Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture
Abstract
:1. Introduction
2. Smart Farming
3. Internet of Things
Fundamentals of IoT Applications in Agriculture
- Robust Models: The distinctive features of the agriculture sector are diversity, complexity, spatio-temporal variability, and uncertainties of the right types of harvests and facilities.
- Scalability: The variation in farm size from smaller to larger; hence, the results should be scalable. The placement and testing planning should be progressively scaled up with fewer expenses.
- Affordability: Affordability is vital to farming achievement, and therefore price should be suitable with significant assistance. Standardized platforms, products, tools, and facilities could obtain a satisfactory price.
- Sustainability: The problem of sustainability is a vital issue due to strong economic pressure and intense competition worldwide.
4. Technologies Used in Smart Farming
4.1. Global Positioning System (GPS)
4.2. Sensor Technologies
4.3. Variable-Rate of Technology (VRT) and Grid Soil Sampling
4.4. Geographic Information System (GIS)
4.5. Crop Management
4.6. Soil and Plant Sensors
4.7. Rate Controllers
4.8. Precision Irrigation in Pressurized Systems
4.9. Yield Monitor
4.10. Software
5. Applications in Agriculture
5.1. Soil Mapping and Plant Monitoring
5.2. Irrigation
5.3. Site-Specific Nutrient Management
5.4. Crop Pest and Disease Management
5.5. Yield Monitoring and Forecasting
6. Role of IoT in Advanced Farming Practices
6.1. Greenhouse Farming and Protected Cultivation
6.2. Hydroponics
6.3. Vertical Farming
6.4. Phenotyping
7. The Role of the Engineer in Smart Farming
7.1. Purpose
7.2. Technology
7.3. Power Requirements
7.4. Data Frequency
7.5. Placement of Sensors
8. Barriers to Implementing Smart Farming Technologies
8.1. Cost of Technology
8.2. Lack of Financial Resources
8.3. Literacy Status of Farmers
8.4. Lack of Integration between the Systems
8.5. Telecommunications Infrastructure
8.6. Data Management
9. Current Challenges and Future Expectations
9.1. Communication
9.2. Wireless Sensors and IoT
9.3. Drones and Unarmed Vehicles
9.4. Vertical Farming and Hydroponics
9.5. Performance Analysis Using Machine Learning
9.6. Renewable Energy, Microgrids and Smart Grids
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Srisruthi, S.; Swarna, N.; Ros, G.M.S.; Elizabeth, E. Sustainable agriculture using eco-friendly and energy efficient sensor technology. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016; IEEE: Bangalore, India, 2016; pp. 1442–1446. [Google Scholar] [CrossRef]
- Brodt, S.; Six, J.; Feenstra, G.; Ingels, C.; Campbell, D. Sustainable Agriculture. Nat. Educ. Knowl. 2011, 3, 1. [Google Scholar]
- Obaisi, A.I.; Adegbeye, M.J.; Elghandour, M.M.M.Y.; Barbabosa-Pliego, A.; Salem, A.Z.M. Natural Resource Management and Sustainable Agriculture. In Handbook of Climate Change Mitigation and Adaptation; Lackner, M., Sajjadi, B., Chen, W.Y., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Latake, P.T.; Pawar, P.; Ranveer, A.C. The Greenhouse Effect and Its Impacts on Environment. Int. J. Innov. Res. Creat. Technol. 2015, 1, 333–337. [Google Scholar]
- Reddy, T.; Dutta, M. Impact of Agricultural Inputs on Agricultural GDP in Indian Economy. Theor. Econ. Lett. 2018, 8, 1840–1853. [Google Scholar] [CrossRef] [Green Version]
- World Agriculture: Towards 2015/2030: An FAO Perspective and Summary Report; FAO: Rome, Italy, 2002; Available online: www.fao.org/3/a-y4252e.pdf (accessed on 1 August 2022).
- Roser, M.; Ritchie, H.; Ortiz-Ospina, E. World Population Growth. 2013. Available online: https://ourworldindata.org/world-population-growth (accessed on 1 August 2022).
- Hernández-Ochoa, I.M.; Gaiser, T.; Kersebaum, K.C.; Webber, H.; Seidel, S.J.; Grahmann, K.; Ewert, F. Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review. Agron. Sustain. Dev. 2022, 42, 74. [Google Scholar] [CrossRef]
- Navulur, S.; Sastry, A.S.C.S.; Giri Prasad, M.N. Agricultural Management through Wireless Sensors and Internet of Things. Int. J. Electr. Comput. Eng. 2017, 7, 3492–3499. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, M.; Ammad-uddin, M.; Baig, I.; Aggoune, E.M. Wireless Sensor‘s Civil Applications, Prototypes, and Future Integration Possibilities: A Review. IEEE Sens. J. 2018, 18, 4–30. [Google Scholar] [CrossRef]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Tekinerdogan, B. Strategies for Technological Innovation in Agriculture 4.0. Reports; Wageningen University: Wageningen, The Netherlands, 2018. [Google Scholar]
- Ferrandez-Pastor, F.J.; Garcia-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; MoraMartinez, J. Developing ubiquitous sensor network platform using Internet of Things: Application in precision agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef] [Green Version]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- O’Grady, M.J.; O’Hare, G.M.P. Modelling the smart farm. Inf. Process. Agric. 2017, 4, 179–187. [Google Scholar] [CrossRef]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Raj Kumar, G.; Chandra Shekhar, Y.; Shweta, V.; Ritesh, R. Smart agriculture—Urgent need of the day in developing countries. Sustain. Comput. Inform. Syst. 2021, 30, 100512. [Google Scholar]
- El Nahry, A.H.; Mohamed, E.S. Potentiality of land and water resources in African Sahara: A case study of south Egypt. Environ. Earth Sci. 2011, 63, 1263–1275. [Google Scholar] [CrossRef]
- Palombi, L.; Sessa, R. Climate-Smart Agriculture: Source Book; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Adamides, G.; Kalatzis, N.; Stylianou, A.; Marianos, N.; Chatzipapadopoulos, F.; Giannakopoulou, M.; Papadavid, G.; Vassiliou, V.; Neocleous, D. Smart Farming Techniques for Climate Change Adaptation in Cyprus. Atmosphere 2020, 11, 557. [Google Scholar] [CrossRef]
- Patil, K.A.; Kale, N.R. A model for smart agriculture using IoT. In Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication, Jalgaon, India, 22–24 December 2016; IEEE: Jalgaon, India, 2016; pp. 543–545. [Google Scholar] [CrossRef]
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Shi, X.; An, X.; Zhao, Q.; Liu, H.; Xia, L.; Sun, X.; Guo, Y. State- of- the- Art Internet of Things in Protected Agriculture. Sensors 2019, 19, 1833. [Google Scholar] [CrossRef] [Green Version]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Yong, W.; Shuaishuai, L.; Li, L.; Minzan, L.; Ming, L.; Arvanitis, K.G.; Grorgieva, C.; Sigrimis, N. Smart Sensors from Ground to Cloud and Web Intelligence. IFAC Pap. OnLine 2018, 51, 31–38. [Google Scholar] [CrossRef]
- Mekala, M.S.; Viswanathan, P. A Survey: Smart agriculture IoT with cloud computing. In Proceedings of the 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Vellore, India, 10–12 August 2017; IEEE: Vellore, India, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Mittal, A.; Singh, A. Microcontroller based pest management system. In Proceedings of the Second International Conference on Systems (ICONS’07), Martinique, France, 22–28 April 2007; IEEE: Martinique, France, 2007; p. 43. [Google Scholar] [CrossRef]
- Bonneau, V.; Copigneaux, B. Industry 4.0 in Agriculture: Focus on IoT Aspects, European Commission, Digital Transformation Monitor. 2017. Available online: https://ec.europa.eu/growth/tools-databases/dem/monitor/content/industry-40-agriculture-focus-iot-aspects (accessed on 30 December 2020).
- King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.M.; Hill, J.P. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- Chandhini, K. A Literature Study on Agricultural Production System Using IoT as Inclusive Technology. Int. J. Innov. Technol. Res. 2016, 4, 2727–2731. [Google Scholar]
- Lang, L. GPS + GIS + remote sensing: An overview. Earth Obs. Mag. 1992, 1, 23–26. [Google Scholar]
- Batte, M.T.; VanBuren, F.N. Precision farming—Factor influencing productivity. In Proceedings of the Northern Ohio Crops Day Meeting, Wood County, OH, USA, 21 January 1999. [Google Scholar]
- Chen, F.; Kissel, D.E.; West, L.T.; Adkin, W.; Clark, R.; Rickman, D.; Luvall, J.C. Field Scale Mapping of Surface Soil Clay Concentration. Precis. Agric. 2004, 5, 7–26. [Google Scholar] [CrossRef]
- Muhammad, S.F.; Shamyla, R.; Adnan, A.; Tariq, U.; Yousaf, B.Z. Role of IoT Technology in Agriculture: A Systematic Literature Review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Chopra, G.; Jain, P.; Khatter, B. Pest Monitor and Control System Using Wireless Sensor Network (With Special Reference to Acoustic Device Wireless Sensor). In Proceedings of the International Conference on Electrical and Electronics Engineering, Khartoum, Sudan Goa, 26–28 August 2013. ISBN: 978-93-82208-58-7. [Google Scholar]
- Kong, Q.; Chen, H.; Mo, Y.L.; Song, G. Real-time monitoring of water content in sandy soil using shear mode piezoceramic transducers and active sensing-A feasibility study. Sensors 2017, 17, 2395. [Google Scholar] [CrossRef] [Green Version]
- García-Ramos, F.J.; Vidal, M.; Boné, A.; Malón, H.; Aguirre, J. Analysis of the Air Flow Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans Using a 3D Sonic Anemometer. Sensors 2012, 12, 7598–7613. [Google Scholar] [CrossRef] [Green Version]
- Moureaux, C.; Ceschia, E.; Arriga, N.; Béziat, P.; Eugster, W.; Kutsch, W.L.; Pattey, E. Eddy covariance measurements over crops. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Kumar, A.; Bhatia, A.; Fagodiya, R.K. Eddy covariance flux tower: A promising technique for greenhouse gases measurement. Adv. Plants Agric. Res. 2017, 7, 337–340. [Google Scholar]
- Yew, T.K.; Yusoff, Y.; Sieng, L.K.; Lah, H.C.; Majid, H.; Shelida, N. An electrochemical sensor ASIC for agriculture applications. In Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 26–30 May 2014; pp. 85–90. [Google Scholar]
- Cocovi-Solberg, D.J.; Rosende, M.; Miro, M. Automatic kinetic bioaccessibility assay of lead in soil environments using flow-through micro dialysis as a front end to electrothermal atomic absorption spectrometry. Environ. Sci. Technol. 2014, 48, 6282–6290. [Google Scholar] [CrossRef]
- Yunus, M.A.M.; Mukhopadhyay, S.C. Novel Planar Electromagnetic Sensors for Detection of Nitrates and Contamination in Natural Water Sources. IEEE Sens. J. 2011, 11, 1440–1447. [Google Scholar] [CrossRef]
- Millan-Almaraz, J.R.; Romero-Troncoso, R.J.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Carrillo-Serrano, R.V.; Osornio Rios, R.A.; Duarte-Galvan, C.; Rios-Alcaraz, M.A.; Torres Pacheco, I. FPGA-based fused smart sensor for real-time plant transpiration dynamic estimation. Sensors 2010, 10, 8316–8331. [Google Scholar] [CrossRef] [Green Version]
- Weiss, U.; Biber, P. Plant detection and mapping for agricultural robots using a 3D-LIDAR sensor. Robot. Auton. Syst. 2011, 59, 265–273. [Google Scholar] [CrossRef]
- Montagnoli, A.; Fusco, S.; Terzaghi, M.; Kirschbaum, A.; Pflugmacher, D.; Cohen, W.B.; Scippa, G.S.; Chiatante, D. Estimating forest aboveground biomass by low-density LiDAR data in mixed broad-leaved forests in the Italian Pre-Alps. For. Ecosyst. 2015, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Schuster, J.N.; Darr, M.J.; McNaull, R.P. Performance benchmark of yield monitors for mechanical and environmental influences. In Agricultural and Biosystems Engineering Conference Proceedings and Presentations; IOWA State University: Ames, IA, USA, 2017. [Google Scholar]
- Hemmat, A.; Binandeh, A.R.; Ghaisari, J.; Khorsandi, A. Development and field testing of an integrated sensor for on-the-go measurement of soil mechanical resistance. Sens. Actuators A Phys. 2013, 198, 61–68. [Google Scholar] [CrossRef]
- Murray, S.C. Optical Sensors Advancing Precision In Agricultural Production. Photonics Spectra 2018, 51, 48. [Google Scholar]
- Molina, I.; Morillo, C.; García-Meléndez, E.; Guadalupe, R.; Roman, M.I. Characterizing olive grove canopies by means of ground-based hemispherical photography and spaceborne RADAR data. Sensors 2011, 11, 7476–7501. [Google Scholar] [CrossRef]
- Andújar, D.; Ribeiro, Á.; Fernández-Quintanilla, C.; Dorado, J. Accuracy and feasibility of optoelectronic sensors for weed mapping in wide row crops. Sensors 2011, 11, 2304–2318. [Google Scholar] [CrossRef] [Green Version]
- Crabit, A.; Colin, F.; Bailly, J.S.; Ayroles, H.; Garnier, F. Soft water level sensors for characterizing the hydrological behaviour of agricultural catchments. Sensors 2011, 11, 4656–4673. [Google Scholar] [CrossRef]
- Mark, T.; Griffin, T. Defining the Barriers to Telematics for Precision Agriculture: Connectivity Supply and Demand. In Proceedings of the SAEA Annual Meeting, San Antonio, TX, USA, 6–9 February 2016. [Google Scholar]
- Dvorak, J.S.; Stone, M.L.; Self, K.P. Objct Detection for Agricultural and Construction Environments Using an Ultrasonic Sensor. J. Agric. Saf. Health 2016, 22, 107–119. [Google Scholar]
- Pajares, G.; Peruzzi, A.; Gonzalez-de-Santos, P. Sensors in agriculture and forestry. Sensors 2013, 13, 12132–12139. [Google Scholar] [CrossRef] [Green Version]
- Zhmud, V.A.; Kondratiev, N.O.; Kuznetsov, K.A.; Trubin, V.G.; Dimitrov, L.V. Application of ultrasonic sensor for measuring distances in robotics. J. Phys. Conf. Ser. 2018, 1015, 032189. [Google Scholar] [CrossRef] [Green Version]
- Yalew, S.G.; van Griensven, A.; Mul, M.L.; van der Zaag, P. Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Model Earth Syst. Environ. 2016, 2, 101. [Google Scholar] [CrossRef] [Green Version]
- Berntsen, J.; Thomsen, A.; Schelde, K.; Hansen, O.M.; Knudsen, L.; Broge, N.; Hougaard, H.; Horfarter, R. Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat. Precis. Agric. 2006, 7, 65–83. [Google Scholar] [CrossRef]
- Ferguson, R.B.; Hergert, G.W.; Schepers, J.S.; Gotway, C.A.; Cahoon, J.E.; Peterson, T.A. Site-specific nitrogen management of irrigated maize; Yield and soil residual nitrate effects. Soil Sci. Soc. Am. J. 2002, 66, 544–553. [Google Scholar]
- Fleming, K.L.; Westfall, D.G.; Bausch, W.C. Evaluating management zone technology and grid soil sampling for variable rate nitrogen application. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; pp. 1–13. [Google Scholar]
- Mallarino, A.P.; Wittry, D.J. Use of DGPS, yield monitors, soil testing and variable rate technology to improve phosphorus and potassium management. In Proceedings of the Integrated Crop Management Conference; Iowa State University Extension and Outreach: Ames, IA, USA, 1997; pp. 267–275. [Google Scholar]
- Ehlers, M. Geoinformatics and digital earth initiatives: A German perspective. Int. J. Digit. Earth 2008, 1, 17–30. [Google Scholar] [CrossRef]
- Ojo, O.I.; Ilunga, M.F. Geospatial Analysis for Irrigated Land Assessment Modeling and Mapping. In Multi-Purposeful Application of Geospatial Data; Rustamov, R.B., Ed.; IntechOpen: London, UK, 2018; pp. 65–84. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Holben, B.N.; Elgin, J.H., Jr.; McMurtrey, J.E., III. Relationship of spectral data to grain yield variation. Photogramm. Eng. Remote Sens. 1980, 46, 657–666. [Google Scholar]
- Muthumanickam, D.; Kannan, P.; Kumaraperumal, R.; Natarajan, S.; Sivasamy, R.; Poongodi, C. Drought assessment and monitoring through remote sensing and GIS in western tracts of Tamil Nadu, India. Int. J. Remote Sens. 2011, 32, 5157–5176. [Google Scholar] [CrossRef]
- Felix, R.; Clement, A.; Igor, S.; Oscar, R. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar]
- Chowdhury, M.E.H.; Khandakar, A.; Ahmed, S.; Al-Khuzaei, F.; Hamdalla, J.; Haque, F.; Reaz, M.B.I.; Shafei, A.A.; Emadi, N.A. Design, Construction and Testing of IoT Based Automated Indoor Vertical Hydroponics Farming Test-Bed in Qatar. Sensors 2020, 20, 5637. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Sudduth, K.A.; Hummel, J.W. Soil Organic Matter, CEC, and Moisture Sensing with a Portable NIR Spectrophotometer. Trans. ASAE 1993, 36, 1571–1582. [Google Scholar] [CrossRef]
- Daniel, K.; Tripathi, N.K.; Honda, K.; Apisit, E. Analysis of spectral reflectance and absorption patterns of soil organic matter. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2011. [Google Scholar]
- Kuang, B.; Mouazen, A.M. Non-biased prediction of soil organic carbon and total nitrogen with vis-NIR spectroscopy, as affected by soil moisture content and texture. Biosyst. Eng. 2013, 114, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Maleki, M.R.; Van Holm, L.; Ramon, H.; Merckx, R.; De Baerdemaeker, J.; Mouazen, A.M. Phosphorus Sensing for Fresh Soils using Visible and Near Infrared Spectroscopy. Biosyst. Eng. 2006, 95, 425–436. [Google Scholar] [CrossRef]
- Lvova, L.; Nadporozhskaya, M. Chemical sensors for soil analysis: Principles and applications. In Series Nanotechnology in the Agri-Food Industry; New Pesticides and Soil Sensors; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 10, pp. 637–678. [Google Scholar] [CrossRef]
- Potamitis, I.; Rigakis, I.; Tatlas, N.A.; Potirakis, S. In-Vivo Vibroacoustic Surveillance of Trees in the Context of the IoT. Sensors 2019, 19, 1366. [Google Scholar] [CrossRef] [Green Version]
- Sushil, S.; Radha Mohan, S.; Manhas, S.S.; Shiv Kumar, L. Potential of Variable Rate Application Technology in India. AMA Agric. Mech. Asia Afr. Lat. Am. 2014, 45, 74–89. [Google Scholar]
- Hassan, A.; Aitazaz, A.F.; Farhat, A.; Bishnu, A.; Travis, E. Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island. Sustainability 2020, 12, 2419. [Google Scholar] [CrossRef]
- Naorem, A.; Rani, A.; Roy, D.; Kundu, S.; Rao, N.S.; Sreekanth, P.D.; Kumar, A.; Manjaiah, A.M.; Rao, C.S. Frontier Soil Technologies for Sustainable Development Goals (SDGs) in India. In Challenges and Emerging Opportunities in Indian Agriculture; Rao, C.S., Senthil, V., Meena, P.C., Eds.; National Academy of Agricultural Research Management: Hyderabad, India, 2019; pp. 113–152. [Google Scholar]
- Luigi, L.M.; Emanuele, E.P.; Zibordi, M.; Morandi, B.; Muzzi, E.; Losciale, P.; Corelli, L.; Grappadelli, L.C. Monitoring Strategies for Precise Production of high quality Fruit and Yield in Apple in Emilia Romagna. Chem. Eng. Trans. 2015, 44, 301–306. [Google Scholar]
- Wang, Z.; Walsh, K.B.; Verma, B. On-tree mango fruit size estimation using RGB-D images. Sensors 2017, 17, 2738. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Mishachandar, B.; Vairamuthu, S. Crop Yield Estimation Using the Internet of Things. J. Inf. Knowl. Manag. 2021, 20, 2140006. [Google Scholar] [CrossRef]
- Olipa, N.L.; Lydia, M.C.; Chabala1, S.; Chizumba, S. Satellite-Based Crop Monitoring and Yield Estimation—A Review. J. Agric. Sci. 2021, 13, 180–194. [Google Scholar]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Martínez, J. Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors 2018, 18, 1731. [Google Scholar] [CrossRef] [Green Version]
- Dinkins, C.P.; Jones, C. Interpretation of Soil Test Results for Agriculture; MontGuide. Publication no. MT200702AG; Montana State University Extension: Bozeman, MT, USA, 2013. [Google Scholar]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Vågen, T.G.; Winowiecki, L.A.; Tondoh, J.E.; Desta, L.T.; Gumbricht, T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 2016, 263, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Othaman, N.N.C.; Md Isa, M.N.; Hussin, R.; Zakaria, S.M.M.S.; Isa, M.M. IoT Based Soil Nutrient Sensing System for Agriculture Application. Int. J. Nanoelectron. Mater. 2021, 14, 279–288. [Google Scholar]
- Ioana, M.; George, S.; Cristina, M.B.; Ana-Maria, D.; Marius, A.D. IoT Solution for Plant Monitoring in Smart Agriculture. In Proceedings of the IEEE 25th International Symposium for Design and Technology in Electronic Packaging, Cluj-Napoca, Romania, 23–26 October 2019; pp. 194–197. [Google Scholar]
- Pallavi, S.; Mallapur, J.D.; Bendigeri, K.Y. Remote sensing and controlling of greenhouse agriculture parameters based on IoT. In Proceedings of the International Conference on Big Data, IoT and Data Science (BID), Pune, India, 20–22 December 2017; pp. 44–48. [Google Scholar]
- Rubio, V.S.; Ma, F.R. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Luo, Y.; Sun, X.; Tang, D. Evaluation of a crop water stress index fordetecting water stress in winter wheat in the North China Plain. Agric. Water Manag. 2004, 64, 29–40. [Google Scholar] [CrossRef]
- Köksal, Ö.; Tekinerdogan, B. Architecture design approach for IoT-based farm management information systems. Precis. Agric. 2019, 20, 926–958. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Lavanya, G.; Rani, C.; Ganeshkumar, P. An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustain. Comput. Inform. Syst. 2020, 28, 100300. [Google Scholar] [CrossRef]
- Benincasa, P.; Antognelli, S.; Brunetti, L.; Fabbri, C.; Natale, A.; Sartoretti, V.; Vizzari, M. Reliability of NDVI Derived by High Resolution Satellite and UAV Compared to In-Field Methods for the Evaluation of Early Crop N Status and Grain Yield in Wheat. Exp. Agric. 2018, 54, 604–622. [Google Scholar] [CrossRef]
- Pinheiro Lisboa, I.; Melo Damian, J.; Roberto Cherubin, M.; Silva Barros, P.P.; Ricardo Fiorio, P.; Cerri, C.C.; Eduardo Pellegrino Cerri, C. Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf Tissue Nutrients in Fields Managed with Straw Removal. Agronomy 2018, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Suradhaniwar, S.; Kar, S.; Nandan, R.; Raj, R.; Jagarlapudi, A. Geo-ICDTs: Principles and Applications in Agriculture. In Geospatial Technologies in Land Resources Mapping, Monitoring and Management; Obi Reddy, G.P., Singh, S.K., Eds.; Geotechnologies and the Environment; Springer: Cham, Switzerland, 2018; Volume 21, pp. 75–99. [Google Scholar] [CrossRef]
- Colaço, A.F.; Molin, J.P. Variable rate fertilization in citrus: A long term study. Precis. Agric. 2017, 18, 169–191. [Google Scholar] [CrossRef]
- Bruno, B.; Benjamin, D.; Davide, C.; Andrea, P.; Francesco, M.; Luigi, S. Environmental and Economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci. Total Environ. 2016, 545–546, 227–235. [Google Scholar]
- Khan, N.; Medlock, G.; Graves, S.; Anwar, S. GPS Guided Autonomous Navigation of a Small Agricultural Robot with Automated Fertilizing System; SAE Technical Paper 2018-01-0031; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Raut, R.; Varma, H.; Mulla, C.; Pawar, V.R. Soil Monitoring, Fertigation, and Irrigation System Using IoT for Agricultural Application. In Intelligent Communication and Computational Technologies; Springer: Singapore, 2017; pp. 67–73. [Google Scholar]
- Briones, A.G.; Castellanos-Garzón, J.A.; Martín, Y.M.; Prieto, J.; Corchado, J.M. A Framework for Knowledge Discovery from Wireless Sensor Networks in Rural Environments: A Crop Irrigation Systems Case Study. Wirel. Commun. Mob. Comput. 2018, 2018, 6089280. [Google Scholar] [CrossRef] [Green Version]
- Villarrubia, G.; De Paz, J.F.; De La Iglesia, D.H.; Bajo, J. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation. Sensors 2017, 17, 1775. [Google Scholar] [CrossRef] [Green Version]
- Newlands, N.K. Model-Based Forecasting of Agricultural Crop Disease Risk at the Regional Scale, Integrating Airborne Inoculum, Environmental, and Satellite-Based Monitoring Data. Front. Environ. Sci. 2018, 6, 63. [Google Scholar] [CrossRef]
- Khattaba, A.S.; Habiba, E.D.; Ismail, H.; Zayanc, S.; Fahmya, Y.; Khairya, M.M. An IoT-based cognitive monitoring system for early plant disease forecast. Comput. Electron. Agric. 2019, 166, 105028. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Ramalingam, B.; Mohan, R.E.; Pookkuttath, S.; Gómez, B.F.; Sairam Borusu, C.S.C.; Wee Teng, T.W.; Tamilselvam, Y.K. Remote Insects Trap Monitoring System Using Deep Learning Framework and IoT. Sensors 2020, 20, 5280. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.; Shin, C. IoT-Based Strawberry Disease Prediction System for Smart Farming. Sensors 2018, 18, 4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, R.; Kathrine, G.; Jaspher, W.; Ramalakshmi, K. Internet of Things Based Pest Management Using Natural Pesticides for Small Scale Organic Gardens. J. Comput. Theor. Nanosci. 2018, 15, 2742–2747. [Google Scholar] [CrossRef]
- Ennouri, K.; Kallel, A. Remote Sensing: An Advanced Technique for Crop Condition Assessment. Math. Probl. Eng. 2019, 2019, 9404565. [Google Scholar] [CrossRef] [Green Version]
- Marinelli, M.C.; Scavuzzo, C.M.; Giobellina, B.L.; Scavuzzo, C.M. Geoscience and Remote Sensing on Horticulture as Support for Management and Planning. J. Agron. Res. 2019, 2, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Wietzke, A.; Westphal, C.; Gras, P.; Kraft, M.; Pfohl, K.; Karlovsky, P.; Pawelzik, E.; Tscharntke, T.; Smit, I. Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agric. Ecosyst. Environ. 2018, 258, 197–204. [Google Scholar] [CrossRef]
- Chung, S.O.; Choi, M.C.; Lee, K.H.; Kim, Y.J.; Hong, S.J.; Li, M. Sensing Technologies for Grain Crop Yield Monitoring Systems: A Review. J. Biosyst. Eng. 2016, 41, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Talaei, G.H.T.H.; Gholami, S.; Pishva, Z.K.; Dehaghi, M.A. Effects of Biological and Chemical Fertilizers Nitrogen on Yield Quality and Quantity in Cumin (Cuminum cyminum L.). J. Chem. Health Risks 2014, 4, 55–64. [Google Scholar]
- Singh, R.; Singh, G.S. Traditional agriculture: A climate-smart approach for sustainable food production. Energy Ecol. Environ. 2017, 2, 296–316. [Google Scholar] [CrossRef] [Green Version]
- Udomkun, P.; Nagle, M.; Argyropoulos, D.; Mahayothee, B.; Müller, J. Multi-sensor approach to improve optical monitoring of papaya shrinkage during drying. J. Food Eng. 2016, 189, 82–89. [Google Scholar] [CrossRef]
- Theopoulos, A.; Boursianis, A.; Koukounaras, A.; Samaras, T. Prototype wireless sensor network for real-time measurements in hydroponics cultivation. In Proceedings of the 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Akkaş, M.A.; Sokullu, R. An IoT-based greenhouse monitoring system with Micaz motes. Procedia Comput. Sci. 2017, 113, 603–608. [Google Scholar] [CrossRef]
- Kodali, R.K.; Jain, V.; Karagwal, S. IoT based smart greenhouse. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016. [Google Scholar] [CrossRef]
- Tripathy, P.K.; Tripathy, A.K.; Agarwal, A.; Mohanty, S.P. MyGreen: An IoT-Enabled Smart Greenhouse for Sustainable Agriculture. IEEE Consum. Electron. Mag. 2021, 10, 57–62. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Spíchal, L.; Panzarová, K.; Casa, R.; Colla, G. High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab? Front. Plant Sci. 2018, 9, 1197. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Djama, M.; Selvaperumal, S.; Abdulla, R. Automated smart hydroponics system using internet of things. Int. J. Electr. Comput. Eng. 2020, 10, 6389–6398. [Google Scholar] [CrossRef]
- Usman, N.; Arief, P.; Gilang, L.; Erfan, R.; Hendra, P. Implementation IoT in System Monitoring Hydroponic Plant Water Circulation and Control. Int. J. Eng. Technol. 2018, 7, 122–126. [Google Scholar]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, P.; Massa, D.; Venezia, A.; Cardi, T. Sensing Technologies for Precision Phenotyping in Vegetable Crops: Current Status and Future Challenges. Agronomy 2018, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Reynaud, H.; Canaguier, R.; Trtílek, M.; Panzarová, K.; et al. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato. Front. Plant Sci. 2019, 10, 47. [Google Scholar] [CrossRef]
- Zhou, J.; Reynolds, D.; Websdale, D.; Le Cornu, T.; Gonzalez Navarro, O.; Lister, C.; Orford, S.; Laycock, S.; Finlayson, G.; Stitt, T.; et al. Cropquant: An automated and scalable field phenotyping platform for crop monitoring and trait measurements to facilitate breeding and digital agriculture. bioRxiv 2017. [Google Scholar] [CrossRef] [Green Version]
- Bochtis, D.; Sørensen, C.A.G.; Kateris, D. Operations Management in Agriculture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Terence, S.; Purushothaman, G. Systematic review of Internet of Things in smart farming. Trans. Emerg. Telecommun. Technol. 2020, 31, e3958. [Google Scholar] [CrossRef]
- James, A.; Saji, A.; Nair, A.; Joseph, D. CropSense–A Smart Agricultural System using IoT. J. Electron. Des. Eng. 2019, 5, 1–7. [Google Scholar]
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The digitization of agriculture: A survey of research activities on smart farming. Array 2019, 3–4, 100009. [Google Scholar] [CrossRef]
- Ahmed, A.T.; El Gohary, F.; Tzanakakis, V.A.; Angelakis, A.N. Egyptian and Greek Water Cultures and Hydro-Technologies in Ancient Times. Sustainability 2020, 12, 9760. [Google Scholar] [CrossRef]
- Adebayo, S.; Ogunti, E.O.; Akingbade, F.K.; Oladimeji, O. A review of decision support system using mobile applications in the provision of day-to-day information about farm status for improved crop yield. Period. Eng. Nat. Sci. 2018, 6, 89–99. [Google Scholar] [CrossRef]
- Foster, A.D.; Mark, R.R. Microeconomics of technology adoption. Annu. Rev. Econ. 2010, 2, 395–424. [Google Scholar] [CrossRef] [Green Version]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.; Peter, N. Adoption of computer based information systems: The case of dairy farmers in Canterbury, NZ, and Florida, Uruguay. Comput. Electron. Agric. 2006, 50, 48. [Google Scholar] [CrossRef]
- Kimiti, J.M.; Odee, D.W.; Vanlauwe, B. Area under Grain Legumes Cultivation and Problems Faced by Smallholder Farmers in Legume Production in the Semi-Arid Eastern Kenya; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Khan, A.R.; Dubey, M.K.; Bisen, P.K.; Saxena, K.K. Constraints faced by farmers of Narsing Kheda village of Sihore district. Young 2007, 8, 16. [Google Scholar]
- Abdul Hakkim, V.M.; Abhilash Joseph, E.; Ajay Gokul, A.J.; Mufeedha, K. Precision Farming: The Future of Indian Agriculture. J. Appl. Biol. Biotechnol. 2016, 4, 068–072. [Google Scholar] [CrossRef] [Green Version]
- Fróna, D.; Szenderák, J.; Rákos, M.H. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef] [Green Version]
- Tzounisa, A.; Katsoulasa, N.; Bartzanasb, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Henriksen, A.V.; Edwards, T.C.G.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2019, 191, 60–84. [Google Scholar] [CrossRef]
- Roth, L.; Aasen, H.; Walter, A.; Liebisch, F. Extracting leaf area index using viewing geometry effects new perspective on high-resolution unmanned aerial system photography. ISPRS J. Photogramm. Remote Sens. 2018, 141, 161–175. [Google Scholar] [CrossRef]
- Chang, A.; Jung, J.; Maeda, M.; Landivar, J. Crop height monitoring with digital imagery from unmanned aerial system (UAV). Comput. Electron. Agric. 2017, 141, 232–237. [Google Scholar] [CrossRef]
- Barrero, O.; Perdomo, S.A. RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Precis. Agric. 2018, 19, 809–822. [Google Scholar] [CrossRef]
- Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3024–3031. [Google Scholar]
- Stroppiana, D.; Migliazzi, M.; Chiarabini, V.; Crema, A.; Musanti, M.; Franchino, C.; Villa, P. Rice yield estimation using multispectral data from UAV: A preliminary experiment in northern Italy. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4664–4667. [Google Scholar]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef]
- Duan, T.; Chapman, S.; Guo, Y.; Zheng, B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res. 2017, 210, 71–80. [Google Scholar] [CrossRef]
- Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, Z.; Li, Q.; Guo, L.; Chen, W.H. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166. [Google Scholar] [CrossRef]
- Jin, X.; Liu, S.; Baret, F.; Hemerl, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Faial, B.S.; Costa, F.G.; Pessin, G.; Ueyama, J.; Freitas, H.; Colombo, A.; Fini, P.H.; Villas, L.; Osrio, F.S.; Vargas, P.A.; et al. The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. J. Syst. Archit. 2014, 60, 393–404. [Google Scholar]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review. Agronomy 2022, 12, 748. [Google Scholar] [CrossRef]
- Kaneko, A.; Kennedy, T.W.; Mei, L.; Sintek, C.; Burke, M.; Ermon, S.; Lobell, D.B. Deep Learning for Crop Yield Prediction in Africa. In Proceedings of the International Conference on Machine Learning AI for Social Good Workshop, LongBeach, CA, USA, 10–15 June 2019. [Google Scholar]
- Oswal, N. Predicting rainfall using Machine Learning Techniques. arXiv 2019, arXiv:1910.13827. [Google Scholar]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Ouyang, H.; Wei, X.; Wu, Q. Agricultural commodity futures prices prediction via long- and short-term time series network. J. Appl. Econ. 2019, 22, 468–483. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, T.N.; Ghimire, S.; Mainali, B.; Gorjian, S.; Treiche, H.; Paudel, S.R. Applications of smart grid technology in Nepal: Status, challenges, and opportunities. Environ. Sci. Pollut. Res. 2022, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Kedri, J. Simulation and Validation of SPV Micro Grid Comprising 518.2 KWp Distributed Solar Power Plants at Dayalbagh Educational Institute. Ph.D. Thesis, Dayalbagh Educational Institute, Dayalbagh, Agra, India, 2014. [Google Scholar]
- Aslam, S.; Khalid, A.; Javaid, N. Towards Efficient Energy Management in Smart Grids Considering Microgrids with Day-ahead Energy Forecasting. Electr. Power Syst. Res. 2020, 182, 106232. [Google Scholar] [CrossRef]
Sensors | Applications | Working Procedure |
---|---|---|
Acoustic sensors | Pest monitoring and detection classifying seed varieties, fruit harvesting [36]. | Measuring the variations in noise level when intermingling with other materials, i.e., soil particles [37]. |
Airflow sensors | Measuring soil air permeability, moisture, and structure in a static position or mobile mode [38]. | Based on various soil properties, unique identifying signatures [38]. |
Eddy covariance-based sensors | Quantifying exchanges of CO2, water vapor, methane, or other gases. Measuring surface atmosphere and trace gas fluxes in various agricultural ecosystems [39]. | Measuring continuous flux over large areas [40]. |
Electrochemical sensors | To analyze soil nutrient levels and pH [41]. | Nutrients in soil, salinity, and pH are measured using sensors [42] |
Electromagnetic sensors | Recording electrical conductivity, electromagnetic responses, residual nitrates, and organic matter in soil [43]. | Electrical circuits measure the capability of soil particles to conduct or accumulate electrical charge [44]. |
Field programmable gate array (FAAA) based sensors | Measuring real-time plant transpiration, irrigation, and humidity [45]. | Programmable silicon chips and logic blocks are surrounded together by programmable interconnected resources of the digital circuit [46]. |
Light detection and ranging (LIDAR) | Land mapping, soil type determination, farm 3D modelling, erosion monitoring and soil loss, and yield forecasting [47]. | Sensors emit pulsed light waves and bounce off when colliding with objects and are returned to the sensor. The time taken for each pulse to return is used for assessment [47]. |
Mass flow sensors | Yield monitoring based on the amount of grain flow through a combine harvester [48]. | Sensing the mass flow of grain with modules, e.g., grain moisture sensor, data storage device, and an internal software [48] |
Mechanical sensors | Soil compaction or mechanical resistance | Sensors record the force assessed by strain gauges or load cells [48]. |
Optical sensors | Soil organic substances, soil moisture, color, minerals, composition, clay content, etc. Fluorescence-based optical sensors are used to supervise fruit maturation [49]. Integrating optical sensors with microwave scattering to characterize orchard canopies [50] | Sensors use light reflectance phenomena to measure changes in wave reflections [44]. |
Optoelectronic sensors | Differentiate plant types to detect weeds in wide-row crops [51]. | Sensors differentiate based on reflection spectra [51]. |
Soft water level-based (SWLB) sensors | Used in catchments to characterize hydrological behaviors (water level and flow, time-step acquisitions) [52] | Measuring rainfall, stream flow, and other water presence options [52]. |
Telematics sensors | Assessing location, travel routes, and machine and farm operation activities [53]. | Telecommunication between places (especially inaccessible points) [53]. |
Ultrasonic ranging sensors | Tank monitoring, spray distance measurement, uniform spray coverage, object detection, monitoring crop canopy [54], and weed detection [55]. | An ultrasonic sensor uses a transducer to send and receive ultrasonic pulses that relay information about an object’s proximity [56]. |
Remote sensing | Crop assessment, yield modeling, forecasting yield date, land cover and degradation mapping, forecasting, the identification of plants and pests, etc [57]. | Satellite-based sensor systems collect, process, and disseminate environmental data from fixed and mobile platforms [57]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. https://doi.org/10.3390/agriculture12101745
Dhanaraju M, Chenniappan P, Ramalingam K, Pazhanivelan S, Kaliaperumal R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture. 2022; 12(10):1745. https://doi.org/10.3390/agriculture12101745
Chicago/Turabian StyleDhanaraju, Muthumanickam, Poongodi Chenniappan, Kumaraperumal Ramalingam, Sellaperumal Pazhanivelan, and Ragunath Kaliaperumal. 2022. "Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture" Agriculture 12, no. 10: 1745. https://doi.org/10.3390/agriculture12101745
APA StyleDhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture, 12(10), 1745. https://doi.org/10.3390/agriculture12101745