Phenology Based Variability of Tissue Nutrient Content in Mature Muscadine Vines (Vitis rotundifolia cv. Carlos)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Conditions
2.2. Experimental Design and Tissue Sampling
2.3. Measurement of Tissue Nutrient Concentration
2.4. Statistical Analysis
3. Results
3.1. Variability and Content of Tissue Nutrients Change over the Season
3.2. Nutrient Content Differs between Tissue Types
4. Discussion
Nutrient Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, P.C.; Crocker, T.E.; Breman, J. The Muscadine Grape; HS763; University of Florida IFAS Extension: Gainesville, FL, USA, 2018. [Google Scholar]
- Hickey, C.C.; Smith, E.D.; Cao, S.; Conner, P. Muscadine (Vitis rotundifolia Michx., syn. Muscandinia rotundifolia (Michx.) Small): The resilient, native grape of the Southeastern U.S. Agriculture 2019, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Conner, P.; Brannen, P.; Burrack, H.; Mitchem, W.; Cline, B.; Perkins-Veazie, P.; Poling, B. Muscadine Grape Production Guide for the Southeast; AG-94; NC State Extension: Raleigh, NC, USA, 2020. [Google Scholar]
- Arrobas, M.; Ferreira, I.Q.; Freitas, S.; Verdial, J.; Rodrigues, M.A. Guidelines for fertilizer use in vineyards based on nutrient content of grapevine parts. Sci. Hort. 2014, 172, 191–198. [Google Scholar] [CrossRef]
- Benito, A.; Romero, I.; Domínguez, N.; García-Escudero, E.; Martin, I. Leaf blade and petiole analysis for nutrient diagnosis in Vitis vinifera L. cv. Garnacha tinta. Austral. J. Grape Wine Res. 2013, 19, 285–298. [Google Scholar] [CrossRef]
- Benito, A.; García-Escudero, E.; Romero, I.; Domínguez, N.; Martin, I. Sufficiency ranges (SR) and deviation from optimum percentage (DOP) references for leaf blade and petiole analysis in ‘Red Grenache’ grapevines. OENO One 2014, 49, 47–58. [Google Scholar] [CrossRef]
- García-Escudero, E.; Romero, I.; Benito, A.; Domínguez, N.; Martin, I. Reference levels for leaf nutrient diagnosis of cv. Tempranillo grapevine in the Rioja Appellation. Commun. Soil Sci. Plant Anal. 2013, 44, 645–654. [Google Scholar] [CrossRef]
- Assimakopoulou, A.; Tsougrianis, C. Correlation between yield, must attributes and nutritional status of the Greek red wine grape variety ‘Agiorgitiko’. J. Plant Nutr. 2012, 35, 1022–1036. [Google Scholar] [CrossRef]
- Christensen, P. Seasonal changes, and distribution of nutritional elements in Thompson Seedless grapevines. Am. J. Enol. Vitic. 1969, 20, 176–190. [Google Scholar]
- Romero, I.; García-Escudero, E.; Martin, I. Effects of leaf position on blade and petiole mineral nutrient concentration of Tempranillo grapevine (Vitis vinifera L.). Am. J. Enol. Vitic. 2010, 64, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, R.P.; Scagel, C.F. Leaf blade versus petiole nutrient tests as predictors of nitrogen, phosphorus, and potassium status of ‘Pinot Noir’ grapevines. HortScience 2017, 52, 174–184. [Google Scholar] [CrossRef]
- Robinson, J. Critical Plant Tissue Values and Application of Nutritional Standards for Practical Use in Vineyards. In Proceedings of the American Society for Enology and Viticulture, Davis, CA, USA, 29–30 June 2005; pp. 61–68. [Google Scholar]
- Peuke, A.D. Nutrient composition of leaves and fruit juice of grapevine as affected by soil and nitrogen fertilization. J. Plant Nutr. Soil Sci. 2009, 172, 557–564. [Google Scholar] [CrossRef]
- Davenport, J.R.; Lunden, J.D.; Winkler, T. Wine grape tissue nutrient concentration in the inland Pacific Northwest. Commun. Soil Sci. Plant Anal. 2012, 43, 21–27. [Google Scholar] [CrossRef]
- Fallahi, E.; Shafii, B.; Stark, J.C.; Fallahi, B. Cane and leaf growth and leaf mineral nutrients in various cultivars of wine grapes. J. Am. Pomol. Soc. 2005, 59, 182–191. [Google Scholar]
- Fallahi, E.; Shafii, B.; Stark, J.C.; Fallahi, B.; Hafez, S.L. Influence of wine grape cultivars on growth and leaf blade and petiole mineral nutrients. HortTechnology 2005, 15, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Goldammer, T. Grape Grower’s Handbook: A Guide to Viticulture for Wine Production, 3rd ed.; Apex Publishers: Centreville, VA, USA, 2018. [Google Scholar]
- Boswell, F.C.; Lane, R.P.; Ohki, K. Field studies with boron on muscadine grapes. Commun. Soil Sci. Plant Anal. 1980, 11, 201–207. [Google Scholar] [CrossRef]
- Cummings, G.A.; Lilly, P. Soil pH rate for fruit yield and elemental concentration of muscadine grapes. HortScience 1984, 19, 831–832. [Google Scholar] [CrossRef]
- Cummings, G.A.; Fish, A.S.; Nesbitt, W.B.; Underwood, V.H. The influence of mineral nutrition and time of year upon the elemental concentration of muscadine grapes (Vitis rotundifolia). Commun. Soil Sci. Plant Anal. 1973, 4, 211–218. [Google Scholar] [CrossRef]
- Spiers, J.M.; Braswell, J.H. Nitrogen rate and source affects leaf elemental concentration and plant growth in muscadine grapes. J. Plant Nutr. 1993, 16, 1547–1554. [Google Scholar] [CrossRef]
- Spiers, J.M.; Braswell, J.H. Response of ‘Sterling’ muscadine grape to calcium, magnesium, and nitrogen fertilization. J. Plant Nutr. 1994, 17, 1739–1750. [Google Scholar] [CrossRef]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B., Jr.; Barker, A.V. Plant Analysis Handbook III; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2014. [Google Scholar]
- Clark, J.R.; Spiers, J.M. Irrigation and Mineral Nutrition: Muscadine Grape; ASHS Press: Alexandria, VA, USA, 2001; pp. 169–187. [Google Scholar]
- Plank, C.O.; Campbell, C.R. Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States: Grape, Muscadine; SCSB#394; Southern Cooperative Series Bulletin: Raleigh, NC, USA, 2013; pp. 101–102. Available online: www.ncagr.gov/agronomi/saaesd/scsb394.pdf (accessed on 5 October 2022).
- Rana, T.S.; Smith, E.D.; Hickey, C.; Hoffmann, M. Leaf-tissue nutrient dynamics in mature muscadine cultivars Carlos and Noble in Georgia and North Carolina. HortTechnology 2021, 31, 280–290. [Google Scholar] [CrossRef]
- Jones, J.B., Jr.; Mills, H.A. Plant Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide, 2nd ed.; Micromacro Publishing: Athens, GA, USA, 1996. [Google Scholar]
- Hicks, K. NCDA & CS Methods for Plant Tissue Analysis. 2020. Available online: https://www.ncagr.gov/agronomi/documents/NCDACS_Plant_Analysis_Methods.pdf (accessed on 4 October 2022).
- Romero, I.; García-Escudero, E.; Martin, I. Leaf blade vs. petiole analysis for nutritional diagnosis of Vitis vinifera L. cv. Tempranillo. Am. J. Enol. Vitic. 2013, 64, 50–64. [Google Scholar] [CrossRef]
- Schreiner, R.P. Spatial and temporal variation of roots, arbuscular mycorrhizal fungi, and plant and soil nutrients in a mature Pinot noir (Vitis vinifera L.) vineyard in Oregon. Plant Soil 2005, 276, 219–234. [Google Scholar] [CrossRef]
- Parejo, J.; Gonzalo, A.; Giro, P. Seasonal differences of nutrient level in Chardonnay. In Proceedings of the 4th International Symposium on Grapevine Physiology; Turin, Italy, 11–15 May 1992; Ministero dell’Agricolturae delle Foreste, Ed.; Instituto Agrario San Michele all’Adige: Trentino, Italy, 1992. [Google Scholar]
- Cummings, G.A. Variation in the concentration of certain elements in muscadine grape leaves related to season leaf portion, and age. J. Am. Soc. Hortic. Sci. 1977, 103, 339–342. [Google Scholar] [CrossRef]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
N (%) | P (%) | K (%) | |||||
---|---|---|---|---|---|---|---|
Recommended Range [3,27] | 1.65–2.15 | 0.12–0.18 | 0.80–1.20 | ||||
Sample Position | Tissue Type | Mean | SEM | Mean | SEM | Mean | SEM |
Bloom | |||||||
Cluster | |||||||
Leaf | 2.45 c | 0.0216 | 0.214 a | 0.0143 | 0.904 a | 0.0662 | |
Petiole | 1.01 a | 0.0216 | 0.464 c | 0.0143 | 3.033 b | 0.0662 | |
Mature | |||||||
Leaf | 2.44 c | 0.0216 | 0.277 b | 0.0143 | 1.072 a | 0.0662 | |
Petiole | 1.21 b | 0.0216 | 0.240 ab | 0.0143 | 2.873 b | 0.0662 | |
Fruit set | |||||||
Cluster | |||||||
Leaf | 1.942 c | 0.0214 | 0.176 a | 0.0111 | 0.931 a | 0.0746 | |
Petiole | 0.879 a | 0.0214 | 0.266 b | 0.0111 | 2.154 b | 0.0746 | |
Mature | |||||||
Leaf | 1.95 c | 0.0214 | 0.156 a | 0.0111 | 0.887 a | 0.0746 | |
Petiole | 0.98 b | 0.0214 | 0.256 b | 0.0111 | 2.429 b | 0.0746 | |
Veraison | |||||||
Cluster | |||||||
Leaf | 2.034 d | 0.0144 | 0.150 a | 0.00476 | 0.649 a | 0.0366 | |
Petiole | 0.706 a | 0.0144 | 0.278 d | 0.00476 | 1.315 b | 0.0366 | |
Mature | |||||||
Leaf | 1.925 c | 0.0144 | 0.173 b | 0.00476 | 0.733 a | 0.0366 | |
Petiole | 0.868 b | 0.0144 | 0.208 c | 0.00476 | 1.247 b | 0.0366 |
N X | P | K | Ca | Mg | S | Fe | Mn | Zn | Cu | B | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | ppm | |||||||||||
Position | Tissue | 1.65–2.15 W | 0.12–0.18 | 0.80–1.20 | 0.70–1.10 | 0.15–0.25 | 0.19–0.27 | 60–120 | 60–150 | 18–35 | 5.0–10 | 15–24 |
Bloom Y | ||||||||||||
Opposite cluster | Petiole | 1.05 d Z | 0.51 a | 3.12 a | 1.39 b | 0.91 a | 0.09 b | 23.59 c | 104.64 b | 54.04 a | 3.79 c | 25.71 a |
Whole leaf | 2.58 a | 0.22 b | 0.87 b | 1.83 a | 0.54 b | 0.17 a | 86.14 a | 308.16 a | 38.96 b | 5.1 c | 28.07 a | |
Shoot | Petiole | 1.18 c | 0.25 b | 2.79 a | 0.81 c | 0.46 bc | 0.07 b | 16.47 c | 63.32 b | 27.51 bc | 6.78 b | 20.77 b |
Whole leaf | 2.42 b | 0.26 b | 1.02 b | 0.85 c | 0.31 c | 0.15 a | 55.7 b | 107.47 b | 15.48 c | 8.45 a | 14.62 c | |
p-value | <0.0001 | <0.0001 | <0.0001 | 0.0137 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0006 | 0.0011 | 0.0026 | |
Fruit Set | ||||||||||||
Opposite of cluster | Petiole | 0.96 b | 0.2 b | 2.03 b | 0.68 c | 0.25 c | 0.05 c | 12.43 d | 75.09 c | 24.84 a | 5.31 b | 16.06 b |
Whole leaf | 2.03 a | 0.19 b | 0.94 c | 0.58 d | 0.2 d | 0.09 b | 41.17 b | 99.28 b | 11.74 c | 7.09 a | 12.76 c | |
Shoot | Petiole | 0.98 b | 0.34 a | 3.15 a | 1.12 b | 0.61 a | 0.05 c | 23.46 c | 103.24 b | 23.23 a | 2.81 d | 21.96 a |
Whole leaf | 2.0 a | 0.13 c | 0.88 c | 1.23 a | 0.34 b | 0.10 a | 81.72 a | 192.14 a | 17.32 b | 3.64 c | 16.34 b | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Véraison | ||||||||||||
Opposite of cluster | Petiole | 0.76 d | 0.25 a | 1.56 a | 1.11 a | 0.73 a | 0.05 d | 18.61 c | 130.21 bc | 23.54 b | 2.53 b | 19.43 a |
Whole leaf | 2.03 a | 0.14 d | 0.68 b | 0.95 b | 0.32 c | 0.12 a | 71.85 a | 146.79 ab | 11.31 d | 2.86 b | 12.93 b | |
Shoot | Petiole | 0.92 c | 0.22 b | 1.46 a | 0.84 c | 0.41 b | 0.06 c | 18.86 c | 117.62 c | 48.29 a | 5.6 a | 18.02 a |
Whole leaf | 1.86 b | 0.16 c | 0.76 b | 0.75 d | 0.29 c | 0.11 b | 40.24 b | 149.71 a | 17.65 c | 5.63 a | 14.67 b | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.5622 | <0.0001 |
N | P | K | Ca | Mg | S | Fe | Mn | Zn | Cu | B | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | ppm | |||||||||||
Sufficiency range W | 1.65–2.15 | 0.12–0.18 | 0.80–1.20 | 0.70–1.10 | 0.15–0.25 | 0.19–0.27 | 60–120 | 60–150 | 18–35 | 5.0–10 | 15–24 | |
Bloom | ||||||||||||
Opposite of cluster | Petiole | 0.98 d | 0.41 a | 2.95 a | 1.12 b | 0.71 a | 0.05 c | 18.88 c | 103.65 b | 26.04 b | 3.15 d | 34.75 a |
Whole leaf | 2.33 b | 0.21 d | 0.94 c | 1.33 a | 0.48 b | 0.14 a | 63.03 a | 247.93 a | 15.51 c | 4.51 c | 23.4 c | |
Shoot | Petiole | 1.25 c | 0.23 c | 2.95 a | 0.82 c | 0.36 c | 0.07 b | 14.81 d | 52.32 c | 28.59 a | 6.28 b | 29.51 b |
Whole leaf | 2.47 a | 0.29 b | 1.12 b | 0.78 c | 0.3 d | 0.15 a | 45.78 b | 88.38 b | 15.33 c | 9.21 a | 18.26 d | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Fruit set | ||||||||||||
Opposite of cluster | Petiole | 0.8 c | 0.33 a | 2.28 a | 0.93 b | 0.55 a | 0.04 c | 19.02 c | 93.74 b | 16.14 b | 2.94 d | 26.49 a |
Whole leaf | 1.86 a | 0.17 b | 0.92 c | 1.02 a | 0.36 b | 0.08 a | 49.02 a | 185.93 a | 12.31 c | 3.64 c | 18.27 c | |
Shoot | Petiole | 0.98 b | 0.18 b | 1.7 b | 0.7 c | 0.27 c | 0.05 b | 13.55 d | 58.55 c | 28.96 a | 8.38 b | 21.46 b |
Whole leaf | 1.9 a | 0.18 b | 0.89 c | 0.69 c | 0.23 d | 0.08 a | 31.9 b | 86.06 b | 13.84 c | 11.02 a | 13.53 d | |
p-value | <0.0001 | <0.0001 | <0.0001 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Véraison | ||||||||||||
Opposite of cluster | Petiole | 0.66 c | 0.31 a | 1.07 a | 1.35 a | 0.89 a | 0.05 b | 16.59 c | 138.43 ab | 36.26 b | 2.53 d | 26.58 a |
Whole leaf | 2.04 a | 0.16 c | 0.62 c | 1.12 b | 0.33 c | 0.13 a | 55.17 a | 144.71 a | 13.04 d | 3.61 c | 15.62 c | |
Shoot | Petiole | 0.81 b | 0.2 b | 1.03 a | 1.13 b | 0.56 b | 0.05 b | 14.29 d | 118.61 b | 49.01 a | 6.1 b | 24.74 b |
Whole leaf | 2.0 a | 0.18 b | 0.71 b | 0.98 c | 0.33 c | 0.13 a | 42.13 b | 146.79 a | 16.36 c | 7.62 a | 16.51 c | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0058 | <0.0001 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freedman, K.A.; Rana, T.S.; Hoffmann, M. Phenology Based Variability of Tissue Nutrient Content in Mature Muscadine Vines (Vitis rotundifolia cv. Carlos). Agriculture 2022, 12, 1805. https://doi.org/10.3390/agriculture12111805
Freedman KA, Rana TS, Hoffmann M. Phenology Based Variability of Tissue Nutrient Content in Mature Muscadine Vines (Vitis rotundifolia cv. Carlos). Agriculture. 2022; 12(11):1805. https://doi.org/10.3390/agriculture12111805
Chicago/Turabian StyleFreedman, Kyle Austin, Tekan Singh Rana, and Mark Hoffmann. 2022. "Phenology Based Variability of Tissue Nutrient Content in Mature Muscadine Vines (Vitis rotundifolia cv. Carlos)" Agriculture 12, no. 11: 1805. https://doi.org/10.3390/agriculture12111805
APA StyleFreedman, K. A., Rana, T. S., & Hoffmann, M. (2022). Phenology Based Variability of Tissue Nutrient Content in Mature Muscadine Vines (Vitis rotundifolia cv. Carlos). Agriculture, 12(11), 1805. https://doi.org/10.3390/agriculture12111805