Shrimp-Waste-Derived Biochar Induces Metal Toxicity Tolerance of Wastewater-Irrigated Quinoa (Chenopodium quinoa)
Abstract
:1. Introduction
2. Material and Methods
2.1. Biochar Production and Characterization
2.2. Soil Characterization and Pot Experiment
2.3. Plant Analysis
2.4. Data Analysis
3. Results
3.1. Heavy Metals and Soil Quality Characteristics
3.2. Nutrient Uptake, Photosynthetic Pigments, and Quinoa Growth
3.3. Metals Concentrations in Quinoa Leaves and Seeds
3.4. Physiological Response of Quinoa Plants to Metal Toxicity and Biochar Addition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO/FAO. Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. In Proceedings of the Report of the Thirty Eight Session of the Codex Committee on Food Hygiene, Houston, TX, USA, 7 July 2013. [Google Scholar]
- Liu, Z.; Fei, Y.; Shi, H.; Mo, L.; Qi, J. Prediction of high-risk areas of soil heavy metal pollution with multiple factors on a large scale in industrial agglomeration areas. Sci. Total Environ. 2022, 808, 151874. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J. Heavy metal contamination of soils: Sources, indicators, and assessment. J. Environ. Indic. 2015, 9, 17–18. [Google Scholar]
- Singh, U.K.; Kumar, B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 2017, 174, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Eissa, M.A.; Negim, O.E. Heavy metals uptake and translocation by lettuce and spinach grown on a metal-contaminated soil. J. Soil. Sci. Plant Nut. 2018, 18, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.M.; Fu, R.B.; Liu, H.Q.; Guo, X.P. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. J. Clean. Prod. 2021, 286, 124989. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B. Reactive species and antioxidants. Redox biology in fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, S.E.; Liu, F.; Jensen, C.R. Does rootsourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci. Hortic. 2009, 122, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Rekaby, S.A.; Awad, M.; Majrashi, A.; Ali, E.F.; Eissa, M.A. Corn cob-derived biochar improves the growth of saline-irrigated quinoa in different orders of Egyptian soils. Horticulturae 2021, 7, 221. [Google Scholar] [CrossRef]
- Alandia, G.; Rodriguez, J.P.; Jacobsen, S.E.; Bazile, D.; Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Secur. 2020, 26, 100429. [Google Scholar] [CrossRef]
- Abbas, G.; Amjad, M.; Saqib, M.; Murtaza, B.; Asif Naeem, M.; Shabbir, A. Soil sodicity is more detrimental than salinity for quinoa (Chenopodium quinoa Willd.): A multivariate comparison of physiological, biochemical and nutritional quality attributes. J. Agron. Crop Sci. 2021, 207, 59–73. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chene, S.S.; Tsange, D.C.W.; Hashimotof, Y.; Houg, D.; Bolanh, N.S.; Rinklebeb, J.; Oka, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Azadi, N.; Raiesi, F. Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar 2021, 3, 485–498. [Google Scholar] [CrossRef]
- Ding, Z.; Alharbi, S.; Ali, E.F.; Ghoneim, A.M.; Hadi Al Fahd, M.; Wang, G.; Eissa, M.A. Effect of phosphorus-loaded biochar and nitrogen-fertilization on release kinetic of toxic heavy metals and tomato growth. Int. J. Phytoremediat. 2022, 24, 156–165. [Google Scholar] [CrossRef]
- Liu, D.; Ding, Z.; Ali, E.F.; Kheir, A.M.; Eissa, M.A.; Ibrahim, O.H. Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Sci. Rep. 2021, 11, 8739. [Google Scholar] [CrossRef]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedla´cek, P.; Bielska, L.; Soja, G. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- AL-Huqail, A.A. Biochar derived from cow bones and corn stalks reduced the release of Cd and Pb and the human health risk index of quinoa grown in contaminated soils. J. Soil. Sci. Plant Nutr. 2022. [Google Scholar] [CrossRef]
- Bashir, S.; Qayyum, M.A.; Husain, A.; Bakhsh, A.; Ahmed, N.; Hussain, M.B.; Elshikh, M.S.; Alwahibi, M.S.; Almunqedhi, B.M.A.; Hussain, R.; et al. Efficiency of different types of biochars to mitigate Cd stress and growth of sunflower (Helianthus; L.) in wastewater irrigated agricultural soil. Saudi. J. Biol. Sci. 2021, 28, 2453–2459. [Google Scholar] [CrossRef]
- Pokharel, P.; Ma, Z.; Chang, S.X. Biochar increases soil microbial biomass with changes in extra and intracellular enzyme activities: A global meta-analysis. Biochar 2020, 2, 65–79. [Google Scholar] [CrossRef]
- Mansyur, N.I.; Hanudin, E.; Purwanto, B.H.; Utami, S.N.H. The nutritional value of shrimp waste and its response to growth and n uptake efficiency by corn. IOP Conf. Ser. Earth Environ. Sci. 2021, 748, 012013. [Google Scholar] [CrossRef]
- Tarafdar, T.; Biswas, G. Extraction of chitosan from prawn shell wastes and examination of its viable commercial applications. Int. J. Theor. Appl. Res. Mech. Eng. 2013, 2, 2319–3182. [Google Scholar]
- Rattanamanee, A.; Niamsup, H.; Srisombat, L.O.; Punyodom, W.; Watanesk, R.; Watanesk, S. Role of chitosan on some physical properties and the urea controlled release of the silk fibroin/gelatin hydrogel. J. Polym. Environ. 2015, 23, 334–340. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Antonaya-Baena, M.F.; Sánchez-Zamora, M.A.; Molina-Soria, C. The amount of nitrogen applied and nutritional status of olive plants affect nitrogen uptake efficiency. Sci. Hortic. 2014, 167, 1–4. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Bhatnagar, A.; Bikiaris, D.N.; Kyzas, G.Z. Chitin adsorbents for toxic metals: A review. Int. J. Mol. Sci. 2017, 18, 114. [Google Scholar] [CrossRef] [Green Version]
- Matthiesen, M.K.; Larney, F.J.; Selinger, L.B.; Olson, A.F. Influence of loss-on-ignition temperature and heating time on ash content of compost and manure. Commun. Soil. Sci. Plant Anal. 2005, 36, 2561–2573. [Google Scholar] [CrossRef]
- Burt, R. Soil survey laboratory methods manual. In Soil Survey Investigations Report No. 42, Version 4.0; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Eissa, M.A.; Abeed, A.H. Growth and biochemical changes in quail bush (Atriplex lentiformis (Torr.) S. Wats) under Cd stress. Environ. Sci. Pollut. 2019, 26, 628–635. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations/World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps (Report no. 106). 2015. Rome, Italy. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 15 August 2022).
- Lindsay, W.L.; Norvell, W.A. Equilibrium relationships of Zn2+, Fe3+, Ca2+, and H+ with EDTA and DTPA in soils. Soil Sci. Soc. Am. J. 1969, 33, 62–68. [Google Scholar] [CrossRef]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological materials. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Wohlgemuth, H.; Mittelstrass, K.; Kschieschan, S.; Bender, J.; Weigel, H.J.; Overmyer, K.; Langebartels, C. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ. 2002, 25, 717–726. [Google Scholar] [CrossRef]
- Rodriguez-Serrano, M.; Romero-Puertas, M.C.; Zabalza, A.; Corpas, F.J.; Gomez, M.; DEL Rio, L.A.; Sandalio, L.M. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 2006, 29, 1532–1544. [Google Scholar] [CrossRef]
- Madhava, R.K.V.; Sresty, T.V.S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000, 157, 113–128. [Google Scholar] [CrossRef]
- Chen, G.; Asada, K. Inactivation of ascorbate peroxidase by thoils requires hydrogen peroxide. Plant Cell Physiol. 1992, 33, 117–123. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Water quality for agriculture. In Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29, p. 174. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Bashir, S.; Hussain, Q.; Akmal, M.; Riaz, M.; Hu, H.Q.; Ijaz, S.S.; Iqbal, M.; Abro, S.; Mehmood, S.; Ahmad, M. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. J. Soils Sediments 2018, 18, 874–886. [Google Scholar] [CrossRef]
- Picorel, R.; Alfonso, M.; Velitchkova, M. Editorial: Molecular basis of the response of photosynthetic apparatus to light and temperature stress. Front. Plant Sci. 2017, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Younis, U.; Malik, S.A.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Shah, M.H.R.; Rehman, R.A.; Ahmad, N. Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of cd uptake and physiological and biochemical attributes. Environ. Sci. Pollut. Res. 2016, 23, 21385–21394. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Control. Ser. 2017, 24, 12700–12712. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ibrahim, M.; Rehman, M.Z.; Abbas, T.; Ok, Y.S. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 2230–2248. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Hassan, A.; Khan, A.; Hussain, I.; Badar-u-Zaman, A.M.; Iqbal, M.; Soja, G.; Yosaf, S. The reduction of chromium, V.I. toxicity and phyto-availability to wheat (Trictum aestivum L.) using bacteria and biochar. Appl. Soil. Ecol. 2017, 114, 40–98. [Google Scholar] [CrossRef]
- Bashir, S.; Rehman, M.; Yousaf, M.; Salam, A.; Gulshan, A.B.; Iqbal, J.; Aziz, I.; Azeem, M.; Rukh, S. Asghar RMA Comparative efficiency of wheat straw and sugarcane bagasse biochar reduces the cadmium bioavailability to spinach and enhances the microbial activity in contaminated soil. Int. J. Phytorem. 2019, 21, 1098–1103. [Google Scholar] [CrossRef]
- Ho, S.H.; Zhu, S.; Chang, J.S. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Bioresour Technol. 2017, 246, 123–134. [Google Scholar] [CrossRef]
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Mahmood, A.; Rehman, M.Z.; Ibrahim, M.; Arshad, M.; Qayyum, M.F. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol. Environ. Saf. 2018, 148, 825–833. [Google Scholar] [CrossRef]
- Xu, Q.; Min, H.; Cai, S.; Fu, Y.; Sha, S.; Xie, K.; Du, K. Subcellular distribution and toxicity of cadmium in Potamogeton crispus L. Chemosphere 2012, 89, 114–120. [Google Scholar] [CrossRef]
- Afshan, S.; Ali, S.; Bharwana, S.A.; Rizwan, M.; Farid, M.; Abbas, F.; Ibrahim, M.; Mehmood, M.A.; Abbasi, G.H. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ. Sci. Pollut. Res. 2015, 22, 11679–11689. [Google Scholar] [CrossRef]
- Abbas, G.; Saqib, M.; Akhtar, J.; Murtaza, G. Physiological and biochemical characterization of Acacia stenophylla and Acacia albida exposed to salinity under hydroponic conditions. Can. J. For. Res. 2017, 47, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Sehrish, A.K.; Aziz, R.; Hussain, M.M.; Rafiq, M.T.; Rizwan, M.; Muhammad, N.; Rafiq, M.K.; Sehar, A.; Din, J.; Al-Wabel, M.I.; et al. Effect of poultry litter biochar on chromium (Cr) bioavailability and accumulation in spinach (Spinacia oleracea) grown in Cr-polluted soil. Arab. J. Geosci. 2019, 12, 57. [Google Scholar] [CrossRef]
- Shahbaz, A.K.; Lewińska, K.; Iqbal, J.; Ali, Q.; Iqbal, M.; Abbas, F.; Tauqeer, H.M.; Ramzani, P.M. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunfower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with diferent biochar and zeolite ratios. J. Environ. Manag. 2018, 218, 256–270. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.; Ghazi, S.M.; Shedeed, Z.A.; Doaa, M.N. Biochar mitigates cadmium stress on alfalfa seeds during germination. Int. J. Prog. Sci. Technol. 2018, 6, 251–261. Available online: http://ijpsat.es/index.php/ijpsat/article/view/227 (accessed on 15 August 2022).
- Kamran, M.; Malik, Z.; Parveen, A.; Huang, L.; Riaz, M.; Bashir, S.; Mustafa, A.; Abbasi, G.H.; Xue, B.; Ali, U. Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J. Plant Growth Regul. 2020, 39, 266–281. [Google Scholar] [CrossRef]
Organic-C (g kg−1) | pH | Salinity (dS m−1) | N (%) | P (%) | K (%) | Ca (%) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Cd (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
420 ± 16 | 7.86 ± 0.08 | 4.12 ± 0.28 | 5.2 ± 0.1 | 4.1 ± 0.2 | 3.5 ± 0.1 | 25 ± 3 | 70 ± 4 | 35 ± 4 | 6.2 ± 0.2 | 3.5 ± 0.1 | nd | nd |
Properties (Units) | Value |
---|---|
Texture | Sandy |
pH (1:2) | 7.80 ± 0.05 |
Organic Carbon (g kg−1) | 5.2 ± 0.2 |
Available N (mg kg−1) | 15 ± 1 |
Available P (Olsen) (mg kg−1) | 4.5 ± 0.1 |
Available K (mg kg−1) | 117 ± 10 |
Available Fe (mg kg−1) | 5.2 ± 0.3 |
Available Mn (mg kg−1) | 3.5 ± 0.2 |
Available Zn (mg kg−1) | 1.2 ± 0.1 |
Available Cu (mg kg−1) | 0.55 ± 0.08 |
Available Cd (mg kg−1) | not detected |
Available Pb (mg kg−1) | not detected |
Properties | Freshwater | Wastewater | * Permissible Limits |
---|---|---|---|
Organic carbon | - | 15 | |
Total soluble salts (dS m−1) | 0.55 ± 0.08 | 2.50 ± 0.12 | - |
pH | 7.23 ± 0.04 | 6.71 ± 0.06 | - |
Nitrogen (mg L−1) | - | 3.5 | |
Phosphorus (mg L−1) | - | 6.5 | |
Potassium (mg L−1) | - | 22 | |
Fe (mg L−1) | 0.05 ± 0.00 | 0.8 ± 0.1 | 5.0 |
Mn (mg L−1) | 0.04 ± 0.00 | 1.0 ± 0.2 | 0.2 |
Zn (mg L−1) | 0.07 ± 0.01 | 1.50 ± 0.32 | 2.0 |
Cu (mg L−1) | 0.03 ± 0.01 | 1.2 ± 0.03 | 0.2 |
Cd (mg L−1) | nd | 0.08 ± 0.02 | 0.01 |
Pb (mg L−1) | nd | 5.5 ± 0.2 | 5.0 |
Water Type | Treatments | pH | Organic-C (g kg−1) | Fe (mg kg−1) | Zn (mg kg−1) | Mn (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Cd (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
Freshwater | C | 7.82 ± 0.04 b | 5.3 ± 0.1 c | 5.0 ± 0.2 b | 1.2 ± 0.1 c | 3.2 ± ±0.1 d | 0.53 ± 0.04 c | nd | nd |
SWB1 | 7.88 ± 0.03 ab | 5.8 ± 0.2 b | 4.9 ± 0.2 b | 1.2 ± 0.2 c | 3.3 ± 0.1 d | 0.52 ± 0.05 c | nd | nd | |
SWB2 | 7.94 ± 0.02 a | 5.8 ± 0.1 b | 4.9 ± 0.3 b | 1.1 ± 0.1 c | 3.4 ± 0.1 d | 0.51 ± 0.09 c | nd | nd | |
Wastewater | C | 7.52 ± 0.06 c | 5.2 ± 0.2 c | 6.7 ± 0.2 a | 1.9 ± 0.2 a | 5.2 ± 0.2 a | 0.68 ± 0.05 a | 0.87 ± 0.14 a | 0.25 ± 0.03 a |
SWB1 | 7.81 ± 0.02 b | 6.2 ± 0.1 a | 5.3 ± 0.1 b | 1.6 ± 0.2 ab | 4.8 ± 0.1 b | 0.62 ± 0.07 b | 0.63 ± 0.09 b | 0.21 ± 0.06 b | |
SWB2 | 7.83 ± 0.01 b | 6.4 ± 0.2 a | 5.2 ± 0.1 b | 1.4 ± 0.3 b | 4.2 ± 0.2 c | 0.60 ± 0.08 b | 0.57 ± 0.08 c | 0.18 ± 0.04 c |
Water Type | Treatments | N | P | K | Ca |
---|---|---|---|---|---|
Available in Soil (mg kg−1) | |||||
Freshwater | C | 12 ± 1 c | 4.3 ± 0.2 c | 115 ± 8 d | 200 ± 12 f |
SWB1 | 20 ± 1 b | 8.9 ± 0.3 b | 170 ± 7 c | 250 ± 11 d | |
SWB2 | 24 ± 1 a | 9.5 ± 0.2 b | 180 ± 5 b | 300 ± 16 b | |
Wastewater | C | 15 ± 2 c | 5.2 ± 0.3 c | 118 ± 8 d | 210 ± 12 e |
SWB1 | 25 ± 3 a | 9.1 ± 0.4 b | 184 ± 7 b | 270 ± 11 c | |
SWB2 | 28 ± 2 a | 11.6 ± 0.3 a | 195 ± 5 a | 320 ± 16 a |
Water Type | Treatments | N | P | K | Ca |
---|---|---|---|---|---|
Shoot Concentrations (g kg−1) | |||||
Freshwater | C | 28 ± 2 c | 2.0 ± 0.1 c | 27 ± 1 c | 32 ± 3 c |
SWB1 | 34 ± 3 b | 2.8 ± 0.1 b | 33 ± 2 b | 38 ± 5 b | |
SWB2 | 38 ± 2 ab | 3.4 ± 0.1 a | 37 ± 2 a | 42 ± 4 a | |
C | 30 ± 1 c | 2.2 ± 0.1 c | 29 ± 1 c | 33 ± 1 c | |
Wastewater | SWB1 | 36 ± 3 b | 2.9 ± 0.1 b | 34 ± 2 b | 39 ± 3 b |
SWB2 | 40 ± 3 a | 3.6 ± 0.1 a | 39 ± 2 a | 43 ± 3 a |
Water Type | Treatments | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | Cu (mg kg−1) | Pb (mg kg−1) | Cd (mg kg−1) |
---|---|---|---|---|---|---|---|
Freshwater | C | 169 ± 15 c | 87 ± 0.1 c | 67 ± 2 d | 53 ± 3 c | nd | nd |
SWB1 | 168 ± 24 c | 86 ± 0.2 c | 70 ± 2 d | 52 ± 4 c | nd | nd | |
SWB2 | 170 ± 23 c | 88 ± 0.1 c | 71 ± 3 d | 51 ± 2 c | nd | nd | |
Wastewater | C | 220 ± 17 a | 97 ± 0.2 a | 90 ± 5 a | 70 ± 3 a | 0.52 ± 0.10 a | 0.38 ± 0.08 a |
SWB1 | 212 ± 18 b | 91 ± 0.2 b | 85 ± 4 b | 64 ± 4 b | 0.46 ± 0.10 b | 0.25 ± 0.07 b | |
SWB2 | 210 ± 22 b | 90 ± 0.3 b | 79 ± 3 c | 62 ± 3 b | 0.19 ± 0.12 c | 0.14 ± 0.06 c | |
MPV | 425 | 100 | 99 | 73 | 0.30 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousa, M.A.A.; Abo-Elyousr, K.A.M.; Ibrahim, O.H.M.; Alshareef, N.O.; Eissa, M.A. Shrimp-Waste-Derived Biochar Induces Metal Toxicity Tolerance of Wastewater-Irrigated Quinoa (Chenopodium quinoa). Agriculture 2022, 12, 1748. https://doi.org/10.3390/agriculture12111748
Mousa MAA, Abo-Elyousr KAM, Ibrahim OHM, Alshareef NO, Eissa MA. Shrimp-Waste-Derived Biochar Induces Metal Toxicity Tolerance of Wastewater-Irrigated Quinoa (Chenopodium quinoa). Agriculture. 2022; 12(11):1748. https://doi.org/10.3390/agriculture12111748
Chicago/Turabian StyleMousa, Magdi A. A., Kamal A. M. Abo-Elyousr, Omer H. M. Ibrahim, Nouf Owdah Alshareef, and Mamdouh A. Eissa. 2022. "Shrimp-Waste-Derived Biochar Induces Metal Toxicity Tolerance of Wastewater-Irrigated Quinoa (Chenopodium quinoa)" Agriculture 12, no. 11: 1748. https://doi.org/10.3390/agriculture12111748
APA StyleMousa, M. A. A., Abo-Elyousr, K. A. M., Ibrahim, O. H. M., Alshareef, N. O., & Eissa, M. A. (2022). Shrimp-Waste-Derived Biochar Induces Metal Toxicity Tolerance of Wastewater-Irrigated Quinoa (Chenopodium quinoa). Agriculture, 12(11), 1748. https://doi.org/10.3390/agriculture12111748