Dietary Supplementation with Different ω-6 to ω-3 Fatty Acid Ratios Affects the Sustainability of Performance, Egg Quality, Fatty Acid Profile, Immunity and Egg Health Indices of Laying Hens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Housing, Management, and Experimental Setup
2.2. Diet Formulation
2.3. Laying Performance
2.4. External Egg Quality
2.5. Internal Egg Quality
2.6. Fatty Acids Profile
2.7. Immune Indices
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salem, N.; Simopoulos, A.P.; Galli, C.; Lagarde, M.; Knapp, H.R. Fatty acids and lipids from cell biology to human disease. Lipids 1996, 31, 326. [Google Scholar]
- Arias-Rico, J.; Cerón-Sandoval, M.I.; Sandoval-Gallegos, E.M.; Ramírez-Moreno, E.; Fernández-Cortés, T.L.; Jaimez-Ordaz, J.; Contreras-López, E.; Añorve-Morga, J. Evaluation of Consumption of Poultry Products Enriched with Omega-3 Fatty Acids in Anthropometric, Biochemical, and Cardiovascular Parameters. J. Food Qual. 2018, 9620104. [Google Scholar]
- Richardson, C.E.; Krishnan, S.; Gray, I.J.; Keim, N.L.; Newman, J.W. The Omega-3 Index Response to an 8 Week Randomized Intervention Containing Three Fatty Fish Meals Per Week Is Influenced by Adiposity in Overweight to Obese Women. Front. Nutr. 2022, 9, 810003. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; Khurana, S.K.; et al. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health. Animals 2019, 18, 573. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P.; Norman, H.A.; Gillaspy, J.E. Purslane in human nutrition and its potential for world agriculture. World Rev. Nutr. Diet. 1995, 77, 47–74. [Google Scholar]
- Klasing, K. Comparative Avian Nutrition; CAB International: Cambridge, UK, 1998. [Google Scholar]
- Simopoulos, A.P. The omega-6/omega-3 ratio: The scientific evidence and the need to return the omega-3 fatty acids into eggs and other foods. In The Amazing Egg: Nature’s Perfect Functional Food for Health Promotion; Sim, J., Sinwoo, H.H., Eds.; University of Alberta: Edmonton, AB, Canada, 2006; pp. 195–218. [Google Scholar]
- Mazzuco, H.; McMurtry, J.P.; Kuo, A.Y.; Hester, P.Y. The effect of pre- and post-molt diets high in ω-3 fatty acids and molt programs on skeletal integrity and insulin-like growth factor-I of White Leghorns. Poult. Sci. 2005, 84, 1735–1749. [Google Scholar] [CrossRef]
- Thanabalan, A.; Kiarie, E.G. Influence of feeding omega-3 polyunsaturated fatty acids to broiler breeders on indices of immunocompetence, gastrointestinal, and skeletal development in broiler chickens. Front. Vet. Sci. 2021, 8, 653152. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Lee, S.A.; Whenham, N.; Bedford, M.R. Review on docosahexaenoic acid in poultry and swine nutrition: Consequence of enriched animal products on performance and health characteristics. Anim. Nutr. 2018, 5, 11–21. [Google Scholar] [CrossRef]
- Keszthely, L. Nutritional Manipulation of the Fatty Acid Composition and Oxidative Stability of Table Egg. Summary of. Ph.D. Thesis, University of Veszprem Georgikon Faculty of Agricultural Science, Keszthely Deák Ferenc, Hungary, 2003. [Google Scholar]
- Brandao, P.A.; Costa, F.G.P.; Barros, L.R.; Nascimento, G.A.J. Acidos graxos e colesterol na alimentação humana. Agropec. Tecnic. 2005, 26, 5–14. [Google Scholar]
- Nobakht, A. Effects of using different levels of vegetable oils and their blends on egg yolk fatty acids profile of laying hens. Adv. Environ. Biol. 2011, 5, 2728–2731. [Google Scholar]
- Sadish, S. Development and Evaluation of Omega-3 Fatty Acids Enriched Chicken Frankfurters. Master’s Thesis, Dalhousie University Halifax, Nova Scotia in co-operation with Nova Scotia Agricultural College Truro, Halifax, NS, Canada, 2011. [Google Scholar]
- Lohmann LSL-Classical Layer Cage Housing. Available online: https://www.winmixsoft.com/files/info/Lohman-lsl-classic-management-guide-eng.pdf (accessed on 15 April 2022).
- NRC. National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy of Sciences: Washington, DC, USA, 1994. [Google Scholar]
- Romanoff, A.L.; Romanoff, A.J. The Avian Egg; John Wiley and Sons Inc.: New York, NY, USA, 1949. [Google Scholar]
- Carter, T.C. Estimation of shell area and egg volume using measurements of fresh egg weight and shell length and breadth alone or in combination. Br. Poult. Sci. 1975, 16, 514–543. [Google Scholar] [CrossRef]
- Haugh, R.R. The Haugh units for measuring egg quality. Poult. Mag. 1937, 43, 552–575. [Google Scholar]
- Funk, E.M. The relation of the yolk index determined in natural position to the yolk index as determined after separating the yolk from the albumen. Poult. Sci. 1948, 27, 367–375. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2007. [Google Scholar]
- Vuilleumier, J.P. The roche yolk colour fan-An instrument for measuring yolk colour. Poult. Sci. 1997, 48, 767–779. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Radwan, S.S. Coupling of two-dimensional thin layer chromatography with gas chromatography for the quantitative analysis of lipids classes and their constituent fatty acids. J. Chromatog. Sci. 1978, 16, 538–542. [Google Scholar] [CrossRef]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De la Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 9, 107–112. [Google Scholar] [CrossRef]
- Fernandesa, C.E.; da Silva, M.A.; Marisildade, V.; Ribeirob, A.; Asfora, L.; Samara, S.; Cardoso, A.; Artur, A.; de Melo Filhoa, B. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- King, D.J.; Seal, B.S. Biological and molecular characterization of Newcastle disease virus (NDV) field isolates with comparisons to reference NDV strains and pathogenicity after chicken or embryo passage of selected isolates. Avian Dis. 1998, 42, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, E.T.; Ueda, S.; Nomura, A. In vitro phagocytic activity of white-spotted shark cells after injection with Aermonas salmonicida extra cellular products. Gyobyo Kenkyu 1991, 26, 213–214. [Google Scholar] [CrossRef]
- Balhaa, R.L.; Hinz, H.H.; Luders, H.; Siegmann, O. Clinical experiences with the drugs for lymphocyte transformation in chickens and turkey flocks. Tierarztl. Umsch. 1985, 43, 507–508. [Google Scholar]
- Rainger, G.E.; Rowley, A.F. Antibacterial activity in the serum and mucus of rainbow trout, Oncorhynchus mykiss following immunization with Aeromonas salmonicida. Fish Shellfish Immunol. 1993, 3, 475–482. [Google Scholar] [CrossRef]
- Engstad, R.E.; Robertsen, B.; Frivold, E. Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish Shellfish Immunol. 1992, 2, 287–297. [Google Scholar] [CrossRef]
- SAS Institute. User’s Guide, version 6.06; SAS institute Inc.: Cary, NC, USA, 1990. [Google Scholar]
- Sanz, M.; Florves, A.; Lopez, C.L. Effect of fatty acid saturation in broiler diets or abdominal fat and breast muscle fatty acid composition and susceptibility to lipid oxidation. Poult. Sci. 1999, 64, 602–1604. [Google Scholar] [CrossRef]
- Peebles, E.D.; Zumwalt, C.D.; Doyle, S.M.; Gerard, P.D.; Latour, M.A.; Boyle, C.R.; Smith, T.W. Effects of breeder age and dietary fat source and level on broiler hatching egg characteristics. Poult. Sci. 2000, 79, 698–704. [Google Scholar] [CrossRef]
- Daghir, N. Poultry Production in Hot Climates, 2nd ed.; CAB International: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Attia, Y.A.; Burke, W.H.; Yamani, K.A.; Jensen, L.S. Daily Energy allotments and reproductive performance of broiler breeders.: 2. Females. Poult. Sci. 1995, 74, 261–270. [Google Scholar] [CrossRef]
- Attia, Y.A.; Burke, W.H.; Yamani, K.A.; Jensen, L.S. Energy allotments and performance of broiler breeders. Poult. Sci. 1993, 72, 42–50. [Google Scholar] [CrossRef]
- Grobas, S.; Mendez, J.; Lazaro, R.; De Blas, C.; Manteos, G.G. Influence of source and percentage of fat added to diet on performance and fatty acid composition of egg yolks of two strains of laying hens. Poult. Sci. J. 2001, 80, 1170–1179. [Google Scholar] [CrossRef]
- Yannakopoulos, A.; Tserveni-Gousi, A.; Christaki, E. Enhanced egg production in practice: The case of bio-omega-3 egg. Int. J. Poult. Sci. 2005, 4, 531–535. [Google Scholar]
- Sijben, J.W.; Nieuwland, M.G.; Kemp, B.; Parmentier, H.K.; Schrama, J.W. Interaction and antigen dependence of dietary ω-3 and ω-6 polyunsaturated fatty acids on antibody responsiveness in growing layer hens. Poult. Sci. 2001, 90, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Sijben, J.W.; Schrama, J.W.; Nieuwland, M.G.; Hovenier, R.; Beynen, A.C.; Verstegen, M.W.A.; Parmentier, H.K. Interaction of dietary polyunsaturated fatty acids and vitamin E with regard to vitamin E status, fat composition and antibody responsiveness in layer hens. Br. Poult. Sci. 2002, 43, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.G.; Wang, F.L.; Li, D.F.; Yin, J.D.; Li, J.Y. Effects of dietary conjugated linoleic acid on the productivity of laying hens and egg quality during refrigerated storage. Poult. Sci. 2004, 83, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Qota, E.M. Dietary linolenic acid alters ω-3 fatty acid metabolism, immunity and cholesterol level in laying hens and their progeny. Egypt Poult. Sci. 2007, 27, 457–471. [Google Scholar]
- Brake, J. Effect of four levels of added fat on broiler breeder performance. Poult. Sci. 1990, 69, 1659–1663. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Abo El-Maaty, H.A.M. Calcium and cholecalciferol levels on late phase-laying hens’ diets: Effects on productive and egg quality traits, blood biochemistry and immune responses. Front. Vet. Sci. 2020, 7, 389. [Google Scholar] [CrossRef]
- Augustyn, R.; Barteczko, J.; Smulikowska, S. The effect of feeding regular or low α-linolenic acid linseed on laying performance and total cholesterol content in eggs. J. Anim. Feed Sci. 2006, 1, 103–106. [Google Scholar] [CrossRef]
- Guenter, W.; Bragg, D.B.; Kondra, P.A. Effect of dietary linoleic acid on fatty acid composition of egg yolk, liver and adipose tissue. Poult. Sci. 1971, 50, 845–850. [Google Scholar] [CrossRef]
- Van Elswyk, M.E. Nutritional and physiological effects of flaxseed in diets for laying fowl. World’s Poultry Sci. J. 1997, 53, 253–264. [Google Scholar] [CrossRef]
- Yalcın, H.; Unal, M.K.; Ünal, M.K.; Yoolu, H.B. The fatty acid and cholesterol composition of enriched egg yolk lipids obtained by modifying hens’ diets with fish oil and flaxseed Grasas. Y. Aceites 2007, 58, 372–378. [Google Scholar]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.M.; Shiboob, M.M. Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market. Lipids Health Dis. 2015, 14, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, D.D.; Baião, N.C.; Cançado, S.V.; Oliveira, B.L.; Lana, Â.M.; Figueiredo, T.C. Effects of the use of soybean oil and animal fat in the diet of laying hens on production performance and egg quality. Ciênc. Agrotec. 2011, 35, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.D.; Baião, N.C.; Cançado, S.V.; Grimaldi, R.; Souza, M.R.; Lara, L.J.; Lana, A.M. Effects of lipid sources in the diet of laying hens on the fatty acid profiles of egg yolks. Poult. Sci. 2010, 89, 2484–2490. [Google Scholar] [CrossRef]
- Diaz, G.J.; Cortes, M.V.; Cepeda, S.M. Effect of feeding hen’s trout by-product meal or tuna fish oil on production parameters and yolk fatty acid profile. Rev. Colomb. Cienc. Pecu. 2011, 24, 609–616. [Google Scholar]
- Pita, M.C.; de Carvalho, P.R.; Neto, E.P.; de Mendonça-Júnior, C.X. Vegetable and marine sources of supplementaries PUFAs in the diet of laying hens: Effect on lipid composition of the plasma and of the egg yolk and time of incorporation of omega 6 PUFAs. J. Appl. Sci. Res. 2011, 7, 654–671. [Google Scholar]
- Irawan, N.; Hafizuddin, R.K.; Rusli, N.; Akhirini, W.; Setyon, A.; Jayanegara, C. Supplementary n-3 fatty acids sources on performance and formation of omega-3 in egg of laying hens: A meta-analysis. Poult. Sci. 2022, 101, 101566. [Google Scholar] [CrossRef]
- Berenjian, A.; Sharifi, S.D.; Mohammadi-Sangcheshmeh, A.; Bakhtiarizadeh, M.R. Omega-3 fatty acids reduce the negative effects of dexamethasone-induced physiological stress in laying hens by acting through the nutrient digestibility and gut morphometry. Poult. Sci. 2021, 100, 100889. [Google Scholar] [CrossRef]
- Sijben, J.W.; Groot, H.; Nieuwland, M.G.B.; Schrama, J.W.; Parmentier, H.K. Dietary linoleic acid divergently affects immune responsiveness of growing layer hens. Poult. Sci. 2000, 79, 1106–1115. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2022, 11, 20707. [Google Scholar] [CrossRef]
- İskender, H.; Kanbay, Y. Üniversite Öğrencilerinin Yumurta Tüketim Alışkanlıklarının Belirlenmesi. Van Vet. J. 2014, 25, 57–62. [Google Scholar]
- Zdrojewicz, Z.; Herman, M.; Starostecka, E. Hen’s egg as a source of valuable biologically active substances. Post. Hig. Medyc. Dosw. 2016, 70, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Yang, F.; Zhang, Y.; Wang, T.; Chen, G. The impact of egg nutrient composition and its consumption on cholesterol homeostasis. Cholesterol 2018, 22, 6303810. [Google Scholar] [CrossRef] [Green Version]
- Sanlier, N.; Üstün, D. Egg consumption and health effects: A narrative review. Concise Rev. Hypoth. Food Sci. 2021, 86, 4250–4261. [Google Scholar] [CrossRef]
- Zhao, B.; Gan, L.; Graubard, B.I.; Männistö, S.; Albanes, D.; Huang, J. Associations of Dietary Cholesterol, Serum Cholesterol, and Egg Consumption With Overall and Cause-Specific Mortality: Systematic Review and Updated Meta-Analysis. Circulation 2022, 145, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Al-Ramady, O.; Latifi, A.N.; Treu, T.; Ho, Y.-L.; Seshadri, S.; Aparicio, H.J.; Cho, K.; Wilson, P.W.F.; Gaziano, J.M.; Djoussé, L. Egg consumption and risk of acute stroke in the Million Veteran Program. Cl. Nutr. Espen 2022, 50, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Mofrad, M.D.; Naghshi, S.; Lotfi, K.; Beyene, J.; Hypponen, E.; Pirouzi, A.; Sadeghi, O. Egg and Dietary Cholesterol Intake and Risk of All-Cause, Cardiovascular, and Cancer Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2022, 9, 878979. [Google Scholar] [CrossRef]
- Godos, J.; Micek, A.; Brzostek, T.; Toledo, E.; Iacoviello, L.; Astrup, A.; Franco, O.H.; Galvano, F.; Martinez-Gonzalez, M.A.; Grosso, G. Egg consumption and cardiovascular risk: A dose–response meta-analysis of prospective cohort studies. Eur. J. Nutr. 2021, 60, 1833–1862. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Taheri, M.; Haghighatdoost, F.; Grau, N.; Najafian, J.; Sadeghi, M.; Talaei, M.; Sarrafzadegan, N. Egg consumption and risk of cardiovascular events among Iranians: Results from Isfahan Cohort Study (ICS). Eur. J. Clin. Nutr. 2022, 76, 1409–1414. [Google Scholar] [CrossRef]
- Al-Khalifa, H.; Givens, D.I.; Rymer, C.; Yaqoob, P. Effect of ω-3 fatty acids on immune function in broiler chickens. Poult. Sci. 2012, 91, 74–88. [Google Scholar] [CrossRef]
Ingredients, g/kg | ω-6/ω-3 Ratio | ||
---|---|---|---|
16.7:1 | 9.3:1 | 5.5:1 | |
Yellow corn | 612.0 | 588.3 | 481.2 |
Soybean meal (44% CP) | 245.0 | 274.0 | 293.0 |
Flax oil | - | 36.0 | 80.0 |
Soybean oil | 40.0 | - | - |
Calcium diphosphate | 13.0 | 13.0 | 13.0 |
Calcium carbonate | 80.0 | 80.0 | 80.0 |
Sodium chloride | 3.0 | 3.0 | 3.0 |
Vit. and Min. Premix 1 | 3.0 | 3.0 | 3.0 |
DL-Methionine | 1.0 | 0.7 | 0.8 |
L-lysine | 1.0 | 0.0 | 0.0 |
Sodium carbonate | 1.0 | 1.0 | 1.0 |
Choline chloride | 1.0 | 1.0 | 1.0 |
Washed building sand | - | - | 44.0 |
Determined values and calculated analysis | |||
Dry matter, g/kg 2 | 894.1 | 897.3 | 892.3 |
Crude protein, g/kg 2 | 168.0 | 170.0 | 170.0 |
ME, kcal/kg diet 3 | 2954 | 2885 | 2937 |
Ether extract, g/kg 2 | 66.2 | 61.8 | 102.3 |
Crude fiber, g/kg 2 | 29.5 | 30.7 | 29.5 |
Calcium, g/kg 3 | 35.1 | 35.2 | 35.3 |
Phosphorus available, g/kg 3 | 3.04 | 3.07 | 3.01 |
Ash, g/kg 2 | 142.6 | 145.7 | 186.8 |
Methionine, g/kg 3 | 4.39 | 4.23 | 4.28 |
Methionine + Cysteine g/kg 3 | 7.22 | 7.21 | 7.19 |
Lysine, g/kg 3 | 8.80 | 8.75 | 9.02 |
SFA, % 2 | 16.25 | 16.10 | 15.24 |
Unsaturated fatty acids, % 2 | 76.45 | 76.65 | 72.87 |
MUFA, % 2 | 23.04 | 22.45 | 20.27 |
PUFA, % 2 | 53.42 | 54.17 | 52.59 |
ω-6 PUFA, % 2 | 50.4 | 48.9 | 44.5 |
ω-3 PUFA, % 2 | 3.02 | 5.27 | 8.09 |
ω-6/ω-3 ratio 3 | 16.7:1 | 9.3:1 | 5.5:1 |
Treatments | BWG g | EP % | EW G | EM g/h/d | FI g/h/d | FCR g/g |
---|---|---|---|---|---|---|
HR | 173 a | 81.3 b | 58.6 | 47.6 b | 115 a | 2.42 a |
MR | 168 a | 86.1 a | 58.1 | 50.0 a | 111 b | 2.22 b |
LR | 153 b | 83.1 ab | 57.6 | 47.9 ab | 112 b | 2.34 ab |
SEM | 14.3 | 1.48 | 0.34 | 0.82 | 1.13 | 0.09 |
p value | 0.01 | 0.001 | 0.462 | 0.001 | 0.001 | 0.001 |
Treatments | ESI % | SW % | ST µm | SWUSA mg/cm2 |
---|---|---|---|---|
HR | 73.5 | 9.45 | 405 a | 85.7 a |
MR | 72.2 | 9.35 | 391 b | 83.4 b |
LR | 73.2 | 9.18 | 386 b | 82.1 b |
SEM | 0.53 | 0.128 | 13.1 | 0.90 |
p value | 0.356 | 0.421 | 0.038 | 0.027 |
Treatments | Yolkweight % | Yolkindex % | Yolk Total Solid % | Yolk: Albumen | Yolk Color |
---|---|---|---|---|---|
HR | 31.6 | 44.9 | 52.9 | 0.532 | 5.58 c |
MR | 31.3 | 45.9 | 51.4 | 0.527 | 6.08 b |
LR | 31.1 | 45.3 | 52.3 | 0.523 | 6.83 a |
SEM | 0.19 | 0.33 | 0.71 | 0.01 | 0.09 |
Pvalue | 0.551 | 0.354 | 0.412 | 0.652 | 0.001 |
Treatments | AW % | pH | ATS % | HUS | MBS % |
---|---|---|---|---|---|
HR | 59.0 | 8.36 | 11.3 | 82.3 | 0.15 a |
MR | 59.4 | 8.31 | 11.3 | 81.4 | 0.10 b |
LR | 59.7 | 8.29 | 11.0 | 82.3 | 0.10 b |
SEM | 0.323 | 0.093 | 0.213 | 1.12 | 0.047 |
p value | 0.523 | 0.426 | 0.725 | 0.834 | 0.010 |
Treatments | AI | TI | Hypo CI | Hypo/Hyper CI |
---|---|---|---|---|
HR | 0.60 a | 1.06 a | 2.11 c | 2.10 c |
MR | 0.46 b | 0.66 b | 2.91 b | 2.91 b |
LR | 0.39 c | 0.46 c | 3.51 a | 3.52 a |
SEM | 0.04 | 0.11 | 0.25 | 0.25 |
p Value | 0.001 | 0.001 | 0.001 | 0.001 |
Fatty Acids | HR | MR | LR | SEM | p Value |
---|---|---|---|---|---|
C12:0 | 0.063 | 0.058 | 0.055 | 0.0045 | 0.123 |
C14:0 | 0.411 a | 0.351 b | 0.321 b | 0.013 | 0.001 |
C16:0 | 27.49 a | 21.85 b | 19.14 c | 0.493 | 0.002 |
C18:0 | 9.41 | 9.45 | 8.75 | 0.664 | 0.453 |
SFA | 37.37 a | 31.71 a | 28.27 b | 0.725 | 0.001 |
C16:1 | 3.97 a | 3.65 ab | 3.27 b | 0.112 | 0.002 |
C18:1 | 36.4 | 35.8 | 36.15 | 4.15 | 0.632 |
MUFA | 40.17 | 39.45 | 39.42 | 4.17 | 0.376 |
C18:2 | 19.82 | 21.63 | 20.54 | 3.91 | 0.485 |
C18:3 | 0.871 c | 4.13 b | 8.15 a | 0.023 | 0.003 |
C20:4 | 1.04 b | 1.69 a | 1.63 a | 0.027 | 0.001 |
C20:5 | 0.013 b | 0.016 b | 0.052 a | 0.011 | 0.01 |
C22:5 | 0.061 b | 0.081 b | 0.211 a | 0.013 | 0.004 |
C22:6 | 0.661 c | 1.29 b | 1.73 a | 0.059 | 0.001 |
PUFA | 22.46 b | 28.84 a | 32.31 a | 4.187 | 0.031 |
UFA | 62.63 b | 68.29 a | 71.73 a | 0.853 | 0.004 |
UFA/SFA | 1.68 b | 2.15 ab | 2.54 a | 0.072 | 0.002 |
ω-6 | 20.92 | 23.4 | 22.38 | 4.12 | 0.524 |
ω-3 | 1.55 c | 5.44 b | 9.93 a | 0.075 | 0.001 |
ω-6:ω-3 | 13.50 a | 4.30 b | 2.25 c | 1.037 | 0.001 |
ω-3 yield | 4.46 c | 9.30 a | 10.96 a | 1.63 | 0.001 |
Treatments | PA % | PI % | LTT % | BA % | LA IU% | HINDV Log2 | Survival Rate % |
---|---|---|---|---|---|---|---|
HR | 17.5 | 1.67 | 16.1 c | 40.0 | 0.03 b | 3.78 | 95.0 |
MR | 18.9 | 1.62 | 18.6 a | 39.9 | 0.03 b | 4.01 | 97.5 |
LR | 19.7 | 1.69 | 17.4 b | 41.7 | 0.05 a | 4.41 | 100 |
SEM | 0.24 | 0.07 | 0.241 | 0.53 | 0.003 | 0.16 | 0.63 |
p value | 0.523 | 0.431 | 0.010 | 0.731 | 0.001 | 0.153 | 0.321 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, Y.A.; Al-Harthi, M.A.; Al-Sagan, A.A.; Alqurashi, A.D.; Korish, M.A.; Abdulsalam, N.M.; Olal, M.J.; Bovera, F. Dietary Supplementation with Different ω-6 to ω-3 Fatty Acid Ratios Affects the Sustainability of Performance, Egg Quality, Fatty Acid Profile, Immunity and Egg Health Indices of Laying Hens. Agriculture 2022, 12, 1712. https://doi.org/10.3390/agriculture12101712
Attia YA, Al-Harthi MA, Al-Sagan AA, Alqurashi AD, Korish MA, Abdulsalam NM, Olal MJ, Bovera F. Dietary Supplementation with Different ω-6 to ω-3 Fatty Acid Ratios Affects the Sustainability of Performance, Egg Quality, Fatty Acid Profile, Immunity and Egg Health Indices of Laying Hens. Agriculture. 2022; 12(10):1712. https://doi.org/10.3390/agriculture12101712
Chicago/Turabian StyleAttia, Youssef A., Mohammed A. Al-Harthi, Ahmed A. Al-Sagan, Adel D. Alqurashi, Mohamed A. Korish, Nisreen M. Abdulsalam, Marai J. Olal, and Fulvia Bovera. 2022. "Dietary Supplementation with Different ω-6 to ω-3 Fatty Acid Ratios Affects the Sustainability of Performance, Egg Quality, Fatty Acid Profile, Immunity and Egg Health Indices of Laying Hens" Agriculture 12, no. 10: 1712. https://doi.org/10.3390/agriculture12101712
APA StyleAttia, Y. A., Al-Harthi, M. A., Al-Sagan, A. A., Alqurashi, A. D., Korish, M. A., Abdulsalam, N. M., Olal, M. J., & Bovera, F. (2022). Dietary Supplementation with Different ω-6 to ω-3 Fatty Acid Ratios Affects the Sustainability of Performance, Egg Quality, Fatty Acid Profile, Immunity and Egg Health Indices of Laying Hens. Agriculture, 12(10), 1712. https://doi.org/10.3390/agriculture12101712