Characteristics of N2 and N2O Fluxes from a Cultivated Black Soil: A Case Study through In Situ Measurement Using the 15N Gas Flux Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and 15N Application
2.3. Gas Sampling
2.4. Analysis of N2O and Flux Calculation
2.5. Analysis of 15N2 and N2 Flux Calculation
2.6. Auxiliary Measurements
2.7. Source Partioning of N2O and N2 Emissions
2.8. Data Process and Statistical Analysis
3. Results
3.1. Soil Factors
3.2. N2O and N2 Fluxes and
3.3. Contributions of Nitrogen Sources and Processes to Gas Emissions
4. Discussion
4.1. N2 Fluxes
4.2. N2O Fluxes
4.3. Implications of for Estimating Soil N2 Emissions
4.4. Methodological Uncertainties of Measured Fluxes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- FAO. Online Statistical Databases: Short Online Statistical Databases. FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/#home (accessed on 8 July 2021).
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Quan, Z.; Zhang, X.; Davidson, E.A.; Zhu, F.; Li, S.; Zhao, X.; Chen, X.; Zhang, L.M.; He, J.Z.; Wei, W.; et al. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: A global analysis on field 15N tracer studies. Earth’s Future 2021, 9, e2020EF001514. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firestone, M.K. Biological denitrification. In Nitrogen in Agricultural Soils; Stevenson, F., Ed.; Agronomy Monograph: Madison, WI, USA, 1982; Volume 22, pp. 289–326. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Bizimana, F.; Luo, J.; Timilsina, A.; Dong, W.; Gaudel, G.; Ding, K.; Qin, S.; Hu, C. Estimating field N2 emissions based on laboratory-quantified N2O/(N2O + N2) ratios and field-quantified N2O emissions. J. Soils Sediments 2022, 22, 2196–2208. [Google Scholar] [CrossRef]
- Pan, B.; Xia, L.; Lam, S.K.; Wang, E.; Zhang, Y.; Mosier, A.; Chen, D. A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agric. Ecosyst. Environ. 2022, 327, 107850. [Google Scholar] [CrossRef]
- Wang, C.; Houlton, B.Z.; Dai, W.; Bai, E. Growth in the global N2 sink attributed to N fertilizer inputs over 1860 to 2000. Sci. Total Environ. 2017, 574, 1044–1053. [Google Scholar] [CrossRef]
- Chen, T.; Oenema, O.; Li, J.; Misselbrook, T.; Dong, W.; Qin, S.; Yuan, H.; Li, X.; Hu, C. Seasonal variations in N2 and N2O emissions from a wheat–maize cropping system. Biol. Fertil. Soils 2019, 55, 539–551. [Google Scholar] [CrossRef]
- Li, X.; Nishio, T.; Uemiya, Y.; Inubushi, K. Gaseous losses of applied nitrogen from a corn field determined by 15N abundance of N2 and N2O. Commun. Soil Sci. Plant Anal. 2002, 33, 2715–2727. [Google Scholar] [CrossRef]
- Almaraz, M.; Wong, M.Y.; Yang, W.H. Looking back to look ahead: A vision for soil denitrification research. Ecology 2020, 101, e02917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Ju, X.; Topp, C.F.E.; Rees, R.M. Oxygen regulates nitrous oxide production directly in agricultural soils. Environ. Sci. Technol. 2019, 53, 12539–12547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yao, Z.; Wang, K.; Zheng, X.; Ma, L.; Wang, R.; Liu, C.; Zhang, W.; Zhu, B.; Tang, X.; et al. Annual N2O emissions from conventionally grazed typical alpine grass meadows in the eastern Qinghai–Tibetan Plateau. Sci. Total Environ. 2018, 625, 885–899. [Google Scholar] [CrossRef]
- Hu, H.-W.; Chen, D.; He, J.-Z.; van der Meer, J.R. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Pan, B.; Zheng, X.; Yu, J.; Ding, H.; Zhang, Y. Pathways of soil N2O uptake, consumption, and its driving factors: A review. Environ. Sci. Pollut. Res. 2022, 29, 30850–30864. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Z.; Pan, Z.; Wang, R.; Yan, G.; Liu, C.; Su, Y.; Zheng, X.; Butterbach-Bahl, K. Tea-planted soils as global hotspots for N2O emissions from croplands. Environ. Res. Lett. 2020, 15, 104018. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Change Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef]
- Groffman, P.M.; Altabet, M.A.; Bohlke, J.K.; Butterbach-Bahl, K.; David, M.B.; Firestone, M.K.; Giblin, A.E.; Kana, T.M.; Nielsen, L.P.; Voytek, M.A. Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecol. Appl. 2006, 16, 2091–2122. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. London Ser. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Scheer, C.; Fuchs, K.; Pelster, D.E.; Butterbach-Bahl, K. Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios. Curr. Opin. Environ. Sustain. 2020, 47, 72–80. [Google Scholar] [CrossRef]
- Friedl, J.; Cardenas, L.M.; Clough, T.J.; Dannenmann, M.; Hu, C.; Scheer, C. Measuring denitrification and the N2O:(N2O+N2) emission ratio from terrestrial soils. Curr. Opin. Environ. Sustain. 2020, 47, 61–71. [Google Scholar] [CrossRef]
- Stevens, R.J.; Laughlin, R.J.; Burns, L.C.; Arah, J.R.M.; Hood, R.C. Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol. Biochem. 1997, 29, 139–151. [Google Scholar] [CrossRef]
- Groffman, P.M.; Tiedje, J.M.; Robertson, G.P.; Christensen, S. Denitrification at different temporal and geographical scales-proximal and distal controls. In Advances in Nitrogen Cycling in Agricultural Ecosystems; Wilson, J.R., Ed.; CAB International: Wallingford, UK, 1988; p. 174192. [Google Scholar]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.G.; Zaman, M.; Tillman, R.W. Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 2013, 465, 173–195. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Dannenmann, M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 2011, 3, 389–395. [Google Scholar] [CrossRef]
- Zistl-Schlingmann, M.; Feng, J.; Kiese, R.; Stephan, R.; Zuazo, P.; Willibald, G.; Wang, C.; Butterbach-Bahl, K.; Dannenmann, M. Dinitrogen emissions: An overlooked key component of the N balance of montane grasslands. Biogeochemistry 2019, 143, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Friedl, J.; Scheer, C.; Rowlings, D.W.; McIntosh, H.V.; Strazzabosco, A.; Warner, D.I.; Grace, P.R. Denitrification losses from an intensively managed sub-tropical pasture—Impact of soil moisture on the partitioning of N2 and N2O emissions. Soil Biol. Biochem. 2016, 92, 58–66. [Google Scholar] [CrossRef]
- Guo, X.; Drury, C.F.; Yang, X.; Daniel Reynolds, W.; Fan, R. The extent of soil drying and rewetting affects nitrous oxide emissions, denitrification, and nitrogen mineralization. Soil Sci. Soc. Am. J. 2014, 78, 194–204. [Google Scholar] [CrossRef]
- Wang, R.; Pan, Z.; Zheng, X.; Ju, X.; Yao, Z.; Butterbach-Bahl, K.; Zhang, C.; Wei, H.; Huang, B. Using field-measured soil N2O fluxes and laboratory scale parameterization of N2O/(N2O+N2) ratios to quantify field-scale soil N2 emissions. Soil Biol. Biochem. 2020, 148, 107904. [Google Scholar] [CrossRef]
- Wu, D.; Wei, Z.; Well, R.; Shan, J.; Yan, X.; Bol, R.; Senbayram, M. Straw amendment with nitrate-N decreased N2O/(N2O+N2) ratio but increased soil N2O emission: A case study of direct soil-born N2 measurements. Soil Biol. Biochem. 2018, 127, 301–304. [Google Scholar] [CrossRef]
- Mathieu, O.; Leveque, J.; Henault, C.; Milloux, M.; Bizouard, F.; Andreux, F. Emissions and spatial variability of N2O, N2 and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques. Soil Biol. Biochem. 2006, 38, 941–951. [Google Scholar] [CrossRef]
- Wang, R.; Feng, Q.; Liao, T.; Zheng, X.; Butterbach-Bahl, K.; Zhang, W.; Jin, C. Effects of nitrate concentration on the denitrification potential of a calcic cambisol and its fractions of N2, N2O and NO. Plant Soil 2013, 363, 175–189. [Google Scholar] [CrossRef]
- Senbayram, M.; Chen, R.; Budai, A.; Bakken, L.; Dittert, K. N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric. Ecosyst. Environ. 2012, 147, 4–12. [Google Scholar] [CrossRef]
- Wang, R.; Pan, Z.; Liu, Y.; Yao, Z.; Wang, J.; Zheng, X.; Zhang, C.; Ju, X.; Wei, H.; Butterbach-Bahl, K. Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season. Agric. Ecosyst. Environ. 2022, 335, 108007. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Grosz, B.; Kemmann, B.; Burkart, S.; Petersen, S.O.; Well, R. Understanding the impact of liquid organic fertilisation and associated application techniques on N2, N2O and CO2 fluxes from agricultural soils. Agriculture 2022, 12, 692. [Google Scholar] [CrossRef]
- Raza, S.T.; Wu, J.; Rene, E.R.; Ali, Z.; Chen, Z. Reuse of agricultural wastes, manure, and biochar as an organic amendment: A review on its implications for vermicomposting technology. J. Clean. Prod. 2022, 360, 132200. [Google Scholar] [CrossRef]
- Buchen, C.; Lewicka-Szczebak, D.; Fuß, R.; Helfrich, M.; Flessa, H.; Well, R. Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biol. Biochem. 2016, 101, 6–19. [Google Scholar] [CrossRef]
- Kandel, T.P.; Karki, S.; Elsgaard, L.; Lærke, P.E. Fertilizer-induced fluxes dominate annual N2O emissions from a nitrogen-rich temperate fen rewetted for paludiculture. Nutr. Cycl. Agroecosyst. 2019, 115, 57–67. [Google Scholar] [CrossRef]
- Molodovskaya, M.; Singurindy, O.; Richards, B.K.; Warland, J.; Johnson, M.S.; Steenhuis, T.S. Temporal variability of nitrous oxide from fertilized croplands: Hot moment analysis. Soil Sci. Soc. Am. J. 2012, 76, 1728–1740. [Google Scholar] [CrossRef]
- Wagner-Riddle, C.; Baggs, E.M.; Clough, T.J.; Fuchs, K.; Petersen, S.O. Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: Managing hot spots and hot moments. Curr. Opin. Environ. Sustain. 2020, 47, 46–53. [Google Scholar] [CrossRef]
- Xu, X.; Pei, J.; Xu, Y.; Wang, J. Soil organic carbon depletion in global Mollisols regions and restoration by management practices: A review. J. Soils Sediments 2020, 20, 1173–1181. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Han, S.; Zheng, X.; Xie, H.; Lu, C.; Sui, Y.; Wang, R.; Liu, C.; Yao, Z.; et al. Less intensive nitrate leaching from Phaeozems cultivated with maize generally occurs in northeastern China. Agric. Ecosyst. Environ. 2021, 310, 107303. [Google Scholar] [CrossRef]
- Quan, Z.; Li, S.; Zhu, F.; Zhang, L.; He, J.; Wei, W.; Fang, Y. Fates of 15N-labeled fertilizer in a black soil-maize system and the response to straw incorporation in Northeast China. J. Soils Sediments 2018, 18, 1441–1452. [Google Scholar] [CrossRef]
- Chen, Z.M.; Ding, W.X.; Luo, Y.Q.; Yu, H.Y.; Xu, Y.H.; Muller, C.; Xu, X.; Zhu, T.B. Nitrous oxide emissions from cultivated black soil: A case study in Northeast China and global estimates using empirical model. Glob. Biogeochem. Cycles 2014, 28, 1311–1326. [Google Scholar] [CrossRef]
- Duan, P.P.; Zhou, J.; Feng, L.; Jansen-Willems, A.B.; Xiong, Z.Q. Pathways and controls of N2O production in greenhouse vegetable production soils. Biol. Fertil. Soils 2019, 55, 285–297. [Google Scholar] [CrossRef]
- Li, P.; Lang, M. Gross nitrogen transformations and related N2O emissions in uncultivated and cultivated black soil. Biol. Fertil. Soils 2014, 50, 197–206. [Google Scholar] [CrossRef]
- Ding, H.; Wang, Y. Denitrification losses of nitrogen fertilizer and N2O emission from different crop-black soil systems in North-east China. J. Agro-Environ. Sci. 2004, 23, 323–326. (In Chinese) [Google Scholar] [CrossRef]
- WRB. World reference base for soil resources 2014, update 2015. In World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Liu, X.; Lee Burras, C.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, N.; Chen, Z.; Xie, H. Soil macrofauna assemblage composition and functional groups in no-tillage with corn stover mulch agroecosystems in a mollisol area of northeastern China. Appl. Soil Ecol. 2018, 128, 61–70. [Google Scholar] [CrossRef]
- Wu, H.; Dannenmann, M.; Fanselow, N.; Wolf, B.; Yao, Z.; Wu, X.; Brüggemann, N.; Zheng, X.; Han, X.; Dittert, K.; et al. Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant Soil 2010, 340, 127–139. [Google Scholar] [CrossRef]
- Mosier, A.R.; Guenzi, W.D.; Schweizer, E.E. Soil losses of dinitrogen and nitrous oxide from irrigated crops in northeastern Colorado. Soil Sci. Soc. Am. J. 1986, 50, 344–348. [Google Scholar] [CrossRef]
- Sgouridis, F.; Ullah, S. Relative magnitude and controls of in situ N2 and N2O fluxes due to denitrification in natural and seminatural terrestrial ecosystems using 15N tracers. Environ. Sci. Technol. 2015, 49, 14110–14119. [Google Scholar] [CrossRef] [PubMed]
- Sgouridis, F.; Stott, A.; Ullah, S. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique. Biogeosciences 2016, 13, 1821–1835. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, R.; Pan, Z.; Zheng, X.; Wei, H.; Zhang, H.; Mei, B.; Quan, Z.; Fang, Y.; Ju, X. Quantifying in situ N2 fluxes from an intensively managed calcareous soil using the 15N gas-flux method. J. Integr. Agric. 2022, 21, 2750–2766. [Google Scholar] [CrossRef]
- Lindau, C.W.; Patrick, W.H.; Delaune, R.D.; Reddy, K.R. Rate of accumulation and emission of N2, N2O and CH4 from a flooded rice soil. Plant Soil 1990, 129, 269–276. [Google Scholar] [CrossRef]
- Zheng, X.; Mei, B.; Wang, Y.; Xie, B.; Wang, Y.; Dong, H.; Xu, H.; Chen, G.; Cai, Z.; Yue, J.; et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008, 311, 211–234. [Google Scholar] [CrossRef]
- Stevens, R.J.; Laughlin, R.J.; Atkins, G.J.; Prosser, S.J. Automated-determination of nitrogen-15-labeled dinitrogen and nitrous-oxide by mass-spectrometry. Soil Sci. Soc. Am. J. 1993, 57, 981–988. [Google Scholar] [CrossRef]
- Yang, W.H.; McDowell, A.C.; Brooks, P.D.; Silver, W.L. New high precision approach for measuring 15N–N2 gas fluxes from terrestrial ecosystems. Soil Biol. Biochem. 2014, 69, 234–241. [Google Scholar] [CrossRef]
- Mulvaney, R. Determination of 15N-labeled dinitrogen and nitrous oxide with triple-collector mass spectrometers. Soil Sci. Soc. Am. J. 1984, 48, 706–712. [Google Scholar] [CrossRef]
- Stevens, R.J.; Laughlin, R.J. Lowering the detection limit for dinitrogen using the enrichment of nitrous oxide. Soil Biol. Biochem. 2001, 33, 1287–1289. [Google Scholar] [CrossRef]
- Dannenmann, M.; Gasche, R.; Ledebuhr, A.; Papen, H. Effects of forest management on soil N cycling in beech forests stocking on calcareous soils. Plant Soil 2006, 287, 279–300. [Google Scholar] [CrossRef]
- McClain, M.E.; Boyer, E.W.; Dent, C.L.; Gergel, S.E.; Grimm, N.B.; Groffman, P.M.; Hart, S.C.; Harvey, J.W.; Johnston, C.A.; Mayorga, E.; et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 2003, 6, 301–312. [Google Scholar] [CrossRef]
- Ding, K.; Luo, J.; Clough, T.J.; Ledgard, S.; Lindsey, S.; Di, H.J. In situ nitrous oxide and dinitrogen fluxes from a grazed pasture soil following cow urine application at two nitrogen rates. Sci. Total Environ. 2022, 838, 156473. [Google Scholar] [CrossRef]
- Phillips, R.L.; McMillan, A.M.S.; Palmada, T.; Dando, J.; Giltrap, D. Temperature effects on N2O and N2 denitrification end-products for a New Zealand pasture soil. N. Z. J. Agric. Res. 2014, 58, 89–95. [Google Scholar] [CrossRef]
- Reddy, N.; Crohn, D.M. Quantifying the effects of active and cured greenwaste and dairy manure application and temperature on carbon dioxide, nitrous oxide, and dinitrogen emissions from an extreme saline-sodic soil. Catena 2019, 173, 83–92. [Google Scholar] [CrossRef]
- Paul, E.A. Soil Microbiology, Ecology, and Biochemistry; Academic Press: London, UK, 2007; p. 324. [Google Scholar]
- Yan, G.; Zheng, X.; Cui, F.; Yao, Z.; Zhou, Z.; Deng, J.; Xu, Y. Two-year simultaneous records of N2O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-third. Agric. Ecosyst. Environ. 2013, 178, 39–50. [Google Scholar] [CrossRef]
- Müller, C.; Clough, T.J. Advances in understanding nitrogen flows and transformations: Gaps and research pathways. J. Agric. Sci. 2013, 152, 34–44. [Google Scholar] [CrossRef]
- Dong, D.; Kou, Y.; Yang, W.; Chen, G.; Xu, H. Effects of urease and nitrification inhibitors on nitrous oxide emissions and nitrifying/denitrifying microbial communities in a rainfed maize soil: A 6-year field observation. Soil Tillage Res. 2018, 180, 82–90. [Google Scholar] [CrossRef]
- Omonode, R.A.; Vyn, T.J. Tillage and nitrogen source impacts on relationships between nitrous oxide emission and nitrogen recovery efficiency in corn. J. Environ. Qual. 2019, 48, 421–429. [Google Scholar] [CrossRef]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Bock, E.; Koops, H.P.; Harms, H. Cell biology of nitrifying bacteria. In Nitrification; Prosser, J., Ed.; IRL Press: Oxford, UK, 1986; p. 1738. [Google Scholar]
- Granli, T.; Bøckman, O.C. Nitrous oxide from agriculture. Nor. J. Agric. Sci. 1994, 12, 128. [Google Scholar]
- Davidson, E. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci. Soc. Am. J. 1992, 56, 95–102. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L.; Šimek, M.; Nawaz, S.; Khan, M.J.; Babar, M.N.; Zaman, S. Emissions of Nitrous Oxide (N2O) and Di-Nitrogen (N2) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N2O and N2 Ratios. In Greenhouse Gases—Emission, Measurement and Management; Liu, G., Ed.; InTech: London, UK, 2012; pp. 1–32. [Google Scholar]
- Müller, C.; Stevens, R.J.; Laughlin, R.J. A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol. Biochem. 2004, 36, 619–632. [Google Scholar] [CrossRef]
- Nelissen, V.; Rutting, T.; Huygens, D.; Staelens, J.; Ruysschaert, G.; Boeckx, P. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol. Biochem. 2012, 55, 20–27. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, W.; Xu, Y.; Müller, C.; Rütting, T.; Yu, H.; Fan, J.; Zhang, J.; Zhu, T. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis. Soil Biol. Biochem. 2015, 91, 65–75. [Google Scholar] [CrossRef]
- Elrys, A.S.; Wang, J.; Metwally, M.A.S.; Cheng, Y.; Zhang, J.B.; Cai, Z.C.; Chang, S.X.; Müller, C. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen. Glob. Change Biol. 2021, 27, 6512–6524. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Dai, S.; Sun, Y.; Chen, J.; Cai, Z.; Zhang, J.; Muller, C. Temperature effects on N2O production pathways in temperate forest soils. Sci. Total Environ. 2019, 691, 1127–1136. [Google Scholar] [CrossRef]
- Kumar, A.; Medhi, K.; Fagodiya, R.K.; Subrahmanyam, G.; Mondal, R.; Raja, P.; Malyan, S.K.; Gupta, D.K.; Gupta, C.K.; Pathak, H. Molecular and ecological perspectives of nitrous oxide producing microbial communities in agro-ecosystems. Rev. Environ. Sci. Bio/Technol. 2020, 19, 717–750. [Google Scholar] [CrossRef]
- Dan, X.Q.; Chen, Z.X.; Dai, S.Y.; He, X.X.; Cai, Z.C.; Zhang, J.B.; Muller, C. Effects of changing temperature on gross N transformation rates in acidic subtropical forest soils. Forests 2019, 10, 894. [Google Scholar] [CrossRef] [Green Version]
- Avalakki, U.K.; Strong, W.M.; Saffigna, P.G. Measurement of gaseous emissions from denitrification of applied N-15.2. Effects of temperature and added straw. Aust. J. Soil Res. 1995, 33, 89–99. [Google Scholar] [CrossRef]
- Dannenmann, M.; Butterbach-Bahl, K.; Gasche, R.; Willibald, G.; Papen, H. Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biol. Biochem. 2008, 40, 2317–2323. [Google Scholar] [CrossRef]
- Schlesinger, W.H. On the fate of anthropogenic nitrogen. Proc. Natl. Acad. Sci. USA 2009, 106, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Baily, A.; Watson, C.J.; Laughlin, R.; Matthews, D.; McGeough, K.; Jordan, P. Use of the 15N gas flux method to measure the source and level of N2O and N2 emissions from grazed grassland. Nutr. Cycl. Agroecosystems 2012, 94, 287–298. [Google Scholar] [CrossRef]
- Well, R.; Maier, M.; Lewicka-Szczebak, D.; Köster, J.-R.; Ruoss, N. Underestimation of denitrification rates from field application of the 15N gas flux method and its correction by gas diffusion modelling. Biogeosciences 2019, 16, 2233–2246. [Google Scholar] [CrossRef] [Green Version]
- Hauck, R.D.; Bouldin, D.R. Distribution of isotopic nitrogen in nitrogen gas during denitrification. Nature 1961, 191, 871–872. [Google Scholar] [CrossRef]
- Boast, C.W.; Mulvaney, R.L.; Baveye, P. Evaluation of nitrogen-15 tracer techniques for direct measurement of denitrification in soil-I. Theory. Soil Sci. Soc. Am. J. 1988, 52, 1317–1322. [Google Scholar] [CrossRef]
- Mulvaney, R.; Van den Heuvel, R. Evaluation of nitrogen-15 tracer techniques for direct measurement of denitrification in soil: IV. Field studies. Soil Sci. Soc. Am. J. 1988, 52, 1332–1337. [Google Scholar] [CrossRef]
- Mulvaney, R. Evaluation of nitrogen-15 tracer techniques for direct measurement of denitrification in soil: III. Laboratory studies. Soil Sci. Soc. Am. J. 1988, 52, 1327–1332. [Google Scholar] [CrossRef]
- Wrage-Mönnig, N.; Horn, M.A.; Well, R.; Müller, C.; Velthof, G.; Oenema, O. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 2018, 123, A3–A16. [Google Scholar] [CrossRef]
- Bergsma, T.T.; Bergsma, Q.B.C.; Ostrom, N.E.; Robertson, G.P. A heuristic model for the calculation of dinitogen and nitrous oxide flux from nitrogen-15-labeled soil. Soil Sci. Soc. Am. J. 1999, 63, 1709–1716. [Google Scholar] [CrossRef]
- Shan, J.; Sanford, R.A.; Chee-Sanford, J.; Ooi, S.K.; Löffler, F.E.; Konstantinidis, K.T.; Yang, W.H. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob. Change Biol. 2021, 27, 2669–2683. [Google Scholar] [CrossRef] [PubMed]
- Firestone, M.K.; Firestone, R.B.; Tiedje, J.M. Nitrous oxide from soil denitrification: Factors controlling its biological production. Science 1980, 208, 749–751. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Ju, X.; Wu, D. Oxygen-depletion by rapid ammonia oxidation regulates kinetics of N2O, NO and N2 production in an ammonium fertilised agricultural soil. Soil Biol. Biochem. 2021, 163, 108460. [Google Scholar] [CrossRef]
- Davidson, E.; Seitzinger, S. The enigma of progress in denitrfication research. Ecol. Appl. 2006, 16, 2057–2063. [Google Scholar] [CrossRef]
- Healy, R.W.; Striegl, R.G.; Russell, T.F.; Hutchinson, G.L.; Livingston, G.P. Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: Identification of physical processes. Soil Sci. Soc. Am. J. 1996, 60, 740–747. [Google Scholar] [CrossRef]
- Burchill, W.; Lanigan, G.J.; Li, D.; Williams, M.; Humphreys, J. A system N balance for a pasture-based system of dairy production under moist maritime climatic conditions. Agric. Ecosyst. Environ. 2016, 220, 202–210. [Google Scholar] [CrossRef]
- Čuhel, J.; Simek, M.; Laughlin, R.J.; Bru, D.; Cheneby, D.; Watson, C.J.; Philippot, L. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl. Environ. Microbiol. 2010, 76, 1870–1878. [Google Scholar] [CrossRef] [Green Version]
- Drewer, J.; Finch, J.W.; Lloyd, C.R.; Baggs, E.M.; Skiba, U. How do soil emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? Glob. Change Biol. Bioenergy 2012, 4, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Friedl, J.; Scheer, C.; Rowlings, D.W.; Mumford, M.T.; Grace, P.R. The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia. Soil Biol. Biochem. 2017, 108, 55–64. [Google Scholar] [CrossRef]
- Horgan, B.P.; Branham, B.E.; Mulvaney, R.L. Direct measurement of denitrification using 15N-labeled fertilizer applied to turfgrass. Crop Sci. 2002, 42, 1602–1610. [Google Scholar] [CrossRef]
- Horgan, B.P.; Branham, B.E.; Mulvaney, R.L. Mass balance of 15N applied to Kentucky bluegrass including direct measurement of denitrification. Crop Sci. 2002, 42, 1595–1601. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.V.; Burgin, A.J.; Groffman, P.M.; Yavitt, J.B. Direct flux and 15N tracer methods for measuring denitrification in forest soils. Biogeochemistry 2013, 117, 359–373. [Google Scholar] [CrossRef]
- Kulkarni, M.V.; Yavitt, J.B.; Groffman, P.M. Rapid conversion of added nitrate to nitrous oxide and dinitrogen in northern forest soil. Geomicrobiol. J. 2017, 34, 670–676. [Google Scholar] [CrossRef]
- McGeough, K.L.; Laughlin, R.J.; Watson, C.J.; Müller, C.; Ernfors, M.; Cahalan, E.; Richards, K.G. The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions. Biogeosciences 2012, 9, 4909–4919. [Google Scholar] [CrossRef] [Green Version]
- Mosier, A.R.; Chapman, S.L.; Freney, J.R. Determination of dinitrogen emission and retention in floodwater and porewater of a lowland rice field fertilized with15N-urea. Fertil. Res. 1989, 19, 127–136. [Google Scholar] [CrossRef]
- Panek, J.A.; Matson, P.A.; Ortiz-Monasterio, I.; Brooks, P. Distinguishing nitrification and denitrification sources of N2O in a Mexican wheat system using 15N. Ecol. Appl. 2000, 10, 506–514. [Google Scholar]
- Rolston, D.E.; Fried, M.; Goldhamer, D.A. Denitrification measured directly from nitrogen and nitrous oxide gas fluxes. Soil Sci. Soc. Am. J. 1976, 40, 259–266. [Google Scholar] [CrossRef]
- Rolston, D.E.; Hoffman, D.L.; Toy, D.W. Field measurement of denitrification: I. flux of N2 and N2O. Soil Sci. Soc. Am. J. 1978, 42, 863–869. [Google Scholar] [CrossRef]
- Rolston, D.E.; Sharpley, A.N.; Toy, D.W.; Broadbent, F.E. Field measurement of denitrification: III. rates during irrigation cycles. Soil Sci. Soc. Am. J. 1982, 46, 289–296. [Google Scholar] [CrossRef]
- Selbie, D.R.; Lanigan, G.J.; Laughlin, R.J.; Di, H.J.; Moir, J.L.; Cameron, K.C.; Clough, T.J.; Watson, C.J.; Grant, J.; Somers, C.; et al. Confirmation of co-denitrification in grazed grassland. Sci. Rep. 2015, 5, 17361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, R.J.; Laughlin, R.J. Cattle slurry applied before fertilizer nitrate lowers nitrous oxide and dinitrogen emissions. Soil Sci. Soc. Am. J. 2002, 66, 647–652. [Google Scholar] [CrossRef]
- Tauchnitz, N.; Spott, O.; Russow, R.; Bernsdorf, S.; Glaser, B.; Meissner, R. Release of nitrous oxide and dinitrogen from a transition bog under drained and rewetted conditions due to denitrification: Results from a [15N]nitrate-bromide double-tracer study. Isotopes. Environ. Health Stud. 2015, 51, 300–321. [Google Scholar] [CrossRef] [PubMed]
- Warner, D.I.; Scheer, C.; Friedl, J.; Rowlings, D.W.; Brunk, C.; Grace, P.R. Mobile continuous-flow isotope-ratio mass spectrometer system for automated measurements of N2 and N2O fluxes in fertilized cropping systems. Sci. Rep. 2019, 9, 11097. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; DeLaune, R.D.; Boeckx, P. Direct measurement of denitrification activity in a gulf coast freshwater marsh receiving diverted Mississippi River water. Chemosphere 2006, 65, 2449–2455. [Google Scholar] [CrossRef]
Sand (%) | Silt (%) | Clay (%) | SOC (%) | TN (%) | BD (g cm−3) | pH (H2O) |
---|---|---|---|---|---|---|
24.8 | 47.7 | 27.5 | 1.1 | 0.12 | 1.45 | 7.1 |
N Fertilizer (kg N ha−1) * | P Fertilizer (kg P ha−1) * | K Fertilizer (kg K ha−1) * | Straw Mulching (t ha−1 yr−1) | Tillage (Yes/No) | Irrigation (Yes/No) |
---|---|---|---|---|---|
240 | 48 | 91 | 7.5 | No | No |
Variable (y) | Regression Function | n | r2 | p |
---|---|---|---|---|
y = 0.58WFPS − 34.19 | 22 | 0.57 | <0.01 | |
y = −0.18Ts2 + 5.75Ts − 34.27 | 34 | 0.64 | <0.01 | |
y = −0.10[NH4+] + 11.40 | 22 | 0.31 | <0.01 | |
y = 0.29WFPS − 0.16Ts2 + 5.03Ts − 49.73 | 22 | 0.85 | <0.01 | |
y = 19.58e0.11Ts | 34 | 0.27 | <0.01 | |
y = 2.11[DOC] − 12.91 | 22 | 0.39 | <0.01 | |
y = 0.012WFPS − 0.76 | 22 | 0.55 | <0.01 | |
y = −0.0037Ts2 + 0.11Ts − 0.66 | 34 | 0.44 | <0.01 | |
y = 0.008WFPS − 0.0028Ts2 + 0.083Ts − 1.04 | 22 | 0.74 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Wang, R.; Liu, Y.; Wang, L.; Zheng, X.; Yao, Z.; He, H.; Zhang, X. Characteristics of N2 and N2O Fluxes from a Cultivated Black Soil: A Case Study through In Situ Measurement Using the 15N Gas Flux Method. Agriculture 2022, 12, 1664. https://doi.org/10.3390/agriculture12101664
Pan Z, Wang R, Liu Y, Wang L, Zheng X, Yao Z, He H, Zhang X. Characteristics of N2 and N2O Fluxes from a Cultivated Black Soil: A Case Study through In Situ Measurement Using the 15N Gas Flux Method. Agriculture. 2022; 12(10):1664. https://doi.org/10.3390/agriculture12101664
Chicago/Turabian StylePan, Zhanlei, Rui Wang, Yan Liu, Lin Wang, Xunhua Zheng, Zhisheng Yao, Hongbo He, and Xiaochen Zhang. 2022. "Characteristics of N2 and N2O Fluxes from a Cultivated Black Soil: A Case Study through In Situ Measurement Using the 15N Gas Flux Method" Agriculture 12, no. 10: 1664. https://doi.org/10.3390/agriculture12101664
APA StylePan, Z., Wang, R., Liu, Y., Wang, L., Zheng, X., Yao, Z., He, H., & Zhang, X. (2022). Characteristics of N2 and N2O Fluxes from a Cultivated Black Soil: A Case Study through In Situ Measurement Using the 15N Gas Flux Method. Agriculture, 12(10), 1664. https://doi.org/10.3390/agriculture12101664