Nutritional Value of New Sweet Pepper Genotypes Grown in Organic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design
2.3. Fruit Material
2.4. The Analytical Methodology Used
2.4.1. Determination of β–Carotene and Lycopene
2.4.2. Determination of Acid L-ascorbic
2.4.3. Determination of Chlorophyll
2.4.4. Determination of Total Dry Matter (TDM, %)
2.4.5. Determination of Total Soluble Solids (TSS, °Bx)
2.4.6. pH Value Determination
2.4.7. Titratable Acidity Analysis
2.5. Statistical Analysis
3. Results
Levels of β–Carotene, Lycopene, and Ascorbic Acid Compounds
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krasnow, C.; Ziv, C. Non-chemical approaches to control postharvest gray mold disease in bell peppers. Agronomy 2022, 12, 216. [Google Scholar] [CrossRef]
- FAOSTAT. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 January 2021).
- Murariu, F.; Voda, A.D.; Murariu, O.C. Researches on food safety assessment—Supporting a healthy lifestyle for the population from NE of Romania. J. Biotechnol. 2019, 5, S68. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables—The millennium’s health. Int. J. Food Tech. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Caruso, G.; Stoleru, V.; Munteanu, N.; Sellitto, V.M.; Teliban, G.C.; Burducea, M.; Țenu, I.; Morano, G.; Butnariu, M. Quality Performances of Sweet Pepper under Farming Management. Not. Botanic. Horti Agrobot. 2019, 47, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Cevallos-Casals, B.A.; Byrne, D.; Okie, W.R.; Cisneros-Zevallos, L. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 2006, 96, 273–280. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Murariu, O.C. The impact of climate change on viticultural potential and wine grape varieties of a temperate wine growing region. Appl. Ecol. Environ. Res. 2018, 16, 2663–2680. [Google Scholar] [CrossRef]
- Sreeramulu, D.; Raghunath, M. Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Res. Int. 2010, 43, 1017–1020. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Y.H. Anti-inflammatory and antioxidant activities of red pepper (Capsicum annum L.) stalk extracts: Comparison of pericarp and placenta extract. J. Funct. Food 2013, 5, 1724–1731. [Google Scholar] [CrossRef]
- Deepa, N.; Charanjit, K.; Binoy, G.; Balraj, S.; Kapoor, H.C. Antioxidant constituents in some sweet pepper (Capsicum annum L.,) genotypes during maturity. Swiss Soc. Food Sci. Tecnol. 2007, 40, 121–129. [Google Scholar] [CrossRef]
- Luning, P.A.; Rijk, T.; Wichers, J.; Roozen, J. Gas chromatography, mass spectrometry and sniffing port analyses of volatile compounds of fresh bell peppers (Capsicum annum) at different ripening stages. J. Agric. Food Chem. 1994, 42, 977–983. [Google Scholar] [CrossRef]
- Buendia Moreno, L.; Soto Jover, S.; Ros Chumillas, M.; Antolinos Lopez, V.; Navarro Segura, L. An innovative active cardboard for box bulk packaging of fresh bell pepper extends its shelf life. Postharvest Biol. Technol. 2020, 164, 111171. [Google Scholar] [CrossRef]
- Tylewicz, U.; Nowacka, M.; Rybak, K.; Drozdzal, K.; Marco, D.R.; Mozzon, M. Design of healthy snack based on kiwifruit. Molecules 2020, 25, 3309. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, R.; Reboredo, F.; Guerra, M.; Ressurreição, S.; Alvarenga, N. Elemental Composition and Some Nutritional Parameters of Sweet Pepper from Organic and Conventional Agriculture. Plants 2020, 9, 863. [Google Scholar] [CrossRef] [PubMed]
- Ritota, M.; Marini, F.; Sequi, P.; Masimiliano, V. Metabolic characterization of Italian sweet pepper (Capsicum annum L.) by means of HRMAS-NMR spectroscopy and multivariate analyses. J. Agric. Food Chem. 2010, 58, 9675–9684. [Google Scholar] [CrossRef] [PubMed]
- Council Regulation (EC) 834/2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) 2092/91. Available online: https://www.legislation.gov.uk/eur/2007/834 (accessed on 10 May 2019).
- Călin, M. The Management of Guidelines for Ecological Vegetable Cultures; Alma Mater: Bacau, Romania, 2020; p. 184. [Google Scholar]
- Dobrin, A.; Nedeluș, A.; Bujor, O.; Moț, A.; Zugravu, M.; Bădulescu, L. Nutritional quality parameters of the fresh red tomato varieties cultivated in the organic system. Scientific Papers. Series B. Horticulture 2019, 63, 439–443. [Google Scholar]
- Murariu, O.C.; Brezeanu, C.; Jităreanu, D.C.; Robu, T.; Irimia, L.M.; Trofin, A.; Popa, L.; Stoleru, V.; Murariu, F.; Brezeanu, P.M. Functional quality of improved tomato genotypes grown in the open field and plastic tunnel under organic farming. Agriculture 2021, 7, 609. [Google Scholar] [CrossRef]
- Jones, E.; Hughes, R.E. Foliar ascorbic acid in some angiosperms. Phytochemistry 1983, 22, 2493–2499. [Google Scholar] [CrossRef]
- Mackinney, G. Absorption of light by chlorophyll solutions. J. Biolog. Chem. 1941, 140, 315–322. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Coxam, V.; Davicco, M.J.; Demigne, C. Nutrition et metabolism osseux. In Aliments Fonctionnels, 2nd ed.; Lavoisier: Paris, Franch, 2008; Chapter 25; pp. 729–798. [Google Scholar]
- Perez-Lopez, A.J.; Moises del Amor, F.; Serrano-Martinez, A.; Fortea Maria, I.; Nunez-Delicado, E. Influence of agricultural practices on the quality of sweet pepper fruits as affected by the maturity stage. J. Sci. Food Agric. 2007, 87, 2075–2080. [Google Scholar] [CrossRef]
- Schiffman, L.G.; Kanuk, L.L. Consumer Behaviour, 10th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Hyun-Joo, L.; Zee-Sun, Y. Consumers’ perceptions of organic food attributes and cognitive and affective attitudes as determinants of their purchase intentions toward organic food. Food Qual. Prefer. 2015, 39, 259–267. [Google Scholar]
- Hallman, E.; Rembiałkowska, E. Characterisation of antioxidant compounds in sweet bell pepper (Capsicum annum L.) under organic and conventional growing systems. J. Sci. Food Agric. 2012, 92, 2409–2415. [Google Scholar] [CrossRef]
- Szafirowska, A.; Elkner, K. Yielding And Fruit Quality Of Three Sweet Pepper Cultivars From Organic And Conventional Cultivation. Veg. Crop. Res. Bull. 2008, 69, 135–143. [Google Scholar] [CrossRef]
- Gey, K.F. Optimum plasma levels of antioxidant micronutrients—Ten years of antioxidant hypothesis on atherosclerosis. Bible. Nutr. Diet 1994, 51, 84–89. [Google Scholar]
- Rao, A.V.; Agarwal, S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 1999, 19, 305–323. [Google Scholar] [CrossRef]
- Gerster, H. The potential role of lycopene for human health. J. Am. Coll. Nutr. 1997, 16, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Corotenoids 1A. Isolation and Analysis; Birkhauser: Basel, Switzerland; Boston, MA, USA; Berlin, Germany; 328p.
- Tânia da Silveira, A.C.; Ismael da Silva, G.; Palhares de Melo, L.A.M.; Reifschneider, F.J.B. Carotenoid and total vitamin C of peppers from selected Brazilian cultivars. J. Food Compos. Anal. 2017, 57, 73–79. [Google Scholar] [CrossRef]
- Ha, S.H.; Kim, J.B.; Park, J.S.; Lee, S.W.; Cho, K.J. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: Deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of yellow pepper. J. Exp. Bot. 2007, 58, 3135–3144. [Google Scholar] [CrossRef] [Green Version]
- Hornero-Méndez, D.; Gómez-Ladrón De Guevara, R.; Minguez-Mosquera, M.I. Carotenoid biosynthesis changes in five red pepper (Capsicum annum L.) cultivars during ripening, Cultivar selection for breeding. J. Agric. Food Chem. 2000, 48, 3857–3864. [Google Scholar] [CrossRef]
- Jatau, S.H.; Sokoto, M.A.; Almustapha, M.N.; Muhammad, C.; Dabai, M.U.; Zubairu, A.Y. Effect Of Heat On Lycopene Content Of Hot Peppers (Capsicum Annum) Using Various Processing Temperature. Int. J. Sci. Eng. Technol. 2018, 14, 2. [Google Scholar]
- Novelina; Nazir, N.; Adrian, M.R. The Improvement Lycopene Availability and Antioxidant Activities of Tomato (Lycopersicum esculentum, Mill) Jelly Drink. Agric. Agric. Sci. Procedia 2016, 9, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; Frohlich, K.; Bohm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (aTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Cervantez-Paz, B.; Yahia, E.M.; Ornelas-Paz, J.J.; Gardea-Be’Jar, A.A.; Ibarra-Junquera, V.; Perez-Martinez, J.D. Effect of heat processing on the profile of pigments and antioxidant capacity of green and red Jalapeno peppers. J. Agric. Food Chem. 2012, 60, 10822–10833. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zahra, T. Influence of Agricultural Practices on Fruit Quality of Bell Pepper. Pak. J. Biol. Sci. 2011, 14, 876–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallmann, E.; Rembiałkowska, E. The Content of Selected Antioxidant Compounds in Bell Pepper Varieties from Organic and Conventional Cultivation Before and After Freezing Process. 16th IFOAM Organic World Congress. 2008, pp. 1–4. Available online: http://orgprints.org/12516 (accessed on 20 January 2021).
- Hamed, M.; Kalita, D.; Bartolo, M.; Jayanty, S.S. Capsaicinoids, polyphenols and antioxidant activities of Capsicum annum: Comparative study of the effect of ripening stage and cooking methods. Antioxidants 2019, 8, 364. [Google Scholar] [CrossRef] [PubMed]
- Gey, K.F. Vitamins E plus C and interacting co-nutrients are required for optimal health. A critical and constructive review of epidemiology and supplementation data regarding cardiovascular disease and cancer. Biofactors 1998, 7, 113–174. [Google Scholar]
- Neve, J.; Pincemail, J. Antioxydants alimentaires: Vitamins, oligoelements et non-nutriments. In Aliments Fonctionnels, 2nd ed.; Lavoisier: Paris, Franch, 2008; pp. 8203–8241. [Google Scholar]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C. Diet and health; What should we eat. Science 1994, 264, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Topuz, A.; Ozdemir, F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annum L.) grown in Turkey. J. Food Compos. Anal. 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Chassy, W.A.; Bui, L.; Renaud, N.C.E.; Van Horn, M.; Mitchell, A. Three-Year Comparison of the Content of Antioxidant Microconstituents and Several Quality Characteristics in Organic and Conventionally Managed Tomatoes and Bell Peppers. Agric. Food Chem. 2006, 54, 8244–8252. [Google Scholar] [CrossRef]
- Bae, H.; Jayaprakasha, G.K.; Crosby, K.; Yoo, K.S.; Leskovar, D.I.; Jifon, D.I.; Patil, B.S. Ascorbic acid, capsaicinoid and flavonoid aglycone concentration as a function of fruit maturity stage in greenhouse-grown peppers. J. Food Compos. Anal. 2014, 33, 195–202. [Google Scholar] [CrossRef]
- Hong-Gi, K.; Jong-Hyang, B.; Jastrzebski, Z.; Cherkas, A.; Buk-Gu, H.; Gorinstein, S.; Yang-Gyu, K. Binding, Antioxidant and Anti-proliferative Properties of Bioactive Compounds of Sweet Paprika (Capsicum annum L.). Plant Foods Hum. Nutr. 2016, 71, 129–136. [Google Scholar] [CrossRef]
- Shahein, M.M.; Hassan, H.A.; Abou-El-Hassan, S. Response Of Sweet Pepper Plants To Fertilize By Different Organic Fertilizers Under Protected Agriculture. J. Plant Prod. 2015, 6, 809–822. [Google Scholar] [CrossRef]
Period | Average Temperature (°C) | Atmospheric Humidity (%) | Rainfall (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |||||||
Bc | Is | Bc | Is | Bc | Is | Bc | Is | Bc | Is | Bc | Is | |
May | 16.4 | 16.6 | 14.38 | 14.4 | 76.4 | 74 | 72.6 | 67 | 114.6 | 74.9 | 110.8 | 130.5 |
June | 22.2 | 22.7 | 20.8 | 21.3 | 78.5 | 66 | 77.0 | 71 | 58.7 | 8.4 | 52.4 | 99.0 |
July | 21.2 | 22.0 | 21.38 | 22.1 | 76.4 | 67 | 76.6 | 61 | 64.2 | 3.8 | 64.8 | 7.9 |
August | 21.8 | 22.1 | 22.39 | 23.6 | 69.0 | 67 | 67.9 | 54 | 21.2 | 35.1 | 19.0 | 8.8 |
September | 16.1 | 16.9 | 18.26 | 19.5 | 70.3 | 29 | 73.6 | 60 | 75.3 | 51.0 | 78.6 | 24.2 |
October | 10.9 | 11.4 | 13.7 | 14.1 | 79.4 | 77 | 84.6 | 83 | 68.7 | 24.7 | 80.3 | 75.4 |
Location Average/Sum | 18.1 | 18.6 | 18.45 | 19.16 | 75.00 | 63.33 | 75.38 | 66.00 | 402.7 | 197.9 | 405.9 | 345.8 |
Variant | β–Carotene mg·100 g−1 F.W. | Lycopene mg·100 g−1 F.W. | Vitamin C mg·100 g−1 F.W. |
---|---|---|---|
Crop place | |||
Is | 0.68 ± 0.07 | 0.51 ± 0.05 | 168.35 ± 8.23 |
Bc | 4.79 ± 0.49 | 2.21 ± 0.27 | 185.27 ± 10.97 |
* | * | ns | |
Genotypes | |||
G 1 | 1.48 ± 0.02 ns | 0.63 ± 0.02 ns | 167.85 ± 6.69 b |
G 2 | 2.65 ± 1.03 ns | 1.71 ± 0.50 ns | 121.60 ± 5.76 c |
G 3 | 1.59 ± 0.50 ns | 1.07 ± 0.04 ns | 152.01 ± 6.42 bc |
G 4 | 2.15 ± 0.56 ns | 0.92 ± 0.33 ns | 134.23 ± 4.46 bc |
G 5 | 2.76 ± 1.16 ns | 2.04 ± 0.80 ns | 115.51 ± 7.41 c |
G 6 | 1.67 ± 0.43 ns | 0.70 ± 0.05 ns | 214.53 ± 7.33 a |
G 7 | 2.98 ± 1.15 ns | 1.27 ± 0.43 ns | 235.11 ± 13.79 a |
G 8 | 5.36 ± 2.11 ns | 2.76 ± 1.01 ns | 210.73 ± 15.02 a |
G 9 | 3.96 ± 1.35 ns | 1.14 ± 0.27 ns | 239.75 ± 4.07 a |
Variant | Β–Carotene mg·100 g−1 F.W. | Lycopene mg·100 g−1 F.W. | Vitamin C mg·100 g−1 F.W. | |
---|---|---|---|---|
G1 | Is | 1.47 ± 0.04 g | 0.64 ± 0.01 gh | 165.51 ± 2.63 fg |
Bc | 1.48 ± 0.03 g | 0.62 ± 0.05 h | 170.19 ± 14.54 f | |
G2 | Is | 0.35 ± 0.08 jk | 0.59 ± 0.02 h | 133.86 ± 3.11 hi |
Bc | 4.95 ± 0.01 d | 2.82 ± 0.01 c | 109.34 ± 2.48 ij | |
G3 | Is | 0.48 ± 0.02 ijk | 0.99 ± 0.02 f | 166.05 ± 2.75 fg |
Bc | 2.70 ± 0.02 f | 1.15 ± 0.06 f | 137.96 ± 1.04 h | |
G4 | Is | 0.90 ± 0.03 h | 0.18 ± 0.01 i | 126.19 ± 4.20 hi |
Bc | 3.40 ± 0.03 e | 1.65 ± 0.03 e | 142.27 ± 4.13 gh | |
G5 | Is | 0.18 ± 0.00 k | 0.25 ± 0.01 i | 99.29 ± 3.31 j |
Bc | 5.34 ± 0.03 c | 3.84 ± 0.03 b | 131.74 ± 0.78 hi | |
G6 | Is | 0.71 ± 0.01 hi | 0.58 ± 0.01 h | 199.52 ± 3.78 de |
Bc | 2.63 ± 0.00 f | 0.81 ± 0.03 g | 229.54 ± 5.41 bc | |
G7 | Is | 0.41 ± 0.01 ijk | 0.30 ± 0.00 i | 204.39 ± 2.76 cd |
Bc | 5.55 ± 0.02 c | 2.23 ± 0.08 d | 265.82 ± 0.52 a | |
G8 | Is | 0.64 ± 0.02 hij | 0.50 ± 0.01 h | 177.46 ± 1.12 ef |
Bc | 10.08 ± 0.22 a | 5.01 ± 0.03 a | 244.00 ± 4.38 ab | |
G9 | Is | 0.94 ± 0.01 h | 0.53 ± 0.02 h | 242.92 ± 3.77 ab |
Bc | 6.97 ± 0.03 b | 1.74 ± 0.04 e | 236.58 ± 7.65 b |
Variant | Chlorophyll A mg·100 g−1 F.W. | Chlorophyll B mg·100 g−1 F.W. | Xanthophylls mg·100 g−1 F.W. |
---|---|---|---|
Crop place | |||
Is | 2.82 ± 0.22 | 3.54 ± 0.35 | 5.60 ± 0.78 |
Bc | 0.83 ± 0.06 | 1.52 ± 0.09 | 0.55 ± 0.03 |
* | * | * | |
Genotypes | |||
G 1 | 0.86 ± 0.04 b | 1.13 ± 0.03 c | 0.89 ± 0.17 b |
G 2 | 1.84 ± 0.62 ab | 3.28 ± 0.72 ab | 1.84 ± 0.61 ab |
G 3 | 2.57 ± 0.87 ab | 2.03 ± 0.43 bc | 1.53 ± 0.34 b |
G 4 | 1.88 ± 0.31 ab | 2.89 ± 0.32 abc | 6.31 ± 2.64 a |
G 5 | 1.51 ± 0.16 ab | 2.09 ± 0.03 bc | 6.24 ± 2.52 a |
G 6 | 1.57 ± 0.28 ab | 2.14 ± 0.10 bc | 1.26 ± 0.26 b |
G 7 | 2.67 ± 0.92 a | 4.49 ± 1.44 a | 1.88 ± 0.67 ab |
G 8 | 1.53 ± 0.45 ab | 2.26 ± 0.54 bc | 4.16 ± 1.65 ab |
G 9 | 2.01 ± 0.38 ab | 2.45 ± 0.53 bc | 3.52 ± 1.31 ab |
Variant | Chlorophyll A mg·100 g−1 F.W. | Chlorophyll B mg·100 g−1 F.W. | Xanthophyll mg·100 g−1 F.W. | |
---|---|---|---|---|
G1 | Is | 0.94 ± 0.02 i | 1.16 ± 0.02 jk | 1.28 ± 0.01 h |
Bc | 0.77 ± 0.02 j | 1.10 ± 0.06 jk | 0.50 ± 0.02 jk | |
G2 | Is | 3.22 ± 0.06 c | 4.89 ± 0.06 b | 3.21 ± 0.02 e |
Bc | 0.46 ± 0.02 l | 1.67 ± 0.06 i | 0.47 ± 0.01 jk | |
G3 | Is | 4.52 ± 0.06 b | 2.97 ± 0.09 d | 2.30 ± 0.01 f |
Bc | 0.62 ± 0.01 k | 1.08 ± 0.18 jk | 0.76 ± 0.03 i | |
G4 | Is | 2.57 ± 0.01 e | 3.61 ± 0.04 c | 12.20 ± 0.11 a |
Bc | 1.18 ± 0.03 h | 2.18 ± 0.04 fg | 0.41 ± 0.05 l | |
G5 | Is | 1.85 ± 0.03 g | 2.04 ± 0.05 gh | 11.87 ± 0.24 b |
Bc | 1.16 ± 0.05 h | 2.14 ± 0.03 g | 0.61 ± 0.04 jk | |
G6 | Is | 2.18 ± 0.05 f | 2.36 ± 0.02 e | 1.83 ± 0.09 g |
Bc | 0.96 ± 0.09 i | 1.91 ± 0.06 h | 0.69 ± 0.03 jk | |
G7 | Is | 4.74 ± 0.04 a | 7.70 ± 0.03 a | 3.38 ± 0.10 e |
Bc | 0.61 ± 0.02 k | 1.28 ± 0.04 j | 0.39 ± 0.07 l | |
G8 | Is | 2.53 ± 0.03 e | 3.47 ± 0.06 c | 7.84 ± 0.15 c |
Bc | 0.53 ± 0.01 kl | 1.04 ± 0.03 k | 0.48 ± 0.04 jk | |
G9 | Is | 2.85 ± 0.04 d | 3.62 ± 0.14 c | 6.45 ± 0.18 d |
Bc | 1.16 ± 0.01 h | 1.28 ± 0.02 j | 0.60 ± 0.08 jk |
Variant | TDM, % | TSS °Brix | pH | TA g Acid Citric·100 L−1 F.W. |
---|---|---|---|---|
Crop place | ||||
Is | 12.95 ± 0.44 | 6.12 ± 0.10 | 5.11 ± 0.07 | 0.26 ± 0.02 |
Bc | 7.63 ± 0.47 | 5.72 ± 0.13 | 5.23 ± 0.02 | 0.25 ± 0.02 |
* | ns | ns | ns | |
Genotypes | ||||
G1 | 11.20 ± 0.29 ns | 5.94 ± 0.06 bc | 5.04 ± 0.25 ns | 0.18 ± 0.03 b |
G2 | 10.93 ± 0.32 ns | 6.65 ± 0.08 ab | 5.15 ± 0.03 ns | 0.17 ± 0.01 b |
G3 | 9.98 ± 1.31 ns | 6.83 ± 0.04 a | 5.03 ± 0.08 ns | 0.28 ± 0.01 ab |
G4 | 13.25 ± 2.03 ns | 5.29 ± 0.03 c | 5.21 ± 0.01 ns | 0.24 ± 0.02 ab |
G5 | 10.22 ± 1.98 ns | 5.74 ± 0.14 c | 5.44 ± 0.13 ns | 0.21 ± 0.01 ab |
G6 | 8.44 ± 1.15 ns | 5.92 ± 0.06 bc | 5.19 ± 0.05 ns | 0.29 ± 0.04 ab |
G7 | 8.90 ± 1.82 ns | 5.82 ± 0.42 bc | 5.20 ± 0.04 ns | 0.32 ± 0.01 a |
G8 | 10.19 ± 1.72 ns | 5.54 ± 0.28 c | 5.09 ± 0.09 ns | 0.31 ± 0.04 a |
G9 | 9.53 ± 1.29 ns | 5.61 ± 0.04 c | 5.22 ± 0.06 ns | 0.30 ± 0.06 ab |
Variant | TDM % | TSS °Brix | pH | AT g Acid Citric·100 L−1 F.W. | |
---|---|---|---|---|---|
G1 | Is | 10.59 ± 0.10 f | 5.95 ± 0.09 def | 4.78 ± 0.51 b | 0.20 ± 0.06 cd |
Bc | 11.81 ± 0.21 de | 5.93 ± 0.09 def | 5.29 ± 0.01 ab | 0.15 ± 0.01 d | |
G2 | Is | 10.29 ± 0.01 f | 6.47 ± 0.01 bc | 5.08 ± 0.01 b | 0.20 ± 0.01 cd |
Bc | 11.57 ± 0.34 de | 6.82 ± 0.06 a | 5.21 ± 0.01 ab | 0.15 ± 0.00 d | |
G3 | Is | 12.89 ± 0.05 c | 6.86 ± 0.09 a | 4.86 ± 0.00 b | 0.26 ± 0.00 bcd |
Bc | 7.06 ± 0.21 h | 6.80 ± 0.01 ab | 5.20 ± 0.02 ab | 0.30 ± 0.02 abc | |
G4 | Is | 17.78 ± 0.24 a | 5.26 ± 0.04 ij | 5.19 ± 0.01 b | 0.27 ± 0.01 abcd |
Bc | 8.73 ± 0.12 g | 5.32 ± 0.05 hi | 5.23 ± 0.00 ab | 0.20 ± 0.01 cd | |
G5 | Is | 14.63 ± 0.20 b | 6.04 ± 0.02 de | 5.72 ± 0.03 ab | 0.21 ± 0.01 cd |
Bc | 5.80 ± 0.06 j | 5.44 ± 0.06 hi | 5.16 ± 0.01 ab | 0.20 ± 0.01 cd | |
G6 | Is | 11.00 ± 0.13 ef | 6.03 ± 0.04 de | 5.29 ± 0.04 ab | 0.20 ± 0.01 cd |
Bc | 5.87 ± 0.12 ij | 5.80 ± 0.04 efg | 5.08 ± 0.01 ab | 0.37 ± 0.01 ab | |
G7 | Is | 12.96 ± 0.06 c | 6.75 ± 0.12 ab | 5.12 ± 0.01 ab | 0.33 ± 0.01 abc |
Bc | 4.83 ± 0.06 k | 4.89 ± 0.05 k | 5.28 ± 0.01 ab | 0.30 ± 0.01 abc | |
G8 | Is | 14.03 ± 0.16 b | 6.16 ± 0.04 cd | 4.89 ± 0.02 ab | 0.23 ± 0.00 cd |
Bc | 6.34 ± 0.11 hij | 4.93 ± 0.06 jk | 5.29 ± 0.01 ab | 0.39 ± 0.01 ab | |
G9 | Is | 12.39 ± 0.24 cd | 5.62 ± 0.08 fgh | 5.08 ± 0.02 ab | 0.40 ± 0.08 a |
Bc | 6.66 ± 0.04 hi | 5.59 ± 0.05 gh | 5.36 ± 0.01 a | 0.20 ± 0.01 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezeanu, C.; Brezeanu, P.M.; Stoleru, V.; Irimia, L.M.; Lipșa, F.D.; Teliban, G.-C.; Ciobanu, M.M.; Murariu, F.; Puiu, I.; Branca, F.; et al. Nutritional Value of New Sweet Pepper Genotypes Grown in Organic System. Agriculture 2022, 12, 1863. https://doi.org/10.3390/agriculture12111863
Brezeanu C, Brezeanu PM, Stoleru V, Irimia LM, Lipșa FD, Teliban G-C, Ciobanu MM, Murariu F, Puiu I, Branca F, et al. Nutritional Value of New Sweet Pepper Genotypes Grown in Organic System. Agriculture. 2022; 12(11):1863. https://doi.org/10.3390/agriculture12111863
Chicago/Turabian StyleBrezeanu, Creola, Petre Marian Brezeanu, Vasile Stoleru, Liviu Mihai Irimia, Florin Daniel Lipșa, Gabriel-Ciprian Teliban, Marius Mihai Ciobanu, Florin Murariu, Ioan Puiu, Ferdinando Branca, and et al. 2022. "Nutritional Value of New Sweet Pepper Genotypes Grown in Organic System" Agriculture 12, no. 11: 1863. https://doi.org/10.3390/agriculture12111863
APA StyleBrezeanu, C., Brezeanu, P. M., Stoleru, V., Irimia, L. M., Lipșa, F. D., Teliban, G.-C., Ciobanu, M. M., Murariu, F., Puiu, I., Branca, F., & Murariu, O. C. (2022). Nutritional Value of New Sweet Pepper Genotypes Grown in Organic System. Agriculture, 12(11), 1863. https://doi.org/10.3390/agriculture12111863