 1.11 | 0.36 | 2.91 | 2.46 | 1.37 | 2.98 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Specie | DM | OM | CP | Ash | NDF | ADF | Lignin | IVDMD |
---|---|---|---|---|---|---|---|---|
Shrubs | ||||||||
M. spicata | 42.8 b | 96.1 a | 12.4 ef | 4.0 h | 70.4 a | 52.3 a | 32.5 a | 29.3 gh |
H. furcellatus | 25.3 f | 95.4 ab | 15.6 d | 4.7 gh | 44.4 e | 23.2 gh | 10.8 f | 61.3 de |
R. cf phaseoloides-reticulata | 34.4 d | 96.1 a | 16.1 d | 4.0 h | 64.0 b | 46.2 b | 27.2 b | 26.6 hi |
M. albicans | 44.4 b | 91.6 ef | 9.4 fg | 8.4 cd | 36.1 f | 24.1 gh | 16.8 de | 33.8 g |
G. guianensis | 28.3 e | 90.0 g | 25.8 a | 10.1 b | 58.9 c | 28.8 ef | 14.7 e | 56.4 e |
U. lobata | 34.4 d | 93.3 d | 15.0 de | 6.7 e | 57.1 c | 35.2 c | 19.6 cd | 48.0 f |
P. maribense | 37.4 c | 94.6 bc | 2.5 h | 5.4 fg | 46.5 e | 30.8 de | 15.6 e | 34.3 g |
P. hispidium | 35.2 d | 88.3 h | 16.0 d | 11.7 a | 38.3 f | 18.3 j | 8.0 g | 91.3 a |
M. cf Afinis | 50.6 a | 93.6 cd | 7.7 g | 6.4 ef | 32.1 g | 25.2 fg | 21.2 c | 22.9 i |
A, molli | 19.9 g | 91.9 ef | 22.5 bc | 8.1 cd | 52.4 d | 29.1 e | 17.2 de | 68.4 c |
T. lappula | 20.4 g | 92.8 de | 21.1 c | 7.3 de | 59.0 c | 33.7 cd | 19.4 cd | 64.7 cd |
I. carnea | 22.2 g | 91.4 f | 25.2 ab | 8.6 c | 46.5 e | 21.4 hi | 10.7 f | 87.7 a |
S. reticulata | 24.4 f | 93.7 cd | 22.9 abc | 6.3 ef | 45.9 e | 19.0 ij | 5.2 h | 77.3 b |
SEM | 0.46 | 0.38 | 0.55 | 0.38 | 0.94 | 1.18 | 0.92 | 1.97 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Climbing plants | ||||||||
V. lasiocarpa | 30.9 b | 95.2 c | 13.2 c | 4.9 b | 62.0 b | 38.5 b | 11.3 e | 54.3 b |
C. erosa | 19.4 c | 93.6 d | 13.0 c | 6.5 a | 49.6 c | 31.7 c | 13.9 d | 74.5 a |
E. polystachya | 45.4 a | 96.5 b | 15.4 b | 3.5 c | 60.3 b | 44.3 a | 29.5 b | 34.1 d |
L.densiflorus | 42.8 a | 93.6 d | 19.0 a | 6.4 a | 58.8 b | 35.4 bc | 19.0 c | 38.7 c |
P. cf laevigata | 48.9 a | 97.6 a | 8.8 d | 2.5 d | 66.5 a | 47.9 a | 31.7 a | 39.6 c |
SEM | 3.13 | 0.11 | 0.22 | 0.11 | 1.16 | 1.45 | 0.61 | 0.83 |
p-value | 0.0011 | <0.0001 | <0.0001 | <0.0001 | 0.0002 | 0.0005 | <0.0001 | <0.0001 |
Herbs | ||||||||
H. indicum | 22.4 | 82.6 b | 27.3 a | 17.6 a | 48.3 b | 30.5 a | 20.3 a | 43.2 a |
T. geniculata | 20.5 | 91.8 a | 17.5 b | 8.2 b | 65.4 a | 28.6 a | 7.2 b | 46.0 a |
SEM | 0.31 | 0.08 | 0.41 | 0.08 | 1.31 | 0.56 | 0.13 | 1.95 |
p-value | NS | 0.0001 | 0.0036 | 0.0001 | 0.0114 | NS | 0.0002 | NS |
Specie | DMI | RFV | Classification |
---|---|---|---|
Arboreal Plants | |||
C. venezuelanus | 2.0 | 39 | 4 |
G. americana | 2.6 | 180 | 1 |
M. cf aculeatum | 1.9 | 74 | 4 |
C. sylvestris | 2.1 | 60 | 4 |
V. orinocensis | 2.0 | 67 | 4 |
C. cf minor grandiflora | 2.8 | 159 | 1 |
A. niopoides | 2.4 | 83 | 4 |
M. multijugum | 1.7 | 35 | 4 |
P. elsiae | 2.0 | 65 | 4 |
V. venezuelana | 2.2 | 50 | 4 |
H. chorymbosa | 1.6 | 33 | 4 |
P. pinnatum | 2.3 | 104 | 3 |
H. americanus | 2.0 | 105 | 3 |
M. nobilis | 3.1 | 210 | 1 |
T. micrantha | 2.3 | 87 | 4 |
M. calabura | 2.4 | 73 | 4 |
C. vitifolium | 2.8 | 92 | 4 |
A.montana | 2.3 | 111 | 3 |
E. cribrata | 1.8 | 41 | 4 |
C. collococca | 2.0 | 67 | 4 |
A.Jahnii | 2.3 | 135 | 2 |
G. madruno | 2.1 | 95 | 4 |
Shrubs | |||
M. spicata | 1.7 | 39 | 4 |
H. furcellatus | 2.7 | 128 | 2 |
R. cf phaseoloides-reticulata | 1.9 | 39 | 4 |
M. albicans | 3.3 | 87 | 4 |
G. guianensis | 2.0 | 89 | 4 |
U. lobata | 2.1 | 78 | 4 |
P. maribense. | 2.6 | 69 | 4 |
P. hispidium | 3.1 | 222 | 1 |
M. cf Afinis | 3.7 | 66 | 4 |
A, molli | 2.3 | 122 | 3 |
T. lappula | 2.0 | 102 | 3 |
I. carnea | 2.6 | 175 | 1 |
S. reticulata | 2.6 | 157 | 1 |
Climbing plants | |||
V. lasiocarpa | 1.9 | 81 | 4 |
C. erosa | 2.4 | 140 | 2 |
E. polystachya | 2.0 | 53 | 4 |
L.densiflorus | 2.0 | 61 | 4 |
P. cf laevigata | 1.8 | 55 | 4 |
Herbs | |||
H. indicum | 2.5 | 83 | 4 |
T. geniculata | 1.8 | 65 | 4 |
Lambda | Value | Proportion | Cum. Prop. |
---|---|---|---|
1 | 3.27 | 0.47 | 0.47 |
2 | 1.66 | 0.24 | 0.71 |
3 | 0.97 | 0.14 | 0.84 |
4 | 0.81 | 0.12 | 0.96 |
5 | 0.27 | 0.04 | 1 |
Variables | e1 | e2 |
---|---|---|
OM | 0.39 | −0.50 |
CP | −0.25 | 0.28 |
NDF | 0.42 | 0.32 |
ADF | 0.49 | 0.29 |
Lignin | 0.45 | 0.31 |
Ash | −0.39 | 0.50 |
IVDMD | −0.12 | −0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vélez-Terranova, M.; Salamanca-Carreño, A.; Bejarano-Sánchez, A.M.; González-Castro, D.A.; Higuera-Pedraza, R.D.; Giraldo, L.A. Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. Agriculture 2022, 12, 1613. https://doi.org/10.3390/agriculture12101613
Vélez-Terranova M, Salamanca-Carreño A, Bejarano-Sánchez AM, González-Castro DA, Higuera-Pedraza RD, Giraldo LA. Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. Agriculture. 2022; 12(10):1613. https://doi.org/10.3390/agriculture12101613
Chicago/Turabian StyleVélez-Terranova, Mauricio, Arcesio Salamanca-Carreño, Andrés Mauricio Bejarano-Sánchez, Daniela Alexandra González-Castro, Rubén Darío Higuera-Pedraza, and Luis Alfonso Giraldo. 2022. "Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems" Agriculture 12, no. 10: 1613. https://doi.org/10.3390/agriculture12101613
APA StyleVélez-Terranova, M., Salamanca-Carreño, A., Bejarano-Sánchez, A. M., González-Castro, D. A., Higuera-Pedraza, R. D., & Giraldo, L. A. (2022). Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. Agriculture, 12(10), 1613. https://doi.org/10.3390/agriculture12101613