A Synthetic Angle Normalization Model of Vegetation Canopy Reflectance for Geostationary Satellite Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Angle Normalization Model Overview
2.2. Topographic Correction for Vegetation Canopies-PLC
2.3. Correction of Solar Angle
2.4. Correction of Detector Angle
2.5. Study Area and Data
2.6. Method Evaluation Strategies
- (i)
- Correlation analysis between reflectance in different imaging periods. Because the vegetation canopy spectrum is relatively stable in the morning time window, the effective angle normalization model should strengthen the reflectance correlation of different imaging phases in the morning time window and make the slope of the linear regression equation closer to unity. Conversely, the vegetation canopy spectrum changes drastically in the noon time window, so the effective angle normalization model should weaken the reflectance correlation of different imaging phases and make the slope of the linear regression equation further depart from unity.
- (ii)
- Analysis of the correlation between the cosine of the imaging geometry angles and reflectance. This is one of the most widely used quantitative evaluation methods. The efficiency of the normalization methods can be quantified by using and the imaging geometry angles of the corresponding linear regression. The ideal normalization method should make approach zero [31].
- (iii)
- Radiometric stability. Theoretically, the maximum (minimum) reflectance in the original image before correction should appear in the sunny (shady) slope and will decrease (increase) after topographic correction. Consequently, a successful correction method will reduce the reflectance range. Moreover, the median reflectance is relatively stable and invariable after correction [30].
3. Results
3.1. Correlation between Different Imaging Phases
3.2. Sensitivity to Imaging Geometry Angles
3.3. Radiometric Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hashimoto, H.; Wang, W.; Dungan, J.L.; Li, S.; Michaelis, A.R.; Takenaka, H.; Higuchi, A.; Myneni, R.B.; Nemani, R.R. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 2021, 12, 684. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jiang, L.; Shi, J.; Wu, S.; Sun, R.; Yang, H. Monitoring snow cover using Chinese meteorological satellite data over China. Remote Sens. Environ. 2014, 143, 192–203. [Google Scholar] [CrossRef]
- Wang, M.; Ahn, J.-H.; Jiang, L.; Shi, W.; Son, S.; Park, Y.-J.; Ryu, J.-H. Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI). Opt. Express 2013, 21, 3835. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cheng, Y.; Chang, X.; Jin, S.; Zhu, Y. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4. ISPRS J. Photogramm. Remote Sens. 2017, 125, 63–77. [Google Scholar] [CrossRef]
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Yumimoto, K.; Nagao, T.M.; Kikuchi, M.; Sekiyama, T.T.; Murakami, H.; Tanaka, T.Y.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef]
- Di, A.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Mei, L.; Wang, J.; She, L.; Hu, Y.; He, X.; et al. Dust aerosol optical depth retrieval and dust storm detection for Xinjiang Region using Indian national satellite observations. Remote Sens. 2016, 8, 702. [Google Scholar] [CrossRef] [Green Version]
- Bloshchinskiy, V.D.; Kuchma, M.O.; Andreev, A.I.; Sorokin, A.A. Snow and cloud detection using a convolutional neural network and low-resolution data from the Electro-L No. 2 Satellite. J. Appl. Remote Sens. 2020, 14, 1. [Google Scholar] [CrossRef]
- Aminou, D.M.; Lamarre, D.; Stark, H.; Van Den Braembussche, P.; Blythe, P.; Fowler, G.; Gigli, S.; Stuhlmann, R.; Rota, S. Meteosat Third Generation (MTG) status of space segment definition. In Sensors, Systems, and Next-Generation Satellites XIII; SPIE: Berlin, Germany, 2009; Volume 7474, p. 747406. [Google Scholar]
- Du, H.; Liu, Q.; Li, J.; Yang, L. Retrieving crop leaf area index by combining optical and microwave vegetation indices: A feasibility analysis. Yaogan Xuebao/J. Remote Sens. 2013, 17, 1587–1611. [Google Scholar] [CrossRef]
- Babcock, C.; Finley, A.O.; Looker, N. A Bayesian model to estimate land surface phenology parameters with harmonized Landsat 8 and Sentinel-2 images. Remote Sens. Environ. 2021, 261, 112471. [Google Scholar] [CrossRef]
- Puliti, S.; Breidenbach, J.; Schumacher, J.; Hauglin, M.; Klingenberg, T.F.; Astrup, R. Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat. Remote Sens. Environ. 2021, 265, 112644. [Google Scholar] [CrossRef]
- Novillo, C.J.; Arrogante-Funes, P.; Romero-Calcerrada, R. Improving land cover classifications with multiangular data: MISR data in mainland Spain. Remote Sens. 2018, 10, 1717. [Google Scholar] [CrossRef] [Green Version]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Blesius, L.; Weirich, F. The use of the Minnaert correction for land-cover classification in mountainous terrain. Int. J. Remote Sens. 2005, 26, 3831–3851. [Google Scholar] [CrossRef]
- Ekstrand, S. Landsat TM-based forest damage assessment: Correction for topographic effects. Photogramm. Eng. Remote Sens. 1996, 62, 151–161. [Google Scholar]
- Li, H.; Xu, L.; Shen, H.; Zhang, L. A general variational framework considering cast shadows for the topographic correction of remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2016, 117, 161–171. [Google Scholar] [CrossRef]
- Yin, G.; Li, A.; Wu, S.; Fan, W.; Zeng, Y.; Yan, K.; Xu, B.; Li, J.; Liu, Q. PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction. Remote Sens. Environ. 2018, 215, 184–198. [Google Scholar] [CrossRef]
- Kowalik, W.S.; Marsh, S.E.; Lyon, R.J.P. A relation between landsat digital numbers, surface reflectance, and the cosine of the solar zenith angle. Remote Sens. Environ. 1982, 12, 39–55. [Google Scholar] [CrossRef]
- Li, L. The Influence of the Satellite Observation and Sunshine Direction on Vegetation-Shade—A Case Study of Qinghai-Tibet Railway; China University of Geosciences: Beijing, China, 2016. [Google Scholar]
- Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q.; et al. Evaluation of the VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sens. Environ. 2017, 201, 256–274. [Google Scholar] [CrossRef]
- Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L.; Huang, H.; Li, Z. Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2017, 199, 25–38. [Google Scholar] [CrossRef]
- Chance, C.M.; Hermosilla, T.; Coops, N.C.; Wulder, M.A.; White, J.C. Effect of topographic correction on forest change detection using spectral trend analysis of Landsat pixel-based composites. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 186–194. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.; Gong, C.; He, H. Solar elevation angle’s effect on image energy and its correction. J. Atmos. Environ. Opt. 2013, 8, 11–17. [Google Scholar]
- Wolfe, R.E.; Roy, D.P.; Vermote, E. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1324–1338. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Gong, H.; Zhao, W.; Chen, B.; Chen, Z.; Shi, M. An improved topographic correction model based on Minnaert. GISci. Remote Sens. 2016, 53, 247–264. [Google Scholar] [CrossRef]
- Lin, Y.; Shen, H.; Tian, Q.; Gu, X. Improving leaf area index retrieval using spectral characteristic parameters and data splitting. Int. J. Remote Sens. 2020, 41, 1741–1759. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Q.; Tong, Y.; Fei, D.; Liu, J. Effect of solar radiation intensity and observation angle on canopy reflectance hyperspectra for winter wheat. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 157–163. [Google Scholar] [CrossRef]
- Lin, Y.; Shen, H.; Tian, Q.; Gu, X.; Yang, R.; Qiao, B. Mechanisms underlying diurnal variations in the canopy spectral reflectance of winter wheat in the jointing stage. Curr. Sci. 2020, 118, 1401–1406. [Google Scholar] [CrossRef]
- Sola, I.; González-Audícana, M.; Álvarez-Mozos, J. Multi-criteria evaluation of topographic correction methods. Remote Sens. Environ. 2016, 184, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.; Li, A.; Zhao, W.; Jin, H.; Bian, J.; Wu, S. Modeling Canopy Reflectance over Sloping Terrain Based on Path Length Correction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4597–4609. [Google Scholar] [CrossRef]
- Kane, V.R.; Gillespie, A.R.; McGaughey, R.; Lutz, J.A.; Ceder, K.; Franklin, J.F. Interpretation and topographic compensation of conifer canopy self-shadowing. Remote Sens. Environ. 2008, 112, 3820–3832. [Google Scholar] [CrossRef]
- Yang, G.; Pu, R.; Zhang, J.; Zhao, C.; Feng, H.; Wang, J. Remote sensing of seasonal variability of fractional vegetation cover and its object-based spatial pattern analysis over mountain areas. ISPRS J. Photogramm. Remote Sens. 2013, 77, 79–93. [Google Scholar] [CrossRef]
- Wen, J.; Liu, G.; Gong, Z.; Pang, Y.; Cai, Z.; Xua, J. Aquatic Vegetation Canopy Spectral Characteristics under Different Coverage Percentages. J. Appl. Spectrosc. 2018, 85, 885–890. [Google Scholar] [CrossRef]
- Gao, R.; Xie, Y.; Gu, X.; Han, J.; Sun, Y.; Liu, J. A model of topographic radiance correction in view of fractional vegetation cover. Sci. Surv. Mapp. 2016, 41, 132–138. [Google Scholar]
- Schott, J. Remote Sensing: The Image Chain Approach; Oxford University Press: New York, USA, 2007; Volume 45, ISBN 9780195178173. [Google Scholar]
Symbol | Explanation |
---|---|
Solar zenith angle | |
Solar azimuth angle | |
Detector zenith angle | |
Detector azimuth angle | |
Slope | |
Slope aspect | |
Angle from observation direction to the solar incidence direction; derived from Equation (1) | |
Angle from solar incidence direction to ground surface normal (solar incidence angle); derived from Equation (1) | |
Angle from observation direction to ground surface normal; derived from Equation (1) | |
Vegetation canopy reflectance observed by sensor | |
Vegetation canopy reflectance after PLC model processing | |
Vegetation canopy reflectance after PLC model and SACM processing | |
Vegetation canopy reflectance after Minnaert model processing | |
Vegetation canopy reflectance after SANM processing |
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | |
---|---|---|---|---|---|---|---|---|
Band length (nm) | 412 | 443 | 488 | 555 | 660 | 680 | 745 | 865 |
Band width (nm) | 20 | 20 | 20 | 20 | 20 | 10 | 20 | 40 |
Imaging Hour | Linear Fit | Band 5 Reflectance | Band 8 Reflectance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ori | PLC | SACM | SANM | Ori | PLC | SACM | SANM | |||
Morning window | 08–09 | Slope | 1.014 | 0.998 | 0.802 | 0.976 | 0.924 | 0.917 | 0.731 | 1.021 |
0.768 | 0.767 | 0.771 | 0.889 | 0.901 | 0.900 | 0.901 | 0.951 | |||
08–10 | Slope | 1.144 | 1.116 | 0.785 | 1.008 | 0.857 | 0.848 | 0.589 | 0.994 | |
0.844 | 0.832 | 0.847 | 0.993 | 0.862 | 0.856 | 0.860 | 0.997 | |||
09–10 | Slope | 0.958 | 0.957 | 0.831 | 0.891 | 0.904 | 0.903 | 0.785 | 0.914 | |
0.792 | 0.794 | 0.793 | 0.833 | 0.906 | 0.906 | 0.906 | 0.925 | |||
Noon window | 11–12 | Slope | 0.804 | 0.808 | 0.797 | 0.786 | 0.877 | 0.878 | 0.871 | 0.814 |
0.705 | 0.708 | 0.705 | 0.718 | 0.871 | 0.872 | 0.871 | 0.855 | |||
11–13 | Slope | 0.847 | 0.849 | 0.887 | 0.801 | 0.859 | 0.859 | 0.902 | 0.689 | |
0.324 | 0.327 | 0.328 | 0.368 | 0.798 | 0.799 | 0.798 | 0.703 | |||
12–13 | Slope | 0.848 | 0.849 | 0.890 | 0.846 | 0.962 | 0.962 | 1.016 | 0.860 | |
0.298 | 0.302 | 0.298 | 0.353 | 0.883 | 0.884 | 0.884 | 0.850 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Tian, Q.; Qiao, B.; Wu, Y.; Zuo, X.; Xie, Y.; Lian, Y. A Synthetic Angle Normalization Model of Vegetation Canopy Reflectance for Geostationary Satellite Remote Sensing Data. Agriculture 2022, 12, 1658. https://doi.org/10.3390/agriculture12101658
Lin Y, Tian Q, Qiao B, Wu Y, Zuo X, Xie Y, Lian Y. A Synthetic Angle Normalization Model of Vegetation Canopy Reflectance for Geostationary Satellite Remote Sensing Data. Agriculture. 2022; 12(10):1658. https://doi.org/10.3390/agriculture12101658
Chicago/Turabian StyleLin, Yinghao, Qingjiu Tian, Baojun Qiao, Yu Wu, Xianyu Zuo, Yi Xie, and Yang Lian. 2022. "A Synthetic Angle Normalization Model of Vegetation Canopy Reflectance for Geostationary Satellite Remote Sensing Data" Agriculture 12, no. 10: 1658. https://doi.org/10.3390/agriculture12101658
APA StyleLin, Y., Tian, Q., Qiao, B., Wu, Y., Zuo, X., Xie, Y., & Lian, Y. (2022). A Synthetic Angle Normalization Model of Vegetation Canopy Reflectance for Geostationary Satellite Remote Sensing Data. Agriculture, 12(10), 1658. https://doi.org/10.3390/agriculture12101658