Morphological Features of Winter Rape Cultivars Depending on the Applied Growth Stimulators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Research Area
2.2. The Research Factors
- I
- three morphotypes of winter oilseed rape:
- ▪
- population morphotype (Chrobry variety),
- ▪
- hybrid morphotype restored with a traditional type of growth (PT 271)
- ▪
- hybrid morphotype restored with a semi-dwarf growth type (PX 113)
- II
- four ways to use growth stimulants:
- ▪
- variant 1—control object—without the use of stimulators,
- ▪
- variant 2—organic preparation containing microorganisms as well as micro and macro elements (UGmax) used in the following autumn before sowing rape seeds, in doses of 0.9 dm3·ha−1. Microbiological preparation Ugmax was used, which includes yeast, lactic acid bacteria, photosynthetic bacteria, Azotobacter, Pseudomonas and Actinomycetes, and nutrients such as: potassium (3500 mg∙dm−3), nitrogen (1200 mg∙dm−3), sulphur (1000 mg∙dm−3), phosphorus (500 mg∙dm−3), sodium (200 mg∙dm−3), magnesium (100 mg∙dm−3), zinc (20 mg∙dm−3), manganese (0.3 mg∙ dm−3).
- ▪
- variant 3—biostimulator containing 13.0% P₂0₅ and 5.0% of potassium oxide (K₂O) (Rooter) applied in autumn in the 4–6 leaves phase (Biologische Bundesanstalt, Bundessortenamt und Chemical Industry—BBCH 13–15) in the doses of 1.0 dm3·ha−1
- ▪
- variant 4—biostimulator containing silicon (Optisil) used in autumn in the 4–6 leaf stage (BBCH 13–15) in doses of 0.50 dm3·ha−1.
2.3. Experimental Design
2.3.1. Soil Conditions
2.3.2. Fertilization
2.3.3. Sowing
2.3.4. Chemical Protection
2.3.5. Features of the Autumn Habit of the Plants
- ▪
- number of rosette leaves (pcs.)
- ▪
- root neck diameter (mm)
- ▪
- height of the growth cone (cm)
- ▪
- length of tap root (cm)
- ▪
- fresh weight of the above-ground part of 1 rosette (g)
- ▪
- dry weight of the above-ground part of 1 rosette (g)
- ▪
- fresh weight of the root system of 1 plant (g)
- ▪
- dry weight of the root system of 1 plant (g)
2.4. Statistical Analysis
2.5. Water Conditions
3. Results and Discussion
3.1. Largest Number of Rosette Leaves
3.2. Growth Cone
3.3. Length of the Tap Root
3.4. Diameter of the Root Neck
3.5. Fresh and Dry Mass of the Above-Ground Part of the Rosette and the Root System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement:
Data Availability Statement
Conflicts of Interest
References
- Bybordi, A. Effects of salinity on yield and component characters in canola (Brassica napus L.) cultivars. Not. Sci. Biol. 2010, 2, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Shahzadi, T.; Khan, F.A.; Zafar, F.; Ismail, A.; Amin, E.; Riaz, S. An overview of Brassica species for crop improvement. Am. Eurasian J. Agric. Environ. Sci. 2015, 15, 1568–1573. [Google Scholar] [CrossRef]
- Abdulkhaleq, D.A.; Hama, S.J.; Ahmad, R.M.; Tawfiq, S.I. Response of some Rapeseed (Brassica napus L.) varieties to Zn fertilizer Under Dryfarming Conditions. In Proceedings of the 2nd International Conference of Agricultural Sciences, Baqubah, Iraq, 17–18 August 2022; 2018; pp. 143–155. [Google Scholar]
- Kozak, M.; Wondołowska-Grabowska, A.; Serafin-Andrzejewska, M.; Gniadzik, M.; Kozak, M.K. Biostymulatory—wczoraj, dziś i jutro. W: Rolnictwo XXI wieku—problemy i wyzwania. Łuczycka, D. (red.). Idea Knowl. Future Wrocław 2016, 114–122. [Google Scholar]
- Rutkowska, A. Biostymulatory w nowoczesnej uprawie roślin. ZESZYT 2016, 48, 65–80. (In Polish) [Google Scholar] [CrossRef]
- Sharma, S.H.S.; Fleming, C.; SelBy, C.; Rao, J.R.; Trevo, R.M. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Le Van Duhamel, M.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Al-Suod, H.; Ligor, M.; Monedeiro, F.; Buszewski, B. Effects of growth conditions and cultivability on the content of cyclitols in Medicago sativa. Int. J. Environ. Sci. Technol. 2020, 18, 33–48. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Lugtenberg, B. (Ed.) Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture; Springer: Cham, Switzerland, 2015; pp. 1–15. [Google Scholar]
- Rouphael, Y.; Colla, G. Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Barbosa Filho, M.P.; Moreira, A.; Guimarães, C.M. Foliar fertilization of crop plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Kocoń, A. Foliar top dressing efficiency of winter wheat and rape of chosen fertilizers in optimal fertilization and soil moisture conditions. Ann. UMCS 2009, 64, 23–28. (In Polish) [Google Scholar] [CrossRef]
- Szewczuk, C.Z.; Sugier, D. General characteristics and types of foliar fertilizers offered on the Polish market. Ann. UMCS 2009, 64, 29–36. (In Polish) [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil. In World Soil Resources Reports; Field Experiment; Food and Agriculture Organization: Rome, Italy, 2014; Available online: http://www.fao.org (accessed on 1 February 2022).
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 2014, 31, 74–87. (In Polish) [Google Scholar]
- Gugała, M.; Sikorska, A.; Zarzecka, K.; Kapela, K.; Mystkowska, M. The effect of sowing method and biostimulators on autumn development and overwintering of winter rape. Acta Sci. Pol. Agric. 2017, 16, 111–120. [Google Scholar] [CrossRef]
- Wielebski, F.; Wójtowicz, M. Effect of date and density of sowing and weather conditions on growth in the autumn and winter survival of winter oilseed rape morfotypes with traditional and semidraft type of growth. Fragm. Agron. 2018, 35, 133–145. (In Polish) [Google Scholar] [CrossRef]
- Velička, R.; Pupalienė, R.; Butkevičienė, L.M.; Kriaučiūnienė, Z. Peculiarities of overwintering of hybrid and conventional cultivars of winter rapeseed depending on the sowing date. Acta Sci. Pol. Agric. 2012, 11, 53–66. [Google Scholar]
- Sikorska, A.; Gugała, M.; Zarzecka, K. The Effect of Foliar Nutrition with Sulphur and Boron, Amino Acids on Morphological Characteristics of Rosette and Wintering Winter Rape (Brassica napus L.). J. Ecol. Eng. 2019, 20, 190–197. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Szatkowski, A. The Effect of Autumn Foliar Fertilization on the Yield and Quality of Winter Oilseed Rape Seeds. Agronomy 2019, 9, 849. [Google Scholar] [CrossRef] [Green Version]
- Aisha, H.; Shafeek, M.R.A.; Mahmoud, R.; El-Desuki, M.A. Effect of Various Levels of Organic Fertilizer and Humic Acid on the Growth and Roots Quality of Turnip Plants (Brassica rapa). Curr. Sci. Int. 2014, 3, 7–14. [Google Scholar]
- Albayrak, S.; Çarnas, N. Effects of different levels and application times of humic acid on root and leaf yield components of forage turnip. J. Agron. 2005, 4, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Wenda-Piesik, A.; Hoppe, S. Evaluation of hybrid and population cultivars on standard and high-input technology in winter oilseed rape. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 678–689. [Google Scholar] [CrossRef]
- Kotecki, A.; Malarz, W.; Kozak, M.; Pogorzelec, A. The effect of plants’ location in a canopy on the growth and yield of rape hybrids and population cultivars. Part I. Plant morphology and seed yields. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wroclawiu. Rolnictwo 2007, 90, 7–39. [Google Scholar]
- Sikorska, A.; Gugała, M.; Zarzecka, K.; Kapela, K.; Mystkowska, I. The impact of agrotechnical factors on fresh and dry matter of oilseed rape (Brassica napus L.). J. Ecol. Eng. 2017, 18, 174–179. [Google Scholar] [CrossRef]
- Sikorska, A.; Gugała, M.; Zarzecka, K. The effect of the types of foliar feeding on fresh and dry winter rape mass (Brassica napus L.). Appl. Ecol. Environ. Res. 2019, 17, 7203–7211. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W. Response of different breeding forms of winter oilseed rape to date and density of sowing. I. Growth in the autumn and winter survival of plants. Rośliny Oleiste Oilseed Crop. 2007, 28, 177–194. (In Polish) [Google Scholar]
- Wielebski, F. Response of different types of winter oilseed rape varieties to various plant density in the field I. Seed yield and its components. Rośliny Oleiste Oilseed Crop. 2007, 28, 209–226. (In Polish) [Google Scholar]
- Gawrońska, H.; Przybysz, A.; Szalacha, E.; Słowiński, A. Physiological and molecular mode of action of Asahi SL biostimulator under optimal and stress conditions. In Biostimulators in Modern Agriculture, General Aspects; Gawronska, H., Ed.; Wieś Jutra: Warsaw, Poland, 2008; pp. 54–76. [Google Scholar]
- El-Sherbeny, S.E.; Hendawy, S.F.; Youssef, A.A.; Naguib, N.Y.; Hussein, M.S. Response of Turnip (Brassica rapa) Plants to Minerals or Organic Fertilizers Treatments. J. Appl. Sci. Res. 2012, 8, 628–634. [Google Scholar]
Years | Sielianinov Hydrothermal Coefficient * | Mean | ||
---|---|---|---|---|
VIII | IX | X | ||
2018 | 1.19 | 1.72 | 2.42 | 1.77 |
2019 | 2.20 | 1.22 | 0.89 | 1.43 |
2020 | 0.90 | 2.50 | 4.39 | 2.59 |
Cultivars | Years | WAYS TO USE GROWTH STIMULANTS | Mean | |||||
---|---|---|---|---|---|---|---|---|
OBJECTS | ||||||||
1. | 2. | 3. | 4. | |||||
2018–2019 | 2019–2020 | 2020–2021 | Control Variant | Organic Preparation UGmax | Biostimulator Rooter | Biostimulator Optisil | ||
Number of leaves per rosette (pcs.) | ||||||||
Chrobry | 10.1 | 9.0 | 10.7 | 9.3 a | 10.6 d | 10.2 de | 9.6 a | 9.9 a |
PT 271 | 9.5 | 8.2 | 9.8 | 8.6 b | 9.9 e | 9.3 a | 8.9 ab | 9.2 b |
PX 113 | 8.8 | 7.8 | 9.0 | 7.9 c | 8.9 ab | 8.7 b | 8.5 b | 8.5 c |
Mean | 9.5 a | 8.3 b | 9.8 c | 8.6 a | 9.8 b | 9.4 c | 9.0 d | - |
Height elevation of shoot apex (cm) | ||||||||
Chrobry | 2.33 | 2.15 | 2.22 | 2.27 | 2.29 | 2.22 | 2.16 | 2.23 a |
PT 271 | 2.16 | 2.10 | 2.13 | 2.06 | 2.14 | 2.16 | 2.17 | 2.13 b |
PX 113 | 2.17 | 2.13 | 2.08 | 2.04 | 2.13 | 2.18 | 2.13 | 2.12 b |
Mean | 2.22 a | 2.13 b | 2.14 b | 2.12 a | 2.19 a | 2.19 a | 2.15 a | - |
Pile root length (cm) | ||||||||
Chrobry | 21.26 | 19.43 | 23.54 | 20.20 | 22.70 | 21.79 | 20.96 | 21.41 a |
PT 271 | 20.27 | 18.28 | 22.49 | 19.09 | 21.51 | 20.68 | 20.10 | 20.34 b |
PX 113 | 18.64 | 17.82 | 20.48 | 18.10 | 19.94 | 19.67 | 18.20 | 18.98 c |
Mean | 20.06 a | 18.51 b | 22.17 c | 19.13 a | 21.39 b | 20.71 c | 19.75 a | |
Diameter of root collar (mm) | ||||||||
Chrobry | 8.53 | 8.03 | 9.03 | 8.39 a | 8.77 d | 8.61 g | 8.34 a | 8.53 a |
PT 271 | 7.97 | 7.65 | 8.18 | 7.80 bi | 8.07 e | 8.00 ef | 7.87 b | 7.93 b |
PX 113 | 7.75 | 7.53 | 7.97 | 7.58 c | 7.92 bf | 7.80 bi | 7.70 i | 7.75 c |
Mean | 8.08 a | 7.74 b | 8.39 c | 7.92 a | 8.25 b | 8.14 c | 7.97 d | |
Green matter of one plant (g) | ||||||||
Chrobry | 43.53 | 37.68 | 46.32 | 42.67 a | 44.19 d | 42.23 a | 40.96 h | 42.51 a |
PT 271 | 36.86 | 36.66 | 37.65 | 36.02 b | 38.21 e | 37.33 ei | 36.66 bi | 37.06 b |
PX 113 | 34.91 | 32.09 | 35.52 | 32.87 c | 35.91 f | 34.60 g | 33.31 c | 34.17 c |
Mean | 38.43 a | 35.48 b | 39.83 c | 37.19 a | 39.44 b | 38.06 c | 36.97 d | |
Dry matter of one plant (g) | ||||||||
Chrobry | 10.96 | 9.51 | 11.64 | 10.74 a | 11.22 d | 10.60 a | 10.24 g | 10.70 a |
PT 271 | 9.27 | 9.26 | 9.52 | 9.02 b | 9.68 e | 9.46 ei | 9.23 i | 9.35 b |
PX 113 | 8.88 | 8.16 | 8.95 | 8.38 c | 9.11 b | 8.73 f | 8.42 c | 8.66 c |
Mean | 9.70 a | 8.975 b | 10.04 c | 9.38 a | 10.00 b | 9.60 c | 9.30 d | |
Green matter of the root system of one plant (g) | ||||||||
Chrobry | 10.17 | 8.17 | 13.11 | 10.10 a | 10.92 d | 10.62 d | 10.28 a | 10.48 a |
PT 271 | 8.96 | 6.01 | 11.40 | 8.33 b | 9.44 e | 8.87 h | 8.51 bh | 8.79 b |
PX 113 | 7.22 | 5.10 | 8.33 | 6.52 c | 7.23 f | 7.03 fg | 6.73 cg | 6.88 c |
Mean | 8.78 a | 6.43 b | 10.94 c | 8.32 a | 9.20 b | 8.84 c | 8.51 d | |
Dry matter of the root system of one plant (g) | ||||||||
Chrobry | 2.63 | 1.68 | 3.27 | 2.41 | 2.82 | 2.50 | 2.37 | 2.53 a |
PT 271 | 2.19 | 2.19 | 2.83 | 1.91 | 2.29 | 2.10 | 3.32 | 2.41 b |
PX 113 | 1.69 | 1.08 | 2.09 | 1.51 | 1.77 | 1.63 | 1.58 | 1.62 c |
Mean | 2.17 a | 1.65 b | 2.73 a | 1.94 a | 2.29 a | 2.08 a | 2.42 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikorska, A.; Gugała, M.; Zarzecka, K.; Domański, Ł.; Mystkowska, I. Morphological Features of Winter Rape Cultivars Depending on the Applied Growth Stimulators. Agriculture 2022, 12, 1747. https://doi.org/10.3390/agriculture12101747
Sikorska A, Gugała M, Zarzecka K, Domański Ł, Mystkowska I. Morphological Features of Winter Rape Cultivars Depending on the Applied Growth Stimulators. Agriculture. 2022; 12(10):1747. https://doi.org/10.3390/agriculture12101747
Chicago/Turabian StyleSikorska, Anna, Marek Gugała, Krystyna Zarzecka, Łukasz Domański, and Iwona Mystkowska. 2022. "Morphological Features of Winter Rape Cultivars Depending on the Applied Growth Stimulators" Agriculture 12, no. 10: 1747. https://doi.org/10.3390/agriculture12101747
APA StyleSikorska, A., Gugała, M., Zarzecka, K., Domański, Ł., & Mystkowska, I. (2022). Morphological Features of Winter Rape Cultivars Depending on the Applied Growth Stimulators. Agriculture, 12(10), 1747. https://doi.org/10.3390/agriculture12101747