Non-Destructive Viability Discrimination for Individual Scutellaria baicalensis Seeds Based on High-Throughput Phenotyping and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Seed Phenotypic Traits Acquisition
2.2.1. RGB Image Acquisition and Feature Extraction
2.2.2. Hyperspectral Reflectance Data Collection and Preprocessing
2.3. Germination Test
2.4. Dataset Balancing
2.5. Viability Discrimination Modle Establishment
2.6. Characteristic Wavelength Extraction
3. Results
3.1. Viability Discrimination Model Based on Machine Vision
3.2. High-Accuracy Viability Discrimination Model Based on HSI Data
3.3. Characteristic Wavelength Extraction for HSI Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pang, P.; Zheng, K.; Wu, S.; Xu, H.; Deng, L.; Shi, Y.; Chen, X. Baicalin Downregulates RLRs Signaling Pathway to Control Influenza A Virus Infection and Improve the Prognosis. Evid.-Based Complementary Altern. Med. 2018, 2018, 4923062. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Niu, X.; Dong, J.; Wang, D.; Wang, J.; Li, H.; Luo, M.; Li, S.; Feng, H.; Deng, X. Baicalin Protects Mice from Staphylococcus Aureus Pneumonia via Inhibition of the Cytolytic Activity Of-Hemolysin. J. Infect. Dis. 2012, 206, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Hao, Z.; Zhang, S.; Wei, M.; Lu, B.; Wang, Z.; Ji, L. Baicalein and Baicalin Alleviate Acetaminophen-Induced Liver Injury by Activating Nrf2 Antioxidative Pathway: The Involvement of ERK1/2 and PKC. Biochem. Pharm. 2018, 150, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Fan, Q.; Miao, Y.; Tian, E.; Ishfaq, M.; Li, J. Baicalin Inhibits Inflammation Caused by Coinfection of Mycoplasma Gallisepticum and Escherichia Coli Involving IL-17 Signaling Pathway. Poult. Sci. 2020, 99, 5472–5480. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Meena, A.; Luqman, S. Baicalin Mediated Regulation of Key Signaling Pathways in Cancer. Pharmacol. Res. 2021, 164, 105387. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Guo, G.; Pei, X.; Wang, X.; Li, L.; Xiong, Y.; Qiu, X. Baicalin Inhibits Cell Viability, Migration and Invasion in Breast Cancer by Regulating Mir-338-3p and MORC4. OncoTargets Ther. 2019, 12, 11183. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Fang, J.; Wang, H.; Fei, M.; Tang, T.; Liu, K.; Niu, W.; Zhou, Y. Baicalin Suppresses Proliferation, Migration, and Invasion in Human Glioblastoma Cells via Ca2+ -Dependent Pathway. Drug Des. Dev. Ther. 2018, 12, 3247. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhou, M.; Zhang, H.; Fang, Y.; Chen, G.; Wen, J.; Liu, L. Characterization of the Mechanism of Scutellaria Baicalensis on Reversing Radio-Resistance in Colorectal Cancer. Transl. Oncol. 2022, 24, 101488. [Google Scholar] [CrossRef]
- Han, Y.; Lu, F.; Song, J.; Li, J. Effects of Two Initiators on Seed Germination and Seedling Growth of Scutellaria Baicalensis Georgi. 2020. Available online: https://m.fx361.com/news/2020/0704/6835778.html (accessed on 13 March 2022).
- Liu, J.; Yang, J.; Liu, Q.; Zhang, Y. Changes of Metabolism during the Seed Germination of Scutellaria Baicalensis Georgi. Hortic. Seed 2020, 40, 1–4. [Google Scholar]
- Wang, W.; Cao, Y.; Chen, R.; Cao, X. Study on Seed Quality Difference and Seed Classification of Scutellaria Baicalensis from Different Regions. Seed 2019, 38, 138–143. [Google Scholar]
- He, H.; Yan, Y.; Mao, R.; Wang, Y. Research Advance of Germplasm Resource Evaluation and Pharmacological Function of Scutellaria Baicalensis. 2022; Unpublish. [Google Scholar]
- Michalak, M.; Plitta-Michalak, B.P.; Nadarajan, J.; Colville, L. Volatile Signature Indicates Viability of Dormant Orthodox Seeds. Physiol Plant. 2021, 173, 788–804. [Google Scholar] [CrossRef] [PubMed]
- TU, K.; YIN, Y.; YANG, L.; WANG, J.; SUN, Q. Discrimination of Individual Seed Viability by Using Oxygen Consumption Technique and Headspace Gas Chromatography-Ion Mobility Spectrometry. J. Integr. Agric. 2022, in press. [Google Scholar] [CrossRef]
- Tu, K.; Wen, S.; Cheng, Y.; Zhang, T.; Pan, T.; Wang, J.; Wang, J.; Sun, Q. A Non-Destructive and Highly Efficient Model for Detecting the Genuineness of Maize Variety ’JINGKE 968′ Using Machine Vision Combined with Deep Learning. Comput. Electron. Agric. 2021, 182, 106002. [Google Scholar] [CrossRef]
- Granitto, P.M.; Verdes, P.F.; Ceccatto, H.A. Large-Scale Investigation of Weed Seed Identification by Machine Vision. Comput. Electron. Agric. 2005, 47, 15–24. [Google Scholar] [CrossRef]
- Huang, K.Y.; Cheng, J.F. A Novel Auto-Sorting System for Chinese Cabbage Seeds. Sensors 2017, 17, 886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Fan, X.; Sun, L.; Shen, Y.; Suo, X. Research on Classification Method of Maize Seed Defect Based on Machine Vision. J. Sens. 2019, 2019, 2716975. [Google Scholar] [CrossRef]
- Yu, L.; Shi, J.; Huang, C.; Duan, L.; Wu, D.; Fu, D.; Wu, C.; Xiong, L.; Yang, W.; Liu, Q. An Integrated Rice Panicle Phenotyping Method Based on X-Ray and RGB Scanning and Deep Learning. Crop J. 2021, 9, 42–56. [Google Scholar] [CrossRef]
- Genze, N.; Bharti, R.; Grieb, M.; Schultheiss, S.J.; Grimm, D.G. Accurate Machine Learning-Based Germination Detection, Prediction and Quality Assessment of Three Grain Crops. Plant Methods 2020, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Quan, L.; Li, H.; Feng, H.; Li, S.; Zhang, S.; Liu, R. Real-Time Recognition System of Soybean Seed Full-Surface Defects Based on Deep Learning. Comput. Electron. Agric. 2021, 187, 106230. [Google Scholar] [CrossRef]
- TU, K.L.; LI, L.J.; YANG, L.M.; WANG, J.H.; SUN, Q. Selection for High Quality Pepper Seeds by Machine Vision and Classifiers. J. Integr. Agric. 2018, 17, 1999–2006. [Google Scholar] [CrossRef]
- Tu, K.L.; Wen, S.Z.; Cheng, Y.; Xu, Y.A.; Pan, T.; Hou, H.N.; Gu, R.L.; Wang, J.H.; Wang, F.G.; Sun, Q. A Model for Genuineness Detection in Genetically and Phenotypically Similar Maize Variety Seeds Based on Hyperspectral Imaging and Machine Learning. Plant Methods 2022, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sun, L.; Xing, W.; Feng, G.; Bai, H.; Wang, J. Hyperspectral Prediction of Sugarbeet Seed Germination Based on Gauss Kernel SVM. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 253, 119585. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Liu, Z. Dimensionality Reduction and Derivative Spectral Feature Optimization for Hyperspectral Target Recognition. Opt. (Stuttg) 2017, 130, 1349–1357. [Google Scholar] [CrossRef]
- Zeng, M.; Zou, B.; Wei, F.; Liu, X.; Wang, L. Effective Prediction of Three Common Diseases by Combining SMOTE with Tomek Links Technique for Imbalanced Medical Data. In Proceedings of the Proceedings of 2016 IEEE International Conference of Online Analysis and Computing Science ICOACS, Chongqing, China, 28–29 May 2016. [Google Scholar]
- Maldonado, S.; López, J.; Vairetti, C. An Alternative SMOTE Oversampling Strategy for High-Dimensional Datasets. Appl. Soft Comput. J. 2019, 76, 380–389. [Google Scholar] [CrossRef]
- Jin, B.; Qi, H.; Jia, L.; Tang, Q.; Gao, L.; Li, Z.; Zhao, G. Determination of Viability and Vigor of Naturally-Aged Rice Seeds Using Hyperspectral Imaging with Machine Learning. Infrared Phys. Technol. 2022, 122, 104097. [Google Scholar] [CrossRef]
- Pang, L.; Wang, L.; Yuan, P.; Yan, L.; Xiao, J. Rapid Seed Viability Prediction of Sophora Japonica by Improved Successive Projection Algorithm and Hyperspectral Imaging. Infrared Phys. Technol. 2022, 123, 104143. [Google Scholar] [CrossRef]
- Pang, L.; Wang, L.; Yuan, P.; Yan, L.; Yang, Q.; Xiao, J. Feasibility Study on Identifying Seed Viability of Sophora Japonica with Optimized Deep Neural Network and Hyperspectral Imaging. Comput. Electron. Agric. 2021, 190, 106426. [Google Scholar] [CrossRef]
- Ma, T.; Tsuchikawa, S.; Inagaki, T. Rapid and Non-Destructive Seed Viability Prediction Using near-Infrared Hyperspectral Imaging Coupled with a Deep Learning Approach. Comput. Electron. Agric. 2020, 177, 105683. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Cheng, Y. A Non-Negative Sparse Semi-Supervised Dimensionality Reduction Algorithm for Hyperspectral Data. Neurocomputing 2016, 188, 275–283. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, L.; Xing, W.; Feng, G.; Ji, Y.; Yang, J.; Liu, S. Hyperspectral Imaging of Beet Seed Germination Prediction. Infrared Phys. Technol. 2020, 108, 103363. [Google Scholar] [CrossRef]
- Wang, J.; Sun, L.; Feng, G.; Bai, H.; Yang, J.; Gai, Z.; Zhao, Z.; Zhang, G. Intelligent Detection of Hard Seeds of Snap Bean Based on Hyperspectral Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 275, 121169. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Liu, G.; He, J.; Yang, X.; Wan, G.; Zhang, C.; Ma, C. Nondestructive Detection of Sucrose Content of Lingwu Changzao Jujubes by Hyperspectral Imaging. Food Sci. 2019, 40, 285–291. [Google Scholar]
- Gill, P.K.; Sharma, A.D.; Singh, P.; Bhullar, S.S. Changes in Germination, Growth and Soluble Sugar Contents of Sorghum Bicolor (L.) Moench Seeds under Various Abiotic Stresses. Plant Growth Regul. 2003, 40, 157–162. [Google Scholar] [CrossRef]
- Dekkers, B.J.W.; Schuurmans, J.A.M.J.; Smeekens, S.C.M. Glucose Delays Seed Germination in Arabidopsis Thaliana. Planta 2004, 218, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravikanth, L.; Singh, C.B.; Jayas, D.S.; White, N.D.G. Performance Evaluation of a Model for the Classification of Contaminants from Wheat Using Near-Infrared Hyperspectral Imaging. Biosyst Eng 2016, 147, 248–258. [Google Scholar] [CrossRef]
Dataset | Preprocessing | RF | SVM | ||
---|---|---|---|---|---|
Number of Estimators | Max Features | c | g | ||
Machine vision | / | 91 | 19 | 1.6 | 0.004 |
HSI | Raw | 71 | 23 | 150 | 16 |
SNV | 91 | 9 | 20 | 1 | |
DT | 91 | 17 | 70 | 46 | |
SMC | 71 | 17 | 160 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, K.; Cheng, Y.; Ning, C.; Yang, C.; Dong, X.; Cao, H.; Sun, Q. Non-Destructive Viability Discrimination for Individual Scutellaria baicalensis Seeds Based on High-Throughput Phenotyping and Machine Learning. Agriculture 2022, 12, 1616. https://doi.org/10.3390/agriculture12101616
Tu K, Cheng Y, Ning C, Yang C, Dong X, Cao H, Sun Q. Non-Destructive Viability Discrimination for Individual Scutellaria baicalensis Seeds Based on High-Throughput Phenotyping and Machine Learning. Agriculture. 2022; 12(10):1616. https://doi.org/10.3390/agriculture12101616
Chicago/Turabian StyleTu, Keling, Ying Cheng, Cuiling Ning, Chengmin Yang, Xuehui Dong, Hailu Cao, and Qun Sun. 2022. "Non-Destructive Viability Discrimination for Individual Scutellaria baicalensis Seeds Based on High-Throughput Phenotyping and Machine Learning" Agriculture 12, no. 10: 1616. https://doi.org/10.3390/agriculture12101616
APA StyleTu, K., Cheng, Y., Ning, C., Yang, C., Dong, X., Cao, H., & Sun, Q. (2022). Non-Destructive Viability Discrimination for Individual Scutellaria baicalensis Seeds Based on High-Throughput Phenotyping and Machine Learning. Agriculture, 12(10), 1616. https://doi.org/10.3390/agriculture12101616