Titanium Organic Complex Improves Pollination and Fruit Development of Remontant Strawberry Cultivars under High-Temperature Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Weather Conditions during the Flowering Period
2.3. Experiment Design
2.4. Observation and Measurements
2.4.1. Pollen Quality
2.4.2. Effectiveness of Pollination
2.4.3. Fruit Quality
2.4.4. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Pollen Quality
3.3. Effectiveness of Pollination
3.4. Fruit Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieniek, A.; Dragańska, E.; Pranckietis, V. Assesment of climatic conditions for Actinidia arguta cultivation in north-eastern Poland. Zemdirb.-Agric. 2016, 103, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Kostecka, M.; Szot, I.; Czernecki, T.; Szot, P. Vitamin C content of new ecotypes of cornelian cherry (Cornus mas L.) determined by various analytical methods. Acta Sci. Pol. Hortorum Cultus 2017, 16, 53–61. [Google Scholar] [CrossRef]
- Celejewska, K.; Mieszczakowska-Frąc, M.; Konopacka, D.; Krupa, T. The Influence of Ultrasound and Cultivar Selection on the Biocompounds and Physicochemical Characteristics of Dried Blueberry (Vaccinium corymbosum L.) Snacks. J. Food. Sci. 2018, 83, 2305–2316. [Google Scholar] [CrossRef]
- Bieniasz, M.; Dziedzic, E.; Słowik, G. Biological features of flowers influence the fertility of Lonicera spp. cultivars. Hortic. Environ. Biotechnol. 2019, 60, 155–166. [Google Scholar] [CrossRef]
- Orzeł, A.; Król-Dyrek, K.; Jagła, J.; Lech, W.; Bieniasz, M.; Krośniak, M. Recent progress in Polish black raspberry breeding at the Niwa Berry Breeding Ltd. Acta Hortic. 2019, 1277, 55–64. [Google Scholar] [CrossRef]
- Bieniasz, M.; Małodobry, M.; Dziedzic, E. Estimation of yielding and fruit quality of nine strawberry cultivars. Acta Hortic. 2010, 926, 157–162. [Google Scholar] [CrossRef]
- Wysocki, K.; Kopytowski, J.; Bieniek, A.; Bojarska, J. The effect of substrates on yield and quality of strawberry fruits cultivated in a heated foil tunnel. Zemdirb.-Agric. 2017, 104, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, D.; Kruczynska, E.; Zurawicz, E. Quality and Shelf Life of Strawberry Cultivars in Poland. Acta Hortic. 2006, 708, 329–332. [Google Scholar] [CrossRef]
- Jouquand, C.; Chandler, C.K.; Plotto, A.; Goodner, K. A sensory and chemical analysis of fresh strawberries over harvest dates and seasons reveals factors that affect eating quality. J. Amer. Soc. Hort. Sci. 2008, 133, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Hummer, K.E.; Hancock, J.F. Strawberry genomics: Botanical history, cultivation, traditional breeding, and new technologies. In Genetics and Genomics of Rosaceae, Plant Genetics and Genomic: Crops and Models 6, 1st ed.; Folta, K., Gardiner, S.E., Eds.; Science + Business Media, LLC: New York, NY, USA, 2009; pp. 413–435. [Google Scholar]
- Slovin, J.; Michael, T. Strawberry. Part 3 structural and functional genomics. In Genetics, Genomics and Breeding of Berries, 1st ed.; Folta, K., Kole, C., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 162–193. [Google Scholar]
- Ruan, J.; Lee, Y.H.; Hong, S.J.; Yeoung, Y.R. Sugar and organic acid contents of day-neutral and ever-bearing strawberry cultivars in high-elevation for summer and autumn fruit production in Korea. Hortic. Environ. Biotechnol. 2013, 54, 214–222. [Google Scholar] [CrossRef]
- Zydlik, Z.; Pacholak, E.; Rutkowski, K.; Styła, K.; Zydlik, P. The influence of a mycorrhizal vaccine on the biochemical properties of soil in the plantation of blueberry. Zemdirb.-Agric. 2016, 103, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzciński, P.; Głuszek, S.; Rudnicka, J. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 2019, 29, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Tomala, K. Effects of calcium sprays on storage quality of ‘Šampion’ apples. Acta Hortic. 1997, 448, 59–66. [Google Scholar] [CrossRef]
- Bieniasz, M.; Małodobry, M.; Dziedzic, E. The effect of foliar fertilization with calcium on quality of strawberry cultivars ‘Luna’ and ‘Zanta’. Acta Hortic. 2012, 926, 457–461. [Google Scholar] [CrossRef]
- Walkowiak-Tomczak, D.; Idaszewska, N.; Łysiak, G.P.; Bieńczak, K. The Effect of Mechanical Vibration during Transport under Model Conditions on the Shelf-Life, Quality and Physico-Chemical Parameters of Four Apple Cultivars. Agronomy 2021, 11, 81. [Google Scholar] [CrossRef]
- Staudt, G.S. The species of Fragaria, their taxonomy and geographical distribution. Acta Hortic. 1989, 265, 23–33. [Google Scholar]
- Staudt, G.S. Systematics and Geographic Distribution of the American Strawberry Species: Taxonomic Studies in the Genus Fragaria (Rosaceae: Potentilleae), 1st ed.; University of California Press: Berkeley, CA, USA, 1999. [Google Scholar]
- Staudt, G.S. Notes on Asiatic Fragaria species: Fragaria nilgerrensis Schltdl. Ex. J. Gay. Bot. Jahrb. Syst. 1999, 121, 297–310. [Google Scholar]
- Staudt, G. Taxonomic studies in the genus Fragaria typification of Fragaria species known at the time of Linnaeus. Can. J. Bot. 1962, 40, 869–886. [Google Scholar] [CrossRef]
- Hancock, J.F.; Sjulin, T.M.; Lobos, G.A. Strawberries. In Temperate Fruit Crop Breeding, 1st ed.; Hancock, J.F., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 393–437. [Google Scholar]
- Bradford, E.; Hancock, J.F.; Warner, J.; Ryan, M. Interactions of Temperature and Photoperiod Determine Expression of Repeat Flowering in Strawberry. Amer. Soc. Hort. Sci. 2010, 135, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Guttridge, G.C. Fragaria·ananassa. In CRC Handbook of Flowering, 1st ed.; Halevy, A.H., Ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 16–33. [Google Scholar]
- Sønsteby, O.; Heide, M. Flowering performance and yield of established and recent strawberry cultivars (Fragaria × ananassa) as affected by raising temperature and photoperiod. J. Hortic. Sci. Biotechnol. 2017, 92, 367–375. [Google Scholar] [CrossRef]
- Ledesma, N.A.; Kawabata, S. Responses of two strawberry cultivars to severe high temperature stress at different flower development stages. Sci. Hortic. 2016, 211, 319–327. [Google Scholar] [CrossRef]
- Carew, J.G.; Morretini, M.; Battey, N.H. Misshapen Fruits in Strawberry. Small Fruits Rev. 2003, 2, 37–50. [Google Scholar] [CrossRef]
- Żebrowska, J. Factors affecting pollen grain viability in the strawberry (Fragaria × ananassa Duch.). J. Hort. Sci. 1997, 72, 213–219. [Google Scholar] [CrossRef]
- Free, J.B. Insect Pollination of Crops., 1st ed.; Academic Press: London, UK, 1993. [Google Scholar]
- Cui, M.; Pham, M.D.; Hwang, H.; Chun, C. Flower development and fruit malformation in strawberries after short-term exposure to high or low temperature. Sci. Hortic. 2021, 288, 110308. [Google Scholar] [CrossRef]
- Izhar, S. Infra short-day strawberry types. Acta Hortic. 1997, 439, 155–160. [Google Scholar] [CrossRef]
- Pais, I. The biological importance of titanium. J. Plant Nutr. 1983, 6, 3–131. [Google Scholar] [CrossRef]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a beneficial element for crop production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, P. Vigor and nutrition of apple trees in nursery as influenced by titanium sprays. J. Plant Nutr. 2002, 25, 1129–1138. [Google Scholar] [CrossRef]
- Kováčik, P.; Šimanský, V.; Wierzbowska, J.; Renčo, M. Impact of foliar application of biostimulator Mg-Titanit on formation of winter oilseed rape phytomass and its titanium content. J. Elem. 2016, 21, 1235–1251. [Google Scholar] [CrossRef]
- Ochmian, I.; Gajkowski, J.; Skupień, K. Influence of three biostimulators on growth, yield and fruit chemical composition of ‘Polka’ raspberry. In Biostimulators in Modern Agriculture. Fruit Crops, 1st ed.; Sadowski, A., Ed.; Plantpress: Warszawa, Poland, 2008; pp. 68–75. [Google Scholar]
- Dobromilska, R. Wpływ stosowania Tytanitu na wzrost pomidora drobnoowocowego. Rocz. AR Pozn. 383 Ogrod. 2007, 41, 451–454. [Google Scholar]
- Kováčik, P.; Wiśniowska-Kielian, B.; Smoleń, S. Effect of application of Mg-Tytanit stimulator on winter wheat yielding and quantitative parameters of wheat straw and grain. J. Elem. 2018, 23, 697–708. [Google Scholar] [CrossRef]
- Szparaga, A.; Kocira, S.; Kocira, A.; Czerwińska, E.; Świeca, M.; Lorencowicz, E.; Kornas, R.; Koszel, M.; Oniszczuk, T. Modification of Growth, Yield, and the Nutraceutical and Antioxidative Potential of Soybean Through the Use of Synthetic Biostimulants. Front. Plant Sci. 2018, 9, 1401. [Google Scholar] [CrossRef]
- Dyki, B.; Borkowski, J.; Łękowska-Ryk, E.; Doruchowski, R.W.; Panek, E. Influence of the Tytanit compound on fertilization and stimulation of seed development in cucumber and tomato. Mendel. Centen. Congr. Brno. Check Repub. 2000, 115, 7–10. [Google Scholar]
- Bieniasz, M.; Konieczny, A. The Effect of Titanium Organic Complex on Pollination Process and Fruit Development of Apple cv. Topaz. Agronomy 2021, 11, 2591. [Google Scholar] [CrossRef]
- Janas, R.; Kołosowski, S.; Szafirowska, A. Effect of titanium on yield and seed health status of solanaceous vegetables. In Proceedings of the International Seed Health Conference PTFiT, Radzików, Poland, 9–11 October 2000. Abstracts 28. [Google Scholar]
- Radkowski, A.; Radkowska, I.; Lemek, T. Effects of foliar application of titanium on seed yield in timothy (Phleum pratense L.). Ecol. Chem. Eng. S 2015, 22, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Kardasz, H.; Czaja, T.; Węglarz, A. A Titanium-Containing Formulation, a Method of the Preparation of a Titanium-Containing Formulation, and Use of the Titanium-Containing Formulation in the Cultivation of plants. International Patent No. WO 2015/016724, 2 February 2015. [Google Scholar]
- Dziedzic, E.; Bieniasz, M.; Kowalczyk, B. Morphological and physiological features of sweet cherry floral organ affecting the potential fruit crop in relation to the rootstock. Sci. Hortic. 2019, 251, 127–135. [Google Scholar] [CrossRef]
- Martin, F. Staining and observing pollen tubes by means of fluorescens. Stain. Technol. 1959, 34, 125. [Google Scholar] [CrossRef]
- Jaboor, S.K.; da Silva, C.R.B.; Kellermann, V. The effect of environmental temperature on bee activity at strawberry farms. Austral Ecol. 2022, 47, 1470–1479. [Google Scholar] [CrossRef]
- Cooper, P.D.; Schaffer, W.M.; Buchmann, S.L. Temperature Regulation of Honey Bees (Apis mellifera) Foraging in the Sonoran Desert. J. Exp. Biol. 1985, 114, 1–15. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Adgaba, N.; Tadesse, Y.; Getachew, A.; Al-Maktary, A.A. Comparative study on the dynamics and performances of Apis mellifera jemenitica and imported hybrid honeybee colonies in southwestern Saudi Arabia. Saudi. J. Biol. Sci. 2017, 24, 1086–1093. [Google Scholar] [CrossRef]
- Kenna, D.; Pawar, S.; Gill, R.J. Thermal flight performance reveals impact of warming on bumblebee foraging potential. Funct. Ecol. 2021, 35, 2508–2522. [Google Scholar] [CrossRef]
- Paydas, S.; Eti, S.; Kaftanglu, O.; Yasa, E.; Derin, K. Effects of pollination of strawberries grown in plastic greenhouses by honeybees and bumblebees on the yield and quality of the fruits. Acta Hortic. 2000, 513, 443–451. [Google Scholar] [CrossRef]
- Zaitoun, S.T.; Al_Ghzawi, A.A.; Shannag, H.K.; Al-Tawaha, A.R.M. Comparative study on the pollination of strawberry by bumble bees and honeybees under plastic house conditions in Jordan valley. J. Food Agric. Envi. 2006, 4, 237. [Google Scholar]
- Kaczmarska, E.; Dobrowolska, A.M.; Hortyński, J.A. The influence of pollen viability on seed set and fruit mass in strawberry [Fragaria x ananasa Duch.]. Acta Agrobot. 2008, 61, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Talukder, A.S.M.H.M.; McDonald, G.K.; Gill, G.S. Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Res. 2014, 160, 54–63. [Google Scholar] [CrossRef]
- Young, L.W.; Wilen, R.W.; Bonham-Smith, P.C. High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 2004, 55, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Erickson, A.N.; Markhart, A.H. Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. Journal of the Am.Soc. for Hort. Sci. 2001, 126, 697–702. [Google Scholar] [CrossRef]
- Gross, Y.; Kigel, J. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Res. 1994, 36, 201–212. [Google Scholar] [CrossRef]
- Ledesma, N.A.; Sugiyama, N. Pollen quality and performance in strawberry plants exposed to high-temperature stress. J. Amer.Soc. Horti Sci. 2005, 130, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Karapatzak, E.K.; Wagstaffe, A.; Hadley, P.; Battey, N.H. High-temperature-induced reductions in cropping in everbearing strawberries (Fragaria × ananassa) are associated with reduced pollen performance. Ann. Appl. Biol. 2012, 161, 255–265. [Google Scholar] [CrossRef]
- Ortega, E.; Dicenta, F.; Egea, J. Rain effect on pollen–stigma adhesion and fertilization in almond. Sci. Hortic. 2007, 112, 345–348. [Google Scholar] [CrossRef]
- Maji, S.; Das, A.; Nath, R.; Bandopadhyay, P.; Das, R.; Gupta, S. Cool season food legumes in rice fallows: An Indian perspective. In Agronomic Crops, 1st ed.; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019; pp. 561–605. [Google Scholar]
- Mudge, K.W.; Narayanan, K.R.; Poovaiah, B.W. Control of Strawberry Fruit Set and Development with Auxins. J. Am. Soc. Hort. Sci. 1981, 106, 80–84. [Google Scholar] [CrossRef]
- Ariza, M.T.; Reboredo-Rodríguez, P.; Cervantes, L.; Soria, C.; Martínez-Ferri, E.; González-Barreiro, C.; Simal-Gándara, J. Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs. Food Chem. 2018, 248, 155–165. [Google Scholar] [CrossRef]
- Webb, R.A.; Purves, J.V.; White, B.A. The components of fruit size in strawberry. Sci. Hort. 1974, 2, 165–174. [Google Scholar] [CrossRef]
Cultivar | Pollen Viability (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | ||||||||||
VII | VIII | IX | X | VII | VIII | IX | X | VII | VIII | IX | X | |
‘Murano’ | 99.1 a | 70.3 a | 89.1a | 79.6 a | 90.3 a | 89.9 a | 89.4 a | 90.0 a | 98.9 a | 81.1 a | 79.5 a | 84.5 a |
‘Murano’ + T | 100.0 a | 83,2 b | 90.2 b | 93.1 b | 98.2 b | 93.2 b | 97.2 b | 92.2 a | 99.2 a | 93.2 b | 98.0 b | 91.3 b |
‘St Andreas’ | 99.3 a | 79.1 a | 92.3 a | 89.1 a | 95.4 a | 79.0 a | 90.1 a | 95.2 a | 91.3 a | 86.1 a | 92.1 a | 89.4 a |
‘St Andreas’ + T | 99.8 a | 89.7b | 94.5 a | 92.9 b | 95.1 a | 87.2 b | 98.4 b | 98.4 a | 93.4 a | 85.2 a | 97.4 a | 94.0 b |
‘Albion’ | 96,3 a | 77.9 a | 92.3 a | 83.4 a | 91.0 a | 83.4 a | 73.8 a | 93.6 a | 90.9 a | 80.6 a | 87.3 a | 86.3 a |
‘Albion’ + T | 99.3 a | 87.4b | 99.5b | 97.1 b | 92. 3a | 89.6 b | 89.2 b | 98.2 a | 97.7 a | 90.2 b | 91.3 b | 95.0 b |
Pollen Germination (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | ||||||||||
Cultivar | VII | VIII | IX | X | VII | VIII | IX | X | VII | VIII | IX | X |
‘Murano’ | 89.3 a | 45.2 a | 88.3 a | 90.1 a | 81.1 a | 41.0 a | 71.7 a | 80.0 a | 87.6 a | 40.8 a | 77.0 a | 73.2 a |
‘Murano’ + T | 94.1 b | 52.9 b | 92.7 b | 98.6 b | 89.6 b | 48.9 b | 80.1 b | 86.3 b | 88.2 a | 57.2 b | 83.6 b | 89.1 b |
‘St Andreas’ | 85.1 a | 41.2 a | 90.4 a | 91.4 a | 86.2 a | 40.0 a | 74.0 a | 83.5 a | 86.2 a | 41.4 a | 74.2 a | 88.7 a |
‘St Andreas’ + T | 94.8 b | 48.2 b | 97.4 b | 98.2 b | 88.8 a | 51.1 b | 88.6 b | 90.1 b | 89.6 a | 49.2 b | 87.2 b | 98.2 b |
‘Albion’ | 89.2 a | 48.4 a | 87.4 a | 90.0 a | 85.6 a | 43.8 a | 75.3 a | 43.8 a | 83.8 a | 42.2 a | 72.7 a | 87.6 a |
‘Albion’ + T | 89.8 a | 56.2 b | 89.9 a | 96.8 b | 89.9 b | 49.2 b | 85.2 b | 49.9 b | 84.6 a | 54.9 b | 84.8 b | 94.7 b |
Average Number of Pollen Grains Germinating on a Stigma (pcs.) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | ||||||||||
Culivar | VII | VIII | IX | X | VII | VIII | IX | X | VII | VIII | IX | X |
‘Murano’ | 8.1 a | 1.3 a | 10.9 a | 10.2 a | 11.2 a | 1.3 a | 10.1 a | 9.2 a | 10.4 a | 1.2 a | 8.9 a | 7.2 a |
‘Murano’ + T | 18.2 b | 9.8 b | 18.7 b | 17.8 b | 16.5 b | 7.8 b | 15.6 b | 13.7 b | 15.7 b | 6.9 b | 9.9 a | 10.6 b |
‘St Andreas’ | 13.5 a | 1.5 a | 11.5 a | 13.2 a | 12.1 a | 2.4 a | 9.7 a | 8.8 a | 10.2 a | 2.2 a | 8.4 a | 9.8 a |
‘St Andreas’ + T | 16.6 b | 8.6 b | 18.6 b | 18.5 b | 18.5 b | 9.9 b | 16.6 b | 15.1 b | 17.2 b | 8.9 b | 14.7 b | 15.1 b |
‘Albion’ | 11.1 a | 1.8 a | 15.3 a | 11.0 a | 12.8 a | 3.2 a | 7.8 a | 7.9 a | 9.8 a | 3.0 a | 10.7 a | 11.0 a |
‘Albion’ + T | 18.5 b | 9.8 b | 19.3 b | 16.8 b | 19.1 b | 8.5 b | 17.2 b | 15.4 b | 13.8 b | 9.4 b | 14.9 b | 16.6 b |
Average Number of Achens (pcs.) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | ||||||||||
Cultivar | VII | VIII | IX | X | VII | VIII | IX | X | VII | VIII | IX | X |
‘Murano’ | 250 a | 120 a | 255 a | 239 a | 234 a | 110 a | 243 a | 311 a | 231 a | 111 a | 256 a | 341 a |
‘Murano’ + T | 311 b | 199 b | 311 b | 321 b | 342 b | 166 b | 289 b | 421 b | 329 b | 178 b | 327 b | 402 b |
‘St. Andreas’ | 201 a | 111 a | 321 a | 276 a | 298 a | 136 a | 266 a | 321 a | 311 a | 186 a | 301 a | 347 a |
‘St Andreas’ + T | 411 b | 145 b | 424 b | 374 b | 431 b | 198 b | 379 b | 417 b | 445 b | 201 b | 431 b | 426 b |
‘Albion’ | 321 a | 116 a | 312 a | 298 a | 321 a | 116 a | 231 a | 235 a | 298 a | 178 a | 299 a | 296 a |
‘Albion’ + T | 430 b | 167 b | 465 b | 399 b | 389 b | 279 b | 412 b | 301 b | 389 b | 230 b | 411 b | 389 b |
Average Fruit Weight (g) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | ||||||||||
Cultivar | VII | VIII | IX | X | VII | VIII | IX | X | VII | VIII | IX | X |
‘Murano’ | 17.2 a | 12.1 a | 18.2 a | 17.2 a | 16.3 a | 11.8 a | 12.7 a | 15.5 a | 13.8 a | 14.5 a | 15.3 a | 14.7 a |
‘Murano’ + T | 20.5 b | 14.5 b | 21.5 b | 20.5 b | 19.2 b | 14.6 b | 16.0 b | 17.4 b | 15.7 b | 16.2 b | 17.7 b | 17.8 b |
‘St Andreas’ | 16.8 a | 12.1 a | 16.8 a | 16.8 a | 17.1 a | 15.4 a | 15.8 a | 14.7 a | 14.2 a | 17.2 a | 14.5 a | 17.9 a |
‘St Andreas’ + T | 19.3 b | 14.9 b | 22.3 b | 19.3 b | 21.5 b | 17.8 b | 18.2 b | 17.1 b | 17.1 b | 25.1 b | 18.0 b | 22.3 b |
‘Albion’ | 16.8 a | 12.3 a | 15.8 a | 16.8 a | 17.2 a | 13.2 a | 15.5 a | 14.5 a | 14.1 a | 16.8 a | 17.6 a | 16.8 a |
‘Albion’+T | 18.6 b | 17.1 b | 21.6 b | 18.6 b | 24.2 b | 17.7 b | 19.2 b | 17.8 b | 15.9 ab | 23.3 b | 20.1 b | 24.3 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniasz, M.; Konieczny, A.; Błaszczyk, J.; Nawrocki, J.; Kopeć, M.; Mierzwa-Hersztek, M.; Gondek, K.; Zaleski, T.; Knaga, J.; Pniak, M. Titanium Organic Complex Improves Pollination and Fruit Development of Remontant Strawberry Cultivars under High-Temperature Conditions. Agriculture 2022, 12, 1795. https://doi.org/10.3390/agriculture12111795
Bieniasz M, Konieczny A, Błaszczyk J, Nawrocki J, Kopeć M, Mierzwa-Hersztek M, Gondek K, Zaleski T, Knaga J, Pniak M. Titanium Organic Complex Improves Pollination and Fruit Development of Remontant Strawberry Cultivars under High-Temperature Conditions. Agriculture. 2022; 12(11):1795. https://doi.org/10.3390/agriculture12111795
Chicago/Turabian StyleBieniasz, Monika, Anna Konieczny, Jan Błaszczyk, Jacek Nawrocki, Michał Kopeć, Monika Mierzwa-Hersztek, Krzysztof Gondek, Tomasz Zaleski, Jarosław Knaga, and Michał Pniak. 2022. "Titanium Organic Complex Improves Pollination and Fruit Development of Remontant Strawberry Cultivars under High-Temperature Conditions" Agriculture 12, no. 11: 1795. https://doi.org/10.3390/agriculture12111795
APA StyleBieniasz, M., Konieczny, A., Błaszczyk, J., Nawrocki, J., Kopeć, M., Mierzwa-Hersztek, M., Gondek, K., Zaleski, T., Knaga, J., & Pniak, M. (2022). Titanium Organic Complex Improves Pollination and Fruit Development of Remontant Strawberry Cultivars under High-Temperature Conditions. Agriculture, 12(11), 1795. https://doi.org/10.3390/agriculture12111795