Technical Efficiency Analysis of Layer and Broiler Poultry Farmers in Pakistan
Abstract
:1. Introduction
2. Methodology
2.1. Study Area, Sample Size, and Sampling Technique
2.2. Data Collection
2.3. Assessment of Technical Inefficiency (TE)
2.3.1. Conceptual Basis
2.3.2. The Empirical Model
2.3.3. Technical Inefficiency Determination of Layer and Broiler Poultry Farmers
2.3.4. Layer and Broiler Farmers’ Individual Technical Efficiencies
3. Results and Discussion
3.1. Descriptive Statistics of the Input and Output Variables Used in the Model
3.2. Econometric Results
3.2.1. MLE Estimates of the Parameters of Stochastic Production Frontier
3.2.2. The Effects of Influencing Factors on Technical Efficiency
3.2.3. Variance Parameters
3.3. Technical Efficiency of Layer and Broiler Poultry Farmers
4. Discussion
4.1. Influence of the Factors under Study
4.2. Discussion of the Overall Technical Efficiency of Layer and Broiler Poultry Farmers
4.3. Limitations of This Study and Further Research Needs
5. Conclusions and Recommendations
- (i)
- The government of Pakistan could use the research findings as a guide for policy formulation and implementation to improve the socio-economic well-being of the people in the country.
- (ii)
- The information of this study will also help poultry farmers to make appropriate decisions in order to increase the production of their farm business.
- (iii)
- The results could guide new poultry farmers who aim to adopt a system of production that is not only commercially viable due to a high output but also reaches an improved technical efficiency, thus making better use of each unit of input.
- (iv)
- The research findings will be helpful to future researchers who might want to conduct further research on the same or related topics.
- (v)
- The research findings can be good reading material for the general public, and especially for all those who are interested in increasing TE in the poultry production business.
- (a)
- The study findings revealed that education of farmers, measured in years of schooling, affects the technical efficiency of poultry farmers. This indicates that education is essential in improving technical efficiency, and thereby the sample farmers’ performance. Hence, the government should design and strengthen appropriate policies to provide adequate and effective essential educational opportunities to poultry farmers and their families.
- (b)
- In poultry farmers, practical experience has a beneficial and considerable impact on technical efficiency. Therefore, farmers should be trained for a longer time and in detail. To achieve this, the previously built farmers’ training centers and agriculture research demonstration facilities can be used and should be strengthened, in particular by enhancing the practical training they provide and by acknowledging the role of such training to ensure the application of the highest standards on poultry farms in practice.
- (c)
- Younger farmers are less technically efficient than more mature farmers. Therefore, younger farmers, in particular, must receive ongoing training in the agricultural business context and a follow-up during agricultural operations.
- (d)
- Credit access enables farmers to reliably acquire inputs they otherwise could not afford, thus increasing agricultural production and productivity. Hence, the government should establish and expand the service given by credit-providing institutions such as microfinance institutions and agricultural cooperatives.
- (e)
- Although considerable further optimization potential exists, the study’s findings showed that the poultry’s technical efficiency is relatively high in the area under study. The battery cage and environmental control shed system is a suitable choice to ensure high production and well-performing poultry businesses. Therefore, the current study recommends that the government and other related actors encourage farmers to adopt this type of method (battery cage and environmental control shed) to enhance poultry production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.-H.; Wu, Y.-J.; Miao, Y.-W.; Peng, M.-S.; Chen, X.; He, D.-L.; Suwannapoom, C.; Du, B.-W.; Li, X.-Y.; Weng, Z.-X.; et al. Was chicken domesticated in northern China? New evidence from mitochondrial genomes. Sci. Bull. 2018, 63, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Lebrasseur, O.; Irving-Pease, E.K.; Paxinos, P.D.; Best, J.; Smallman, R.; Callou, C.; Gardeisen, A.; Trixl, S.; Frantz, L.; et al. The biocultural origins and dispersal of domestic chickens. Proc. Natl. Acad. Sci. USA 2022, 119, e21219781196. [Google Scholar] [CrossRef] [PubMed]
- Lawal, R.A.; Martin, S.H.; Vanmechelen, K.; Vereijken, A.; Silva, P.; Al-Atiyat, R.M.; Aljumaah, R.S.; Mwacharo, J.M.; Wu, D.D.; Zhang, Y.P.; et al. The wild species genome ancestry of domestic chickens. BMC Biol. 2020, 18, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, B.; Zhou, B.X. Did chickens go North? New evidence for domestication. J. Archaeolog. Sci. 1988, 15, 515–533. [Google Scholar]
- Alders, R.G. Poultry for Profit and Pleasure; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004. [Google Scholar]
- FAO. Decision Tools for Family Poultry Development; FAO Animal Pro-duction and Health Guidelines No. 16; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Tijjani, H.; Tijani, B.A.; Tijjani, N.A.; Sadiq, M.A. Economic analysis of poultry egg production in Maiduguri and environs of Borno State Nigeria. Sch. J. Agric. Sci. 2012, 2, 319–323. [Google Scholar]
- Khanal, P.; Dhakal, R.; Khanal, T.; Pandey, D.; Devkota, N.R.; Nielsen, M.O. Sustainable livestock production in Nepal: A focus on animal nutrition strategies. Agriculture 2022, 12, 679. [Google Scholar] [CrossRef]
- Attia, Y.A.; Rahman, M.T.; Hossain, M.J.; Basiouni, S.; Khafaga, A.F.; Shehata, A.A.; Hafez, H.M. Poultry production and sustainability in developing countries under the COVID-19 crisis: Lessons learned. Animals 2022, 12, 644. [Google Scholar] [CrossRef]
- Pius, L.O.; Strausz, P.; Kusza, S. Overview of poultry management as a key factor for solving food and nutritional security with a special focus on chicken breeding in East African countries. Biology 2021, 10, 810. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [Green Version]
- Iannotti, L.L.; Lutter, C.K.; Bunn, D.A.; Stewart, C.P. Eggs: The uncracked potential for improving maternal and young child nutrition among the world’s poor. Nutr. Rev. 2014, 72, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Rakonjac, S.; Bogosavljević-Bošković, S.; Pavlovski, Z.; Škrbić, Z.; Dosković, V.; Petrović, M.D.; Petričević, V. Laying hen rearing systems: A review of major production results and egg quality traits. World’s Poult. Sci. J. 2014, 70, 93–104. [Google Scholar] [CrossRef]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.K.; Fan, Y.; Wang, L.; Jiang, H.; Li, Z.; Ma, M.; Ma, L.; Ma, M. Dietary habits of patients with coronary artery disease: A case-control study from Pakistan. Int. J. Environ. Res. Public Health 2022, 19, 8635. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Broverman, S.; Puffer, E.S.; Zaltz, D.A.; Thorne-Lyman, A.L.; Benjamin-Neelon, S.E. Dietary diversity and dietary patterns in school-aged children in Western Kenya: A latent class analysis. Int. J. Environ. Res. Public Health 2022, 19, 9130. [Google Scholar] [CrossRef] [PubMed]
- FAO. Poultry Development Review; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Available online: https://www.fao.org/3/i3531e/i3531e.pdf (accessed on 27 August 2022).
- FAO. Database of the Food and Agriculture Organization of the United Nations (2018 Data). Available online: http://www.fao.org/faostat/en/ (accessed on 23 May 2020).
- Government of Pakistan. Pakistan Economic Survey 2011–2012; Finance Division of the Government of Pakistan: Islamabad, Pakistan, 2013. [Google Scholar]
- Government of Pakistan. Pakistan Economic Survey; Finance Division of the Government of Pakistan: Islamabad, Pakistan, 2014. [Google Scholar]
- Government of Pakistan. Pakistan Economic Survey 2016–2017; Finance Division of the Government of Pakistan: Islamabad, Pakistan, 2017. [Google Scholar]
- Pakistan Poultry Association. An Overview of Pakistan Poultry Industry Year 2020–2021; Pakistan Poultry Association: Lahore, Pakistan, 2022; Available online: https://pakistanpoultryassociation.com.pk/ (accessed on 27 August 2022).
- Pakistan Poultry Association. Information from the Year 2014. Website of the Pakistan Poultry Association. Available online: https://pakistanpoultrycentral.pk/ (accessed on 27 August 2022).
- Korres, G.M. Technical Change and Economic Growth: Inside the Knowledge Based Economy, 2nd ed.; Ashgate Publishing: London, UK, 2016. [Google Scholar]
- Bamiro, O.M. Economic performance of commercial poultry farms in Oyo State Nigeria. Int. J. Poult. Sci. 2008, 7, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Phonpawi, K.; Kannika, S.L.; Wanaporn, T.; Chompunut, L.; Anupong, W. Broiler production in Northern Thailand based technical efficiency using super-efficiency data envelopment analysis. Mapan J. Metrol. Soc. India 2022. [Google Scholar] [CrossRef]
- Zhu, N.; Qin, F. Influence of mechanization on technical efficiency of large-scale layer breeding. Trans. Chin. Soc. Agric. Eng. 2015, 31, 63–69. [Google Scholar]
- Jo, H.; Nasrullah, M.; Jiang, B.; Li, X.; Bao, J. A survey of broiler farmers’ perceptions of animal welfare and their technical efficiency: A case study in northeast China. J. Appl. Anim. Welf. Sci. 2022, 25, 275–286. [Google Scholar] [CrossRef]
- Onyewuchi, U.U. Differentials in technical efficiency among broiler farmers in Imo State, Nigeria. Niger. Agric. J. 2019, 50, 45–55. [Google Scholar]
- Ocholi, A.; Ayila, V.N. Determinants of technical efficiency of small-scale broiler production enterprises in Benue State, Nigeria. Int. J. Agric. Vet. Sci. 2018, 4, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Adebisi, L.; Adebisi, O.; Owolabi, M.; Henshaw, E.; Asiyanbi, O. Economic analysis of contract farming and technical efficiency of broiler farmers. Cercet. Agron. Maldova 2020, 4, 426–433. [Google Scholar] [CrossRef]
- Kaine, A.I.N.; Chukwuma, E.E. Technical efficiency and profitability of backyard poultry farming in Ika South Local Government Area, Delta State, Nigeria. J. Agric. Food Sci. 2017, 15, 28–38. [Google Scholar] [CrossRef]
- Osinowo, O.H.; Tolorunju, E.T. Technical efficiency of poultry egg production in Ogun State, Nigeria. J. Agribus. Rural Dev. 2019, 51, 51–58. [Google Scholar] [CrossRef]
- Ahiale, E.D.; Abunyuwah, I.; Yenibehit, N. Technical efficiency analysis of broiler production in the Mampong municipality of Ghana. J. Econ. Sustain. Dev. 2019, 10, 152–158. [Google Scholar]
- Yenibehit, N.; Murshed, M.; Islam, M. Assessment of technical efficiency of layer production in Mampong Municipality: Stochastic frontier approach. Curr. Res. Agric. Sci. 2019, 6, 20–28. [Google Scholar]
- Ullah, I.; Ali, S.; Khan, S.U.; Sajjad, M. Assessment of technical efficiency of open shed broiler farms: The case study of Khyber Pakhtunkhwa Province Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 361–366. [Google Scholar] [CrossRef]
- Pradhan, N.B.; Raut, N.K. An estimation of technical efficiency of poultry farming in Nepal. Econ. J. Dev. Issues 2019, 28, 88–111. [Google Scholar] [CrossRef]
- Ume, S.I.; Jiwuba, P.D.; Ede, N.O. Technical efficiency of Enugu urban broiler farmers in Enugu State, Nigeria. Agro-Science 2012, 11, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Nihal, A.H.; Shahid, A.; Wahid, U. Estimation of technical efficiency of broiler farms in district Mardan, Khyber Pakhtunkhwa. Sarhad J. Agric. 2018, 34, 349–358. [Google Scholar]
- Bethel, E.; Fani, D.R.; Odufa, E.M. Analysis of technical efficiency of poultry farmers in Cross River State, Nigeria. Int. J. Res. Stud. Agric. Sci. 2016, 2, 40–45. [Google Scholar]
- Pakistan Poultry Association. Sector Information from the Year 2012. Website of the Pakistan Poultry Association. 2014. Available online: https://pakistanpoultrycentral.pk/ (accessed on 27 August 2022).
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Farrell, J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 252–281. [Google Scholar] [CrossRef]
- Myeki, L.W.; Nengovhela, N.B.; Mudau, L.; Nakana, E.; Ngqangweni, S. Estimation of technical, allocative, and economic efficiencies for smallholder broiler producers in South Africa. Agriculture 2022, 12, 1601. [Google Scholar] [CrossRef]
- Meeusen, W.; van Den Broeck, J. Efficiency estimation from Cobb-Douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Coelli, T.J. Recent developments in frontier modelling and efficiency measurement. Aust. J. Agric. Econ. 1995, 39, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.E. Likelihood functions for generalized stochastic frontier estimation. J. Econom. 1980, 13, 57–66. [Google Scholar] [CrossRef]
- Stata Corp. STATA 16; Software. StataCorp LLC: College Station, TX, USA, 2020. [Google Scholar]
- Coelli, T.J. A guide to Frontier Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation; CEPA Working Papers; CEPA: Armidale, Australia, 1996. [Google Scholar]
- Oleke, J.M.; Isinika, A.C. Assessing the technical efficiency of commercial egg production in Tanzania for improved livelihoods. J. Dev. Agric. Econ. 2011, 3, 343–352. [Google Scholar]
- Esiobu, N.S.; Onubuogu, G.C.; Okoli, V.B.N. Determinants of income from poultry egg production in Imo State, Nigeria: An econometric model approach. Glob. Adv. Res. J. Agric. Sci. 2015, 3, 186–199. [Google Scholar]
- Birhanu, M.Y.; Alemayehu, T.; Bruno, J.E.; Kebede, F.G.; Sonaiya, E.B.; Goromela, E.H.; Bamidele, O.; Dessie, T. Technical efficiency of traditional village chicken production in Africa: Entry points for sustainable transformation and improved livelihood. Sustainability 2021, 13, 8539. [Google Scholar] [CrossRef]
- de Alencar, M.D.C. Effects of labor motivation in poultry production. Braz. J. Poult. Sci. 2007, 9, 249–253. [Google Scholar] [CrossRef]
- Agyemang, I. Poultry industry in the Wa Municipality of Upper West Region of Ghana, prospect and challenges. Afr. J. Hist. Cult. 2014, 6, 6–15. [Google Scholar]
- Oyakhilomen, O.; Daniel, A.I.; Zibah, R.G. Technical efficiency-food security nexus in Kaduna State, Nigeria: A case study of poultry egg farmers. Consilience 2015, 14, 244–258. [Google Scholar]
- Adedeji, I.A.; Adelalu, K.O.; Ogunjimi, S.I.; Otekunrin, A.O. Application of stochastic production frontier in the estimation of technical efficiency of poultry egg production in Ogbomoso metropolis of Oyo State, Nigeria. World J. Agric. Res. 2013, 1, 119–123. [Google Scholar]
- Iyiola-Tunji, T. Evaluation of crop-livestock integration systems among farm families at adopted villages of the national agricultural extension and research liaison services. J. Agric. Ext. 2015, 19, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Scanes, C.G.; Brant, G.; Esminger, M.E. Poultry Science, 4th ed.; Pearson Prentice Hill: New York, NY, USA, 2004. [Google Scholar]
- Dozier, W.A.; Czarick, M.; Lacy, M.P.; Fairchild, B.D. Monitoring water consumption on commercial broiler farms: Evaluation tool to assess flock performance. Poult. Sci. 2002, 81, 154. [Google Scholar]
- Garcia, R.G.; Almeida, P.I.; Caldara, F.R.; Nääs, I.A.; Pereira, D.F.; Freitas, L.W.; Schwingel, A.W.; Lima, N.D.S.; Graciano, J.D. Effect of the litter material on drinking water quality in broiler production. Braz. J. Poult. Sci. 2010, 12, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Manning, L.; Chadd, S.A.; Baines, R.N. Key health and welfare indicators for broiler production. World’s Poult. Sci. J. 2017, 63, 46–62. [Google Scholar] [CrossRef]
- Saliu, L.; Abdulrazaq, S.; Eleke, P. Production efficiency of poultry egg (layer) production in Chikun and Igabi local government areas of Kaduna State, Nigeria. Niger. J. Agric. Econ. 2016, 6, 40–52. [Google Scholar]
- Yero, U.T. Technical Efficiency and Profitability of Chicken Production in Kaduna State, Nigeria; Kampala International University: Kampala, Uganda, 2019. [Google Scholar]
- Adeyonu, A.G.; Otunaiya, A.O.; Bamiro, O.M. Technical efficiency of poultry egg production in Ibadan Metropolis, Oyo state, Nigeria. Economics 2015, 4, 50–56. [Google Scholar]
- Gabdo, B.H.; Ismail, M.M.; Abdurofi, I. Stochastic frontier production function and efficiency status of poultry-layer farms in Malaysia. Int. J. Poult. Sci. 2018, 17, 568–577. [Google Scholar]
- Akerele, E.O.; Ologbon, O.A.C.; Nuwemuhwezi, G.; Akintayo, B.D. Technical efficiency in small and medium scale poultry (egg) production in Ogun State, Nigeria. Front. J. Curr. Eng. Res. 2019, 1, 1–11. [Google Scholar]
- Han, Y.; Lyu, H.; Cheng, S.; He, Y. Influencing mechanism and difference of poultry farmers’ willingness and behavior in breeding scale—Evidence from Jianghan Plain, China. Int. J. Environ. Res. Public Health 2022, 19, 1631. [Google Scholar] [CrossRef] [PubMed]
- Ashagidigbi, W.M.; Sulaiman, S.A.; Adesiyan, A. Technical and allocative efficiency of poultry egg producers in Nigeria. Agric. J. 2011, 6, 124–130. [Google Scholar] [CrossRef]
Variable | Unit | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
Eggs (output) | Number | 1,545,898.31 | 1,011,690.00 | 232,815.00 | 4,453,990.00 |
Flock size | Number | 5517.02 | 3317.13 | 1000.00 | 15,000.00 |
Labor | Man-days | 1156.02 | 520.05 | 504.00 | 2530.00 |
Feed intake | Kilograms | 256,009.51 | 162,654.88 | 42,479.02 | 734,489.70 |
Water consumption | Liters | 471,719.84 | 297,557.87 | 82,062.00 | 1,326,098.70 |
Vaccine | Milliliters | 61,899.38 | 41,554.02 | 10,400.00 | 232,100.00 |
Age | Years | 43.46 | 11.05 | 23.00 | 70.00 |
Education | Years | 8.88 | 3.59 | 0.00 | 16.00 |
Experience | Years | 12.85 | 6.97 | 4.00 | 40.00 |
Credit access | Dummy | 0.57 | 0.50 | 0.00 | 1.00 |
Extension services | Dummy | 0.69 | 0.47 | 0.00 | 1.00 |
Variable | Unit | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
Output | Kilograms | 12,721.29 | 8404.76 | 7000.00 | 57,900.00 |
Flock size | Number | 7346.68 | 4028.18 | 5000.00 | 30,000.00 |
Labor | Man-days | 123.79 | 45.69 | 78.00 | 344.00 |
Feed intake | Kilograms | 21,989.77 | 14,289.66 | 13,500.00 | 102,900.00 |
Water consumption | Liters | 79,404.87 | 47,874.55 | 47,000.00 | 363,900.00 |
Vaccine | Milliliters | 26,877.85 | 18,809.87 | 15,500.00 | 131,100.00 |
Age | Years | 41.45 | 8.99 | 23.00 | 61.00 |
Education | Years | 9.37 | 3.27 | 0.00 | 16.00 |
Experience | Years | 11.73 | 6.00 | 2.00 | 32.00 |
Credit access | Dummy | 0.66 | 0.48 | 0.00 | 1.00 |
Extension services | Dummy | 0.53 | 0.50 | 0.00 | 1.00 |
Variable | Parameter | Coefficient | Std. Error | z-Value | Prob. |
---|---|---|---|---|---|
Constant | o | −1.18 | 0.182 | −6.5 | <0.01 |
Ln (flock size) | 1 | 0.21 | 0.012 | 17.08 | <0.01 |
Ln (labor) | 2 | 0.11 | 0.032 | 3.32 | <0.01 |
Ln (feed) | 3 | 0.36 | 0.047 | 7.64 | <0.01 |
Ln (water consumption) | 4 | 0.12 | 0.009 | 13.15 | <0.01 |
Ln (vaccine) | 5 | 0.01 | 0.011 | 0.84 | 0.40 |
Inefficiency effect model | |||||
Constant | o | 1.55 | 0.202 | 7.66 | <0.01 |
Age | 1 | −0.22 | 0.016 | −13.77 | <0.01 |
Education | 2 | −0.37 | 0.043 | −8.68 | <0.01 |
Experience | 3 | −0.12 | 0.009 | −14.23 | <0.01 |
Credit access | 4 | −0.23 | 0.017 | −13.42 | <0.01 |
Extension services | 5 | −0.05 | 0.013 | −3.68 | <0.01 |
Sigma square | σ2 | 0.44 | |||
Gamma | γ | 0.91 | |||
Sigma-v2 | σv2 | 0.04 | |||
Sigma-u2 | σu2 | 0.40 | |||
Prob > chi2 | <0.01 |
Variable | Parameter | Coefficient | Std. Error | z-Value | Prob. |
---|---|---|---|---|---|
Constant | o | −0.51 | 0.036 | −14.25 | <0.01 |
Ln (flock size) | 1 | 0.18 | 0.026 | 6.90 | <0.01 |
Ln (labor) | 2 | −0.01 | 0.014 | −0.84 | 0.40 |
Ln (feed) | 3 | 0.42 | 0.040 | 10.56 | <0.01 |
Ln (water consumption) | 4 | 0.16 | 0.025 | 6.38 | <0.01 |
Ln (vaccine) | 5 | 0.02 | 0.021 | 1.02 | 0.31 |
Inefficiency effect model | |||||
Constant | o | 1.76 | 0.196 | 8.94 | <0.01 |
Age | 1 | −0.07 | 0.010 | −6.58 | <0.01 |
Education | 2 | −0.20 | 0.014 | −13.7 | <0.01 |
Experience | 3 | −0.24 | 0.013 | −18.84 | <0.01 |
Credit access | 4 | −0.16 | 0.044 | −3.61 | <0.01 |
Extension services | 5 | −0.25 | 0.074 | −3.4 | <0.01 |
Sigma square | σ2 | 0.53 | |||
Gamma | γ | 0.94 | |||
Sigma-v2 | σv2 | 0.03 | |||
Sigma-u2 | σu2 | 0.50 | |||
Prob > chi2 | <0.01 |
Efficiency Group | Frequency | Percentage | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|---|
0.79–0.85 | 32 | 30.48 | 0.83 | 0.020 | 0.79 | 0.85 |
0.86–0.90 | 34 | 32.38 | 0.88 | 0.015 | 0.86 | 0.90 |
0.91–0.95 | 20 | 19.05 | 0.93 | 0.016 | 0.91 | 0.95 |
Above 0.95 | 19 | 18.10 | 0.98 | 0.012 | 0.96 | 0.99 |
Total | 105 | 100.00 | 0.89 | 0.057 | 0.79 | 0.99 |
Efficiency Group | Frequency | Percentage | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|---|
0.81–0.85 | 18 | 17.14 | 0.83 | 0.015 | 0.81 | 0.85 |
0.86–0.90 | 28 | 26.67 | 0.88 | 0.020 | 0.86 | 0.90 |
0.91–0.95 | 30 | 28.57 | 0.93 | 0.017 | 0.91 | 0.95 |
Above 95 | 29 | 27.62 | 0.98 | 0.011 | 0.96 | 0.99 |
Total | 105 | 100.00 | 0.92 | 0.054 | 0.81 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.A.; Ali, M.; Ahmad, N.; Abid, M.A.; Kusch-Brandt, S. Technical Efficiency Analysis of Layer and Broiler Poultry Farmers in Pakistan. Agriculture 2022, 12, 1742. https://doi.org/10.3390/agriculture12101742
Khan NA, Ali M, Ahmad N, Abid MA, Kusch-Brandt S. Technical Efficiency Analysis of Layer and Broiler Poultry Farmers in Pakistan. Agriculture. 2022; 12(10):1742. https://doi.org/10.3390/agriculture12101742
Chicago/Turabian StyleKhan, Nisar Ahmed, Majid Ali, Nihal Ahmad, Muhammad Ali Abid, and Sigrid Kusch-Brandt. 2022. "Technical Efficiency Analysis of Layer and Broiler Poultry Farmers in Pakistan" Agriculture 12, no. 10: 1742. https://doi.org/10.3390/agriculture12101742
APA StyleKhan, N. A., Ali, M., Ahmad, N., Abid, M. A., & Kusch-Brandt, S. (2022). Technical Efficiency Analysis of Layer and Broiler Poultry Farmers in Pakistan. Agriculture, 12(10), 1742. https://doi.org/10.3390/agriculture12101742