Sugarcane Productivity as a Function of Zinc Dose and Application Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation Conditions
2.2. Experimental Design, Plant Material, and Treatments
2.3. Crop Management
2.4. Biometric and Harvest Assessments
2.5. Statistical Analysis
3. Results
3.1. Number of Tillers
3.2. Stalk Height, Stalk Diameter, and Quality of Sugarcane
3.3. Tons of Stalks Per Hectare (TSH) and Tons of Pol Per Hectare (TPH)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO—Food and Agriculture Organization. Database Faostat—Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Available online: http://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 23 September 2022).
- Conab. Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira—Cana-de-Açúcar: Primeiro Levantamento, Maio 2019—Safra 2019/20; Companhia Nacional de Abastecimento: Brasília, Brazil, 2019. [Google Scholar]
- Vitti, G.C.; Serrano, C.G.E. O zinco na agricultura. DBO Agrotecnol. 2006, 1, 10–11. [Google Scholar]
- Mellis, E.V.; Quaggio, J.A.; Becari, G.R.G.; Teixeira, L.A.J.; Cantarella, H.; Dias, F.L.F. Effect of micronutrients soil supplementation on sugarcane in different production environments: Cane plant cycle. Agron. J. 2016, 108, 2060–2070. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Fertility Management of Tropical Acid Soils for Sustainable Crop Production. In Handbook of Soil Acidity; Rengel, Z., Ed.; Marcel Deker: New York, NY, USA, 2003; pp. 359–385. [Google Scholar]
- Antunes, F.A.F.; Chandel, A.K.; Téran-Hilares, R.; Milessi, T.S.S.; Travalia, B.M.; Ferrari, F.A.; Hernandez-Pérez, A.F.; Ramos, L.; Marcelino, P.F.; Brumano, L.P.; et al. Biofuel production from sugarcane in Brazil. In Sugarcane Biofuels: Status, Potential, and Prospects of the Sweet Crop to Fuel the World; Khan, M.T., Khan, I.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 99–121. [Google Scholar]
- Cursi, D.E.; Hoffmann, H.P.; Barbosa, G.V.S.; Bressiani, J.A.; Gazaffi, R.; Chapola, R.G.; Fernandes Junior, A.R.; Balsalobre, T.W.A.; Diniz, C.A.; Santos, J.M.; et al. History and Current Status of Sugarcane Breeding, Germplasm Development and Molecular Genetics in Brazil. Sugar Tech 2022, 24, 112–133. [Google Scholar] [CrossRef]
- Aftab, T.; Hakemm, K.R. Plant Micronutrients: Deficiency and Toxicity Management; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Chrysargyris, A.; Hofte, M.; Tzortzakis, N.; Petropoulos, S.A.; Di Gioia, F. Editorial: Micronutrients: The borderline between their beneficial role and toxicity in plants. Front. Plant Sci. 2022, 13, 840624. [Google Scholar] [CrossRef]
- West, E.S. Some Effects of Green Manuring on Citrus Trees and on the Soil; Council of Scientific and Industrial Research: Melbourne, Australia, 1938; pp. 182–184. [Google Scholar]
- Mellis, E.V.; Quaggio, J.A. Uso de micronutrientes em cana-de-açúcar. Inf. Agron. 2015, 149, 1–9. [Google Scholar]
- Orlando Filho, J.; Rosseto, R.; CasaGrande, A.A. Cana-de-açúcar. In Micronutrientes e Elementos Tóxicos na Agricultura; Ferreira, M.E., Ed.; CNPq/FAPESP/POTAFOS: Jaboticabal, Brazil, 2001; pp. 355–373. [Google Scholar]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal; Artmed: Porto Alegre, Brazil, 2017. [Google Scholar]
- Hassan, M.U.; Aamer, M.; Chattha, M.U.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The critical role of Zinc in plants facing the drought stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Sharma, A.; Patni, B.; Shankhdhar, D.; Shankhdhar, S.C. Zinc: An indispensable micronutrient. Physiol. Mol. Biol. Plant 2013, 19, 11–20. [Google Scholar] [CrossRef]
- Castillo-González, J.; Ojeda-Barrios, D.; Hernández-Rodríguez, A.; González-Franco, A.C.; Robles-Hernández, L.; López-Ochoa, G.R. Zinc metalloenzymes in plants. Interciencia 2018, 43, 242–248. [Google Scholar]
- Landell, M.G.A.; Silva, M.A. As estratégias de seleção da cana em desenvolvimento no Brasil. Visão Agríc. 2004, 1, 18–27. [Google Scholar]
- Prado, R.M. Nutrição de Plantas; Editora UNESP: São Paulo, Brazil, 2008. [Google Scholar]
- Teixeira Filho, M.C.M.; Buzetti, S.; Garcia, C.M.P.; Benett, C.G.S.; Rodrigues, M.A.C.; Maestrelo, P.R.; Celestino, T.S.; Gazola, R.N. Qualidade tecnológica e produtividade agroindustrial de cana-de-açúcar submetida à adubação com zinco. Semin. Cienc. Agrar. 2013, 34, 1603–1614. [Google Scholar] [CrossRef]
- Marangoni, F.F.; Otto, R.; Almeida, R.F.; Casarin, V.; Vitti, G.C.; Tiritan, C.S. Soluble sources of zinc and boro on sugarcane yield in southeast Brazil. Sugar Tech 2019, 21, 917–924. [Google Scholar] [CrossRef]
- Madhuri, K.N.; Sarala, N.V.; Kumar, M.H.; Rao, M.S.; Giridhar, V. Influence of micronutrients on yield and quality of sugarcane. Sugar Tech 2013, 15, 187–191. [Google Scholar] [CrossRef]
- Franco, H.C.J.; Trivelin, P.C.O.; Vitti, A.C.; Otto, R.; Faroni, C.E.; Tovajar, J.G. Utilization of boron (10B) derived from fertilizer by sugar cane. Rev. Bras. Cienc. Solo 2009, 33, 1667–1674. [Google Scholar] [CrossRef] [Green Version]
- Lira, M.V.S.; Meirelles, G.C.; Santos, L.F.M.; Lapaz, A.M.; Bonini, C.S.B.; Heinrichs, R. Sugarcane yield and nutritional status in response to fertilization with micronutrients applied in the planting furrow and to leaves. Cuad. Red IBEROMASA 2021, 1, 17–29. [Google Scholar]
- Quaggio, J.A.; Cantarella, H.; van Raij, B.; Otto, R.; Penatti, C.P.; Rosseto, R.; Vitti, G.C.; Korndörfer, G.H.; Trivelin, P.C.O.; Mellis, E.V.; et al. Cana-de-açúcar. In Recomendações de Adubação e Calagem Para o Estado de São Paulo; Cantarella, H., Quaggio, J.A., Mattos Junior, D., Boaretto, R.M., van Raij, B., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 2022. [Google Scholar]
- Franco, H.J.F.; Mariano, E.; Vitti, A.C.; Faroni, C.E.; Otto, R.; Trivelin, P.C.O. Sugarcane response to boron and zinc in southeastern Brazil. Sugar Tech 2011, 13, 86–95. [Google Scholar] [CrossRef]
- Cunha, F.N.; Teixeira, M.B.; Silva, E.C.; Silva, N.F.; Costa, C.T.S.; Vidal, V.M.; Morais, W.A.; Santos, L.N.S.; Cabral Filho, F.R.; Alves, D.K.M.; et al. Productive Potential of Nitrogen and Zinc Fertigated Sugarcane. Agronomy 2020, 10, 1096. [Google Scholar] [CrossRef]
- Panhwar, R.N.; Keerio, H.K.; Menon, Y.M.; Junejo, S.; Arain, M.Y.; Chohan, M.; Keerio, A.R.; Abro, B.A. Response of Thatta-10 sugarcane variety to soil and foliar application of zinc sulphate (ZnSO4.7H2O) under half and full doses of NPK fertilizer. Pak. J. Appl. Sci. 2003, 3, 266–269. [Google Scholar] [CrossRef] [Green Version]
- Bisht, N.; Chauhan, P.S. Excessive and Disproportionate Use of Chemicals Cause Soil Contamination and Nutritional Stress. In Soil Contamination—Threats and Sustainable Solutions; Larramendy, M.L., Soloneski, S., Eds.; InTechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Deuner, S.; Nascimento, R.; Ferreira, L.S.; Badinelli, P.G.; Kerber, R.S. Adubação foliar e via solo de nitrogênio em plantas de milho em fase inicial de desenvolvimento. Cien. Agrotecnol. 2008, 32, 1359–1365. [Google Scholar] [CrossRef] [Green Version]
- Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 2015, 51, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Lui, C.; Huang, M.; Liu, K.; Yan, D. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–108. [Google Scholar] [CrossRef]
- Ghasemi, S.; Khoshgoftarmanesh, A.H.; Hadadzadeh, H.; Jafari, M. Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture. J. Plant Growth Reg. 2012, 31, 498–508. [Google Scholar] [CrossRef]
- McBeath, T.M.; McLaughlin, M.J. Efficacy of zinc as fertilizers. Plant Soil 2014, 374, 843–855. [Google Scholar] [CrossRef]
- Aslani, M.; Souri, M.K. Growth and Quality of Green Bean (Phaseolus vulgaris L.) under Foliar Application of Organic-Chelate Fertilizers. Open Agric. 2018, 3, 146–154. [Google Scholar] [CrossRef]
- Ghasemi, S.; Khoshgoftarmanesh, A.H.; Afyuni, M. Iron(II)-amino acid chelates alleviate salt-stress induced oxidative damages on tomato grown in nutrient solution culture. Sci. Hort. 2014, 165, 91–98. [Google Scholar] [CrossRef]
- Ashmead, H.D. Foliar Feeding of Plants with Amino Acid Chelates; Noyes Publications: Park Ridge, NJ, USA, 1986. [Google Scholar]
- Souri, M.K. Aminochelate fertilizers: The new approach to the old problem; a review. Open Agric. 2016, 1, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Kotterk, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.; Oliveira, V.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.; Araujo Filho, J.; Oliveira, J.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Donagemma, G.K.; Viana, J.H.M.; Almeida, B.G.; Ruiz, H.A.; Klein, V.A.; Dechen, S.C.F.; Fernandes, R.B.A. Análise Granulométrica. In Manual de Métodos de Análise de Solo; Teixeira, P.C., Donagemma, G.K., Fontana, A., Eds.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Prado, H. Solos do Brasil—Gênese, Morfologia, Classificação, Levantamento e Manejo, 3rd ed.; Piracicaba: São Paulo, Brazil, 2003. [Google Scholar]
- Barbosa, A.M.; Zilliani, R.R.; Tiritan, C.S.; Souza, G.M.; Silva, M.A. Energy conversion efficiency in sugarcane cultivars as a function of production environments in Brazil. Renew. Sustain. Energy Rev. 2021, 150, 111500. [Google Scholar] [CrossRef]
- van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico de Campinas: Campinas, Brazil, 2001. [Google Scholar]
- van Raij, B.; Cantarella, H.; Camargo, C.E.O. Outras culturas industriais. In Recomendações de Calagem e Adubação Para o Estado de São Paulo; van Raij, B., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Instituto Agronômico de Campinas: Campinas: São Paulo, Brazil, 1997; pp. 233–239. [Google Scholar]
- Vitti, G.C.; Luz, P.H.C.; Altran, W.S. Nutrição e Adubação. In Cana-de-Açúcar: Do Plantio à Colheita; Santos, F., Bórem, A., Eds.; UFV: Viçosa, Brazil, 2013; pp. 49–79. [Google Scholar]
- Braga Junior, R.L.C.; Landell, M.G.A.; Silva, D.N.; Bidóia, M.A.P.; Silva, T.N.; Silva, V.H.P.; Luz, A.M.; Anjos, I.A. Censo Varietal IAC: Região Centro-Sul—Safra 2019/20; Instituto Agronômico de Campinas: Campinas, Brazil, 2021. [Google Scholar]
- Fernandes, A.C. Cálculos na Agroindústria da Cana-de-Açúcar, 3rd ed.; Stab: Piracicaba, Brazil, 2011. [Google Scholar]
- Teixeira Filho, M.C.M.; Buzetti, S.; Garcia, C.M.P.; Benett, C.G.S.; Benett, K.S.S.; Andreotti, M.; Galindo, F.S. Rates and sources of zinc applied in sugarcane grown on Sandy soil in Brazil. Afr. J. Agric. Res. 2015, 10, 477–484. [Google Scholar]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Interactions of zinc with other nutrients in soils and plants—A review. Indian J. Fertil. 2016, 12, 16–26. [Google Scholar]
- Segato, S.V.; Mattiuz, C.F.M.; Mozambani, A.E. Aspectos fenológicos da cana-de-açúcar. In Atualizações em Produção de Cana-de-Açúcar; Segato, S.V., Pinto, A.S., Jendiroba, E., Nóbrega, J.C.M., Eds.; Livroceres: Piracicaba, Brazil, 2006; pp. 19–36. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Elsevier: London, UK, 2012. [Google Scholar]
- Epstein, E.; Bloom, A.J. Nutrição Mineral de Plantas, Princípios e Perspectivas; Planta: Londrina, Brazil, 2006. [Google Scholar]
- Jamro, G.H.; Kazi, B.R.; Oad, F.C.; Jamali, N.M.; Oad, N.L. Effect of Foliar Application of Micronutrients on the Growth Traits of Sugarcane Variety Cp-65/357 (Ratoon Crop). Asian J. Plant Sci. 2002, 1, 462–463. [Google Scholar] [CrossRef] [Green Version]
- MOSAIC. Mosaic Crop Nutrition. 2018. Available online: http://www.cropnutrition.com/crop-nutrients-zinc (accessed on 20 September 2022).
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, D.P.; Navale, A.M.; Deokar, C.D. Influence of Zinc Solubilising Consortiums on Yield Parameters of Suru Sugarcane. Int. J. Agric. Innov. Res. 2019, 8, 83–87. [Google Scholar] [CrossRef]
- Nadia, M.; Kandhro, M.N.; Soomro, A.A.; Mari, N.; Shah, Z.-U.-H. Growth, Yield and Sucrose Percent Response of Sugarcane to Zinc and Boron Application. Sarhad J. Agric. 2020, 36, 459–469. [Google Scholar]
- Andrade, L.A.B.; Casagrande, A.A.; Vitti, G.C.; Perecin, D. Efeitos das aplicações de fritas e de fontes solúveis de boro, cobre e zinco, via solo, na cultura de cana-de-açúcar (Saccharum spp.), variedade SP70–1143. STAB–Açúcar Álcool Subprodutos 1995, 13, 21–27. [Google Scholar]
- Siqueira, J.O.; Silveira, J.F.; Guedes, G.A.A. Efeito de micronutrientes na presença e ausência de calcário calcítico no rendimento agrícola e qualidade do caldo da cana-de-açúcar (cana-planta). Bras. Açucareiro 1979, 94, 77–80. [Google Scholar]
- Farias, C.H.A.; Fernandes, P.D.; Gheyi, H.R.; Dantas Neto, J. Qualidade industrial de cana-de-açúcar sob irrigação e adubação com zinco, em Tabuleiro Costeiro paraibano. Rev. Bras. Eng. Agric. Ambient. 2009, 13, 419–428. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and Their Diverse Role in Agricultural Crops: Advances and Future Prospective. Acta Physiol. Plant. 2015, 37, 139. [Google Scholar] [CrossRef]
- Brown, P.H.; Cakmak, I.; Zhang, Q. Form and Function of Zinc Plants. In Zinc in Soils and Plants; Springer: Dordrecht, The Netherlands, 1993; pp. 93–106. [Google Scholar]
- Liu, D.L.; Bull, T.A. Simulation of biomass and sugar accumulation in sugarcane using a process-based model. Ecol. Modell. 2001, 144, 181–211. [Google Scholar] [CrossRef]
- Abu-Ellail, F.F.B.; Gadallah, A.F.I.; El-Gamal, I.S.H. Genetic variance and performance of five sugarcane varieties for physiological, yield, and quality traits influenced by various harvest age. J. Plant Prod. 2020, 11, 429–438. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Rai, M.K. Review: Sugarcane production:Impact of climate change and its mitigation. Biodiversitas 2012, 13, 214–227. [Google Scholar] [CrossRef]
- Chohan, M. Impact of climate change on sugarcane crop and remedial measures—A review. Pak. Sugar J. 2019, 34, 15–22. [Google Scholar] [CrossRef]
- Sanghera, G.S.; Malhotra, P.K.; Singh, H.; Bhatt, R. Climate Change Impact in Sugarcane Agriculture and Mitigation Strategies. In Harnessing Plant Biotechnology and Physiology to Stimulate Agricultural Growth; Malik, C.P., Trivedi, P.C., Eds.; Agrobios: Rajasthan, India, 2019. [Google Scholar]
- Wang, J.J.; Kennedy, C.W.; Viator, H.P.; Arceneaux, A.E.; Guidry, A.J. Zinc fertilization of sugarcane in acid and calcareous soils. J. Am. Soc. Sugar Cane Technol. 2005, 25, 49–61. [Google Scholar] [CrossRef]
- Devi, T.V.C.; Bharathalakshmi, M.; Kumari, M.B.G.S.; Naidu, N.V. Effect of sources and levels of phosphorus with zinc on yield and quality of sugarcane. Sugar Tech 2012, 14, 195–198. [Google Scholar] [CrossRef]
- Rahman, M.H.; Pal, S.K.; Falam, F. Effect of nitrogen, phosphorus, potassium, sulphur, zinc and manganese nutrients on yield and sucrose content of sugarcane (Saccharum officinarum) in flood-plain soils of Bangladesh. Indian J. Agric. Sci. 1992, 62, 450–455. [Google Scholar]
- Ghaffar, A.; Ehsanullah, N.; Akbar, S.H.; Khan, K.; Jabran, R.Q.; Hashmi, A.; Ali, M.A. Effect of trench spacing and micronutrients on growth and yield of sugarcane (Saccharum officinarum L.). Aust. J. Crop Sci. 2012, 6, 1–9. [Google Scholar]
- Mazhar, S. Impact of zinc and boron application on growth, cane yield and recovery in sugarcane. Int. J. Life Sci. 2016, 10, 30–37. [Google Scholar]
- Costa Junior, J.A.; Silva, M.C.; Oliveira, I.P.; Costa, F.R.; Lima Junior, A.F. Respostas de aplicações de diferentes doses de zinco na cultura do arroz em solos do cerrado. Rev. Fac. Montes Belos 2015, 8, 59–139. [Google Scholar]
- Zoz, T.; Steiner, F.; Fey, R.; Castagnara, D.D.; Seidel, E.P. Resposta do trigo à aplicação foliar de zinco. Cienc. Rural 2012, 42, 784–787. [Google Scholar] [CrossRef] [Green Version]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Rout, G.R.; Das, P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 873–884. [Google Scholar]
- Anwaar, S.A.; Ali, S.; Ali, S.; Ishaque, W.; Farid, M.; Farooq, M.A.; Najeeb, U.; Abbas, F.; Sharif, M. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ. Sci. Pollut. Res. Int. 2015, 22, 3441–3450. [Google Scholar] [CrossRef]
- Song, A.; Li, P.; Fan, F.; Li, Z.; Liang, Y. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 2014, 9, e113782. [Google Scholar] [CrossRef] [PubMed]
- Reis Junior, R.A.; Martinez, H.E.P. Adição de Zn e absorção, translocação e utilização de Zn e P por cultivares de cafeeiro. Sci. Agric. 2002, 59, 537–542. [Google Scholar] [CrossRef]
Sample Depth (cm) | pH | OM | P Resin | H + Al | K | Ca | Mg | SB | CEC | V% | S | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CaCl2 | g dm−3 | mg dm−3 | mmol dm−3 | mg dm−3 | ||||||||||||
0–25 | 5.3 | 21 | 10 | 29 | 2.0 | 41 | 12 | 55 | 84 | 65 | 34 | 0.29 | 3.1 | 31 | 38.6 | 0.8 |
25–50 | 5.0 | 19 | 13 | 34 | 1.6 | 36 | 14 | 52 | 86 | 60 | 30 | 0.37 | 3.4 | 30 | 31.0 | 0.4 |
Zinc Dose (g ha−1) | Application Method | DAP |
---|---|---|
0.00 | - | - |
185 | Furrow | 0 |
260 | Furrow | 0 |
330 | Furrow | 0 |
185 | Foliar | 145 |
260 | Foliar | 145 |
330 | Foliar | 145 |
Doses (g ha−1) | Number of Tillers m−1 |
---|---|
0 (Control) | 22.7 ± 1.25 |
185 | 22.0 ± 0.49 |
260 | 22.3 ± 0.97 |
330 | 21.3 ± 0.47 |
p value | 0.637 |
CV (%) | 8.50 |
Date | Doses (g ha−1) | Furrow (Tillers m−1) | Foliar (Tillers m−1) | Means | P |
---|---|---|---|---|---|
206 DAP (December/2016) | 0 | 19.0 ± 0.85 | - | P (Application method) = 0.950 | |
185 | 20.2 ± 0.42 Aa | 18.3 ± 0.41 Bb | 19.3 | P (Doses) = 0.658 | |
260 | 18.9 ± 0.95 Aa | 19.4 ± 0.71 ABa | 19.2 | P (Interaction) = 0.044 | |
330 | 18.9 ± 0.72 Aa | 20.5 ± 0.49 Aa | 19.7 | P (C × I) = 0.309 | |
Means | 19.4 | 19.4 | - | ||
268 DAP (February/2017) | 0 | 13.9 ± 0.52 | - | P (Application method) = 0.402 | |
185 | 14.9 ± 0.41 | 15.0 ± 0.27 | 15.0 B | P (Doses) = 0.026 | |
260 | 15.5 ± 0.39 * | 16.1 ± 0.27 * | 15.8 AB | P (Interaction) = 0.602 | |
330 | 16.0 ± 0.39 * | 15.9 ± 0.47 * | 16.0 A | P (C × I) = 0.005 | |
Means | 15.5 a | 15.7 a | - | ||
357 DAP (May/2017) | 0 | 12.2 ± 0.28 | - | P (Application method) < 0.0001 | |
185 | 12.8 ± 0.29 Ba | 14.2 ± 0.39 * Ba | 13.5 B | P (Doses) < 0.0001 | |
260 | 13.4 ± 0.49 Bb | 16.0 ± 0.27 * Aa | 14.7 A | P ((Interaction) = 0.021 | |
330 | 15.1 ± 0.43 * Aa | 15.5 ± 0.24 * ABa | 15.3 A | P (C × I) < 0.0001 | |
Means | 13.8 b | 15.2 a | - | ||
433 DAP (July/2017) | 0 | 10.7 ± 0.18 | - | P (Application method) = 0.045 | |
185 | 11.1 ± 0.18 | 11.6 ± 0.15 * | 11.4 B | P (Doses) = 0.001 | |
260 | 11.7 ± 0.13 * | 12.6 ± 0.25 * | 12.1 A | P ((Interaction) = 0.091 | |
330 | 12.3 ± 0.19 * | 12.1 ± 0.36 * | 12.2 A | P (C × I) < 0.0001 | |
Means | 11.7 b | 12.1 a | - |
Doses (g ha−1) | Stalk Height (cm) | Diameter (cm) | Fiber (%) | BRIX (%) | Purity (%) | PCC (%) | TRS (kg t−1) |
---|---|---|---|---|---|---|---|
0 (Control) | 276.6 ± 6.93 | 2.7 ± 0.13 | 12.7 ± 0.25 | 22.0 ± 0.54 | 91.0 ± 0.45 | 16.8 ± 0.45 | 164.0 ± 4.13 |
185 Furrow | 287.0 ± 8.11 | 2.6 ± 0.19 | 13.1 ± 0.17 | 21.9 ± 0.48 | 90.8 ± 0.32 | 16.5 ± 0.36 | 163.3 ± 1.83 |
260 Furrow | 296.2 ± 13.15 | 2.9 ± 0.14 | 13.0 ± 0.43 | 21.7 ± 0.58 | 90.0 ± 0.80 | 16.3 ± 0.63 | 163.4 ± 3.14 |
330 Furrow | 314.2 ± 7.75 * | 2.9 ± 0.16 | 12.3 ± 0.38 | 21.8 ± 0.51 | 90.8 ± 0.91 | 16.7 ± 0.29 | 163.2 ± 2.71 |
Means | 299.1 | 2.8 | 12.8 | 21.8 | 90.5 | 16.5 | 163.3 |
185 Foliar | 302.4 ± 2.32 | 2.7 ± 0.07 | 12.7 ± 0.24 | 21.8 ± 0.33 | 90.8 ± 0.31 | 16.5 ± 0.32 | 161.5 ± 3.01 |
260 Foliar | 310.2 ± 4.87 * | 2.7 ± 0.05 | 12.4 ± 0.19 | 21.6 ± 0.36 | 90.2 ± 0.60 | 16.4 ± 0.34 | 162.0 ± 1.94 |
330 Foliar | 312.4 ± 8.49 * | 2.8 ± 0.13 | 13.1 ± 0.40 | 21.1 ± 0.42 | 89.9 ± 0.57 | 15.8 ± 0.41 | 160.7 ± 1.12 |
Means | 308.3 | 2.8 | 12.7 | 21.5 | 90.3 | 16.2 | 161.4 |
P (Application method) | 0.180 | 0.661 | 0.811 | 0.377 | 0.665 | 0.418 | 0.345 |
P (Doses) | 0.095 | 0.362 | 0.811 | 0.779 | 0.485 | 0.790 | 0.948 |
P (Interaction) | 0.514 | 0.631 | 0.080 | 0.770 | 0.647 | 0.414 | 0.972 |
P (C × I) | 0.018 | 0.710 | 0.389 | 0.882 | 0.725 | 0.697 | 0.976 |
Doses (g ha−1) | Furrow (t ha−1) | Foliar (t ha−1) | Means | P | |
---|---|---|---|---|---|
TSH | 0 | 104.8 ± 5.58 | - | P (Application method) = 0.079 | |
185 | 112.3 ± 3.28 | 115.2 ± 3.44 | 113.7 B | P (Doses) = 0.006 | |
260 | 117.1 ± 4.31 | 126.3 ± 2.35 * | 121.7 A | P (Interaction) = 0.426 | |
330 | 123.3 ± 2.72 * | 125.0 ± 1.55 * | 124.2 A | P (C × I) = 0.002 | |
Means | 117.6 a | 122.2 a | - | ||
TPH | 0 | 17.6 ± 1.09 | - | P (Application method) = 0.329 | |
185 | 18.5 ± 0.73 | 19.0 ± 0.64 | 18.8 B | P (Doses) = 0.040 | |
260 | 19.0 ± 0.64 | 20.6 ± 0.26 * | 19.8 AB | P (Interaction) = 0.080 | |
330 | 20.6 ± 0.21 * | 19.7 ± 0.43 | 20.2 A | P (C × I) = 0.023 | |
Means | 19.4 a | 19.8 a | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.d.A.; Germino, G.H.; de Holanda, L.A.; Oliveira, L.C.; Santos, H.L.; Sartori, M.M.P. Sugarcane Productivity as a Function of Zinc Dose and Application Method. Agriculture 2022, 12, 1843. https://doi.org/10.3390/agriculture12111843
Silva MdA, Germino GH, de Holanda LA, Oliveira LC, Santos HL, Sartori MMP. Sugarcane Productivity as a Function of Zinc Dose and Application Method. Agriculture. 2022; 12(11):1843. https://doi.org/10.3390/agriculture12111843
Chicago/Turabian StyleSilva, Marcelo de Almeida, Gabriel Henrique Germino, Lucas Almeida de Holanda, Laura Costa Oliveira, Hariane Luiz Santos, and Maria Márcia Pereira Sartori. 2022. "Sugarcane Productivity as a Function of Zinc Dose and Application Method" Agriculture 12, no. 11: 1843. https://doi.org/10.3390/agriculture12111843
APA StyleSilva, M. d. A., Germino, G. H., de Holanda, L. A., Oliveira, L. C., Santos, H. L., & Sartori, M. M. P. (2022). Sugarcane Productivity as a Function of Zinc Dose and Application Method. Agriculture, 12(11), 1843. https://doi.org/10.3390/agriculture12111843