Assessment of the Influence of Storage Conditions and Time on Red Currants (Ribes rubrum L.) Using Image Processing and Traditional Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Image Analysis
- -
- 200 imaged unstored red currants intended for storage at room temperature;
- -
- 200 imaged red currants stored at room temperature for one week;
- -
- 200 imaged red currants stored at room temperature for two weeks;
- -
- 200 imaged unstored red currants intended for storage in the refrigerator;
- -
- 200 imaged red currants stored in the refrigerator for one week;
- -
- 200 imaged red currants stored in the refrigerator for two weeks.
2.3. Statistical Analysis
- (1)
- unstored red currants intended for storage at room temperature (200 cases), red currants stored at room temperature for one week (200 cases), and red currants stored at room temperature for two weeks (200 cases);
- (2)
- unstored red currants intended for storage in the refrigerator (200 cases), red currants stored in the refrigerator for one week (200 cases), and red currants stored in the refrigerator for two weeks (200 cases);
- (3)
- red currants stored at room temperature for one week (200 cases) and red currants stored in the refrigerator for one week (200 cases);
- (4)
- red currants stored at room temperature for two weeks (200 cases) and red currants stored in the refrigerator for two weeks (200 cases).
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Wang, N.; Xu, W.; Zhou, H. Genus Ribes Linn. (Grossulariaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology and clinical applications. J. Ethnopharmacol. 2021, 276, 114166. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, B.; Rakonjac, V.; Fotiric Aksic, M.; Savikin, K.; Vulic, T. Pomological and biochemical characterization of European currant berry (Ribes sp.) cultivars. Sci. Hortic. 2014, 165, 156–162. [Google Scholar] [CrossRef]
- Djordjevic, B.S.; Djurovic, D.B.; Zec, G.D.; Meland, M.O.; Fotiric Aksic, M.M. Effects of shoot age on biological and chemical properties of red currant (Ribes rubrum L.) cultivars. Folia Hortic. 2020, 32, 291–305. [Google Scholar] [CrossRef]
- Pikunova, A.; Goryunova, S.; Goryunov, D.; Golyaeva, O.; Dolzhikova, M.; Pavlenko, A. Genetic Diversity and Pedigree Analysis of Red Currant Germplasm. Plants 2022, 11, 1623. [Google Scholar] [CrossRef] [PubMed]
- Panfilova, O.; Kahramanoğlu, I.; Ondrasek, G.; Okatan, V.; Ryago, N.; Tsoy, M.; Golyaeva, O.; Knyazev, S. Creation and Use of Highly Adaptive Productive and Technological Red Currant Genotypes to Improve the Assortment and Introduction into Different Ecological and Geographical Zones. Plants 2022, 11, 802. [Google Scholar] [CrossRef]
- Mitić, M.N.; Obradović, M.V.; Kostić, D.A.; Micić, R.J.; Paunović, D.Đ. Phenolic Profile and Antioxidant Capacities of Dried Red Currant from Serbia, Extracted with Different Solvent. Food Sci. Biotechnol. 2011, 20, 1625–1631. [Google Scholar] [CrossRef]
- Bilici, M. The Effect of Currant (Ribes) on Human Health and Determination Certain Antioxidant Activities. East. J. Med. 2021, 26, 470–474. [Google Scholar] [CrossRef]
- Frum, A.; Georgescu, C.; Gligor, F.G.; Dobrea, C.; Tita, O. Identification and Quantification of Phenolic Compounds from Red Currant (Ribes rubrum L.) and Raspberries (Rubus idaeus L.). Int. J. Pharmacol. Phytochem. Ethnomed. 2017, 6, 30–37. [Google Scholar]
- Milić, A.; Daničić, T.; Tepić Horecki, A.; Šumić, Z.; Teslić, N.; Bursać Kovačević, D.; Putnik, P.; Pavlić, B. Sustainable Extractions for Maximizing Content of Antioxidant Phytochemicals from Black and Red Currants. Foods 2022, 11, 325. [Google Scholar] [CrossRef]
- Djordjević, B.; Šavikin, K.; Zdunić, G.; Janković, T.; Vulić, T.; Oparnica, Č.; Radivojević, D. Biochemical properties of red currant varieties in relation to storage. Plant Foods Hum. Nutr. 2010, 65, 326–332. [Google Scholar] [CrossRef]
- Limnaios, A.; Pathak, N.; Bovi, G.G.; Fröhling, A.; Valdramidis, V.P.; Taoukis, P.S.; Schlüter, O. Effect of cold atmospheric pressure plasma processing on quality and shelf life of red currants. LWT 2021, 151, 112213. [Google Scholar] [CrossRef]
- Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosyst. Eng. 2022, 222, 156–176. [Google Scholar] [CrossRef]
- Milivojevic, J.; Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Nikolic, M.; Veberic, R. The influence of early yield on the accumulation of major taste and health-related compounds in black and red currant cultivars (Ribes spp.). J. Agric. Food Chem. 2012, 60, 2682–2691. [Google Scholar] [CrossRef] [PubMed]
- Zdunić, G.; Šavikin, K.; Pljevljakušić, D.; Djordjević, B. Black (Ribes nigrum L.) and Red Currant (Ribes rubrum L.) Cultivars. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 101–126. [Google Scholar]
- Tijskens, L.M.M.; Schouten, R.E. Modeling quality attributes and quality related product properties. In Postharvest Handling: A Systems Approach, 3rd ed.; Florkowski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Elsevier Inc.: Berkeley, CA, USA, 2014; pp. 411–448, Chapter 15. [Google Scholar]
- Ma, C.; Feng, L.; Pan, L.; Wei, K.; Liu, Q.; Tu, K.; Zhao, L.; Peng, J. Relationships between optical properties of peach flesh with firmness and tissue structure during storage. Postharvest Biol. Technol. 2020, 163, 111134. [Google Scholar] [CrossRef]
- Si, W.; Xiong, J.; Huang, Y.; Jiang, X.; Hu, D. Quality Assessment of Fruits and Vegetables Based on Spatially Resolved Spectroscopy: A Review. Foods 2022, 11, 1198. [Google Scholar] [CrossRef]
- Xuan, G.; Gao, C.; Shao, Y. Spectral and image analysis of hyperspectral data for internal and external quality assessment of peach fruit. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 272, 121016. [Google Scholar] [CrossRef]
- Cubero, S.; Aleixos, N.; Moltó, E.; Gómez-Sanchis, J.; Blasco, J. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol. 2011, 4, 487–504. [Google Scholar] [CrossRef]
- Ropelewska, E. The application of image processing for cultivar discrimination of apples based on texture features of the skin, longitudinal section and cross-section. Eur. Food Res. Technol. 2021, 247, 1319–1331. [Google Scholar] [CrossRef]
- Iqbal, S.M.d.; Gopal, A.; Sankaranarayanan, P.E.; Nair, A.B. Classification of selected citrus fruits based on color using machine vision system. Int. J. Food Prop. 2016, 19, 272–288. [Google Scholar] [CrossRef]
- Fernández, L.; Castillero, C.; Aguilera, J.M. An application of image analysis to dehydration of apple discs. J. Food Eng. 2005, 67, 185–193. [Google Scholar] [CrossRef]
- Melesse, T.Y.; Bollo, M.; Pasquale, V.D.; Centro, F.; Riemma, S. Machine Learning-Based Digital Twin for Monitoring Fruit Quality Evolution. Procedia Comput. Sci. 2022, 200, 13–20. [Google Scholar] [CrossRef]
- Ananias, E.; Gaspar, P.D.; Soares, V.N.G.J.; Caldeira, J.M.L.P. Artificial Intelligence Decision Support System Based on Artificial Neural Networks to Predict the Commercialization Time by the Evolution of Peach Quality. Electronics 2021, 10, 2394. [Google Scholar] [CrossRef]
- Ropelewska, E. Distinguishing lacto-fermented and fresh carrot slice images using the Multilayer Perceptron neural network and other machine learning algorithms from the groups of Functions, Meta, Trees, Lazy, Bayes and Rules. Eur. Food Res. Technol. 2022, 248, 2421–2429. [Google Scholar] [CrossRef]
- Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F. A convolutional neural network-based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine. J. Food Process Eng. 2022, 45, e13955. [Google Scholar] [CrossRef]
- Ropelewska, E. Classification of the pits of different sour cherry cultivars based on the surface textural features. J. Saudi Soc. Agric. Sci. 2021, 20, 52–57. [Google Scholar] [CrossRef]
- Ropelewska, E.; Rutkowski, K.P. Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed textures. Eur. Food Res. Technol. 2021, 247, 2371–2377. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Methods Progr. Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A. MaZda—A software for texture analysis. In Proceedings of the ISITC 2007, Jeonju, Korea, 23 November 2007; pp. 245–249. [Google Scholar]
- Strzelecki, M.; Szczypiński, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3Dmedical images. Nucl. Inst. Methods Phys. Res. A 2013, 702, 137–140. [Google Scholar] [CrossRef]
- Ibraheem, N.A.; Hasan, M.M.; Khan, R.Z.; Mishra, P.K. Understanding color models: A review. ARPN J. Sci. Technol. 2012, I, 265–275. [Google Scholar]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA workbench. Online appendix for data mining: Practical machine learning tools and techniques. In Morgan Kaufmann; Morgan Kaufmann Publishers: Burlington, MA, USA, 2016. [Google Scholar]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, e13694. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A.M.; Kolodziejczyk, P.P. Black currant polyphenols: Their storage stability and microencapsulation. Ind. Crops. Prod. 2011, 34, 1301–1309. [Google Scholar] [CrossRef]
- Djordjevic, B.; Savikin, K.; Zdunic, G.; Jankovic, T.; Vulic, T.; Pljevljakusic, D.; Oparnica, C. Biochemical properties of the fresh and frozen black currants and juices. J. Med. Food. 2013, 16, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, M.; Mujumdar, A.S. Advanced Detection Techniques Using Artificial Intelligence in Processing of Berries. Food Eng. Rev. 2022, 14, 176–199. [Google Scholar] [CrossRef]
- Quiroz, I.A.; Alférez, G.H. Image recognition of Legacy blueberries in a Chilean smart farm through deep learning. Comput. Electron. Agric. 2020, 168, 105044. [Google Scholar] [CrossRef]
- Nturambirwe, J.F.I.; Opara, U.L. Machine learning applications to non-destructive defect detection in horticultural products. Biosyst. Eng. 2020, 189, 60–83. [Google Scholar] [CrossRef]
- Hu, M.H.; Zhao, Y.; Zhai, G.T. Active learning algorithm can establish classifier of blueberry damage with very small training dataset using hyperspectral transmittance data. Chemom. Intell. Lab. Syst. 2018, 172, 52–57. [Google Scholar] [CrossRef]
- Meshram, V.; Patil, K. FruitNet: Indian fruits image dataset with quality for machine learning applications. Data Brief 2022, 40, 107686. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, M.; Zhai, G. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data. Sensors 2018, 18, 1126. [Google Scholar] [CrossRef] [Green Version]
Algorithm | Predicted Class (%) | Actual Class | Average Accuracy (%) | Precision | Recall | F-Measure | ||
---|---|---|---|---|---|---|---|---|
Unstored | Room 1 Week | Room 2 Weeks | ||||||
PART (Rules) | 100 | 0 | 0 | unstored | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | 0 | room 1 week | 1.000 | 1.000 | 1.000 | ||
0 | 0 | 100 | room 2 weeks | 1.000 | 1.000 | 1.000 | ||
Random Forest (Trees) | 100 | 0 | 0 | unstored | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | 0 | room 1 week | 1.000 | 1.000 | 1.000 | ||
0 | 0 | 100 | room 2 weeks | 1.000 | 1.000 | 1.000 | ||
Multi Class Classifier (Meta) | 100 | 0 | 0 | unstored | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | 0 | room 1 week | 1.000 | 1.000 | 1.000 | ||
0 | 0 | 100 | room 2 weeks | 1.000 | 1.000 | 1.000 | ||
RBF Classifier (Functions) | 100 | 0 | 0 | unstored | 99 | 1.000 | 1.000 | 1.000 |
0 | 98 | 2 | room 1 week | 0.980 | 0.980 | 0.980 | ||
0 | 2 | 98 | room 2 weeks | 0.980 | 0.980 | 0.980 | ||
SMO (Functions) | 100 | 0 | 0 | unstored | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | 0 | room 1 week | 1.000 | 1.000 | 1.000 | ||
0 | 0 | 100 | room 2 weeks | 1.000 | 1.000 | 1.000 | ||
Naive Bayes (Bayes) | 100 | 0 | 0 | unstored | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | 0 | room 1 week | 1.000 | 1.000 | 1.000 | ||
0 | 0 | 100 | room 2 weeks | 1.000 | 1.000 | 1.000 |
Algorithm | Predicted Class (%) | Actual Class | Average Accuracy (%) | Precision | Recall | F-Measure | ||
---|---|---|---|---|---|---|---|---|
Unstored | Refrigerator 1 Week | Refrigerator 2 Weeks | ||||||
PART (Rules) | 96 | 4 | 0 | unstored | 97 | 1.000 | 0.960 | 0.980 |
0 | 100 | 0 | refrigerator 1 week | 0.926 | 1.000 | 0.962 | ||
0 | 4 | 96 | refrigerator 2 weeks | 1.000 | 0.960 | 0.980 | ||
Random Forest (Trees) | 100 | 0 | 0 | unstored | 99 | 1.000 | 1.000 | 1.000 |
0 | 100 | 0 | refrigerator 1 week | 0.980 | 1.000 | 0.990 | ||
0 | 2 | 98 | refrigerator 2 weeks | 1.000 | 0.980 | 0.990 | ||
Multi Class Classifier (Meta) | 100 | 0 | 0 | unstored | 99 | 0.980 | 1.000 | 0.990 |
2 | 98 | 0 | refrigerator 1 week | 0.980 | 0.980 | 0.980 | ||
0 | 2 | 98 | refrigerator 2 weeks | 1.000 | 0.980 | 0.990 | ||
RBF Classifier (Functions) | 100 | 0 | 0 | unstored | 98 | 0.980 | 1.000 | 0.990 |
2 | 96 | 2 | refrigerator 1 week | 0.980 | 0.960 | 0.970 | ||
0 | 2 | 98 | refrigerator 2 weeks | 0.980 | 0.980 | 0.980 | ||
SMO (Functions) | 100 | 0 | 0 | unstored | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | 0 | refrigerator 1 week | 1.000 | 1.000 | 1.000 | ||
0 | 0 | 100 | refrigerator 2 weeks | 1.000 | 1.000 | 1.000 | ||
Naive Bayes (Bayes) | 100 | 0 | 0 | start | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | 0 | refrigerator 1 week | 1.000 | 1.000 | 1.000 | ||
0 | 0 | 100 | refrigerator 2 weeks | 1.000 | 1.000 | 1.000 |
Algorithm | Predicted Class (%) | Actual Class | Average Accuracy (%) | Precision | Recall | F-Measure | |
---|---|---|---|---|---|---|---|
Room 1 Week | Refrigerator 1 Week | ||||||
PART Random Forest Multi Class Classifier RBF Classifier SMO | 100 | 0 | room 1 week | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | refrigerator 1 week | 1.000 | 1.000 | 1.000 | ||
Naive Bayes | 100 | 0 | room 1 week | 99 | |||
0.980 | 1.000 | 0.990 | |||||
2 | 98 | refrigerator 1 week | 1.000 | 0.980 | 0.990 |
Algorithm | Predicted Class (%) | Actual Class | Average Accuracy (%) | Precision | Recall | F-Measure | |
---|---|---|---|---|---|---|---|
Room 2 Weeks | Refrigerator 2 Weeks | ||||||
PART Random Forest Multi Class Classifier RBF Classifier SMO Naive Bayes | 100 | 0 | room 2 weeks | 100 | 1.000 | 1.000 | 1.000 |
0 | 100 | refrigerator 2 weeks | 1.000 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E. Assessment of the Influence of Storage Conditions and Time on Red Currants (Ribes rubrum L.) Using Image Processing and Traditional Machine Learning. Agriculture 2022, 12, 1730. https://doi.org/10.3390/agriculture12101730
Ropelewska E. Assessment of the Influence of Storage Conditions and Time on Red Currants (Ribes rubrum L.) Using Image Processing and Traditional Machine Learning. Agriculture. 2022; 12(10):1730. https://doi.org/10.3390/agriculture12101730
Chicago/Turabian StyleRopelewska, Ewa. 2022. "Assessment of the Influence of Storage Conditions and Time on Red Currants (Ribes rubrum L.) Using Image Processing and Traditional Machine Learning" Agriculture 12, no. 10: 1730. https://doi.org/10.3390/agriculture12101730
APA StyleRopelewska, E. (2022). Assessment of the Influence of Storage Conditions and Time on Red Currants (Ribes rubrum L.) Using Image Processing and Traditional Machine Learning. Agriculture, 12(10), 1730. https://doi.org/10.3390/agriculture12101730