Effect of Mycorrhiza Fungi, Preceding Crops, Mineral and Bio Fertilizers on Maize Intercropping with Cowpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Treatments
- A.
- Preceding crops:
- 1.
- Berseem (Meskawy, cv.).
- 2.
- Sugar beet (Careem, cv.).
- 3.
- Wheat (Sakha 94, cv.).
- B.
- five treatments of NPK mineral fertilizer and bio fertilizers:
- T1: (100% mineral NPK).
- T2: (75% mineral NPK + Arbuscular Mycorrhiza fungi).
- T3: (50% mineral NPK + Arbuscular Mycorrhiza fungi).
- T4: (75% mineral NPK + Mycrobein).
- T5: (50% mineral NPK + Mycrobein).
2.2. The Fertilization Rates
2.3. Experimental Design
2.4. Planting Date
2.5. The Method Intercropping
2.5.1. Maize Measurements
2.5.2. Cowpea Measurements
2.5.3. Competitive Relationships
2.5.4. Economic Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Maize
3.1.1. Effect of Preceding Crops
3.1.2. Effect of NPK and Biofertilizers
3.1.3. The Interaction Effects
3.2. Cowpea
3.2.1. Effect of Preceding Crops
3.2.2. Effect of NPK and Biofertilizers
3.2.3. The Interaction Effects
3.3. Quality Measurements
3.3.1. Land Equivalent Ratio (LER)
3.3.2. Relative Crowding Coefficient (RCC)
3.3.3. Aggressivity (A)
3.4. Economics Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dahmardeh, M.; Ghanbari, A.; Syasar, B.; Ramroudi, M. Effect of Intercropping Maize (Zea Mays L.) with Cow Pea (Vigna Unguiculata L.) on Green Forage Yield and Quality Evaluation. Asian J. Plant Sci. 2009, 8, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Den Hollander, N.G.; Bastiaans, L.; Kropff, M.J. Clover as a Cover Crop for Weed Suppression in an Intercropping Design: II. Competitive Ability of Several Clover Species. Eur. J. Agron. 2007, 26, 104–112. [Google Scholar] [CrossRef]
- Salama, H.S.A. Yield and Nutritive Value of Maize (Zea Mays L.) Forage as Affected by Plant Density, Sowing Date and Age at Harvest. Ital. J. Agron. 2019, 14, 114–122. [Google Scholar] [CrossRef]
- Salama, H.S.A.; Zeid, M.M.K. Hay Quality Evaluation of Summer Grass and Legume Forage Monocultures and Mixtures Grown under Irrigated Conditions. Aust. J. Crop Sci. 2016, 10, 1543–1550. [Google Scholar] [CrossRef]
- Ofori, E.; Oteng Darko, P.; Berchie, J.N.; Nimako, F.O.; Yeboah, S.; Danquah, E.O. Monitoring of soil moisture regime and water use efficiency under maize cowpea cropping system. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 837–848. [Google Scholar]
- Salama, H.S.A.; Abdel-Moneim, M.H. Maximizing Land Use Efficiency and Productivity of Soybean and Fodder Maize Intercrops through Manipulating Sowing Schedule and Maize Harvest Regime. Agronomy 2021, 11, 863. [Google Scholar] [CrossRef]
- Bayer, C.; Mielniczuk, J.; Amado, T.J.C.; Martin-Neto, L.; Fernandes, S.V. Organic Matter Storage in a Sandy Clay Loam Acrisol Affected by Tillage and Cropping Systems in Southern Brazil. Soil Tillage Res. 2000, 54, 101–109. [Google Scholar] [CrossRef]
- Ayele, H. Evaluation of the Effect of Maize-Legume Intercropping on Soil Moisture Improvement in Arid Area of Bena-Tsemay District, South Omo Zone, Southern Ethiopia. Int. J. Agric. Res. Innov. Technol. 2020, 10, 80–86. [Google Scholar] [CrossRef]
- Reddy, A.S.; Palled, Y.B. Effect of intercropped fodder cowpea on maize and system productivity in maize fodder cowpea intercropping systems. J. Farm. Sci. 2016, 29, 265–267. [Google Scholar]
- Xia, H.; Wang, L.; Xue, Y.; Kong, W.; Xue, Y.; Yu, R.; Xu, H.; Wang, X.; Wang, J.; Liu, Z.; et al. Impact of Increasing Maize Densities on Agronomic Performances and the Community Stability of Productivity of Maize/Peanut Intercropping Systems. Agronomy 2019, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K. Evaluation of maize cowpea intercropping as fodder through front line demonstration. J. Med. Plants 2019, 7, 82–85. [Google Scholar]
- Yang, C.; Fan, Z.; Chai, Q. Agronomic and Economic Benefits of Pea/Maize Intercropping Systems in Relation to N Fertilizer and Maize Density. Agronomy 2018, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Song, Y.; Kim, D.W.; Fiaz, M.; Kwon, C.H. Evaluating Different Interrow Distance between Corn and Soybean for Optimum Growth, Production and Nutritive Value of Intercropped Forages. J. Anim. Sci. Technol. 2018, 60, 1. [Google Scholar] [CrossRef] [PubMed]
- Kitonyo, O.M.; Chemining’wa, G.N.; Muthomi, J.W. Productivity of farmer-preferred maize varieties intercropped with beans in semi-arid Kenya. Int. J. Agron. Agric. Res. 2013, 3, 6–16. [Google Scholar]
- Mburu, M.W.K.; Mureithi, J.G.; Gachene, C.K.K. Water and Light Use in Maize Intercropped with Mucuna. In Proceedings of the GRO 2011 Biennial Conference, Nairobi, Kenya, 20–28 September 2011; pp. 156–177. [Google Scholar]
- Horvatić, I.; Svečnjak, Z.; Maćešić, D.; Jareš, D.; Uher, D. Influence of Intercropping Maize with Cowpea and Fertilization with Clinoptilolite on Forage Yield and Quality. J. Environ. Sci. Eng. B 2018, 7, 337–343. [Google Scholar] [CrossRef]
- Castellazzi, M.S.; Wood, G.A.; Burgess, P.J.; Morris, J.; Conrad, K.F.; Perry, J.N. A Systematic Representation of Crop Rotations. Agric. Syst. 2008, 97, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Shafshak, S.E.; El-Debaby, A.S.; Saryg, A.; Salem, M. Effect of preceding winter crops on the growth and yield of two succeeding crops, maize and wheat. Z. Fur Acher Pflanz. 1974, 140, 44–53. [Google Scholar]
- Zen El-Dein, A.A.M.; Seif El-Nasr, F.M. Effect of residual and straw for three preceding crops on growth, yield and yield components of wheat under different nitrogen fertilizer levels. J. Agric. Res. Kafr El-Sheikh Univ. J. Plant Prod. 2016, 42, 194–206. [Google Scholar] [CrossRef]
- Gomaa, M.A.; Zen El-Dein, A.A.M.; El-Sorady, G.A.; Salama, N.G.A. Productivity of Maize in Relation to Preceding Crops. Egypt. Acad. J. Biol. Sci. H. Bot. 2021, 12, 135–145. [Google Scholar] [CrossRef]
- Loomis, R.S.; Coonor, D.J. Crop Ecology, productivity and management on agriculture systems. In Mixed Farming in the North American Corn Belt; Cambridge University Press: Cambridge, UK, 1992; pp. 450–475. [Google Scholar] [CrossRef]
- El-Hawary, N.A.; Ahmed, A.R.; Metwally, I.O.E. Effect of preceding winter crops and foliar application on the succeeding summer soybean crops. J. Agric. Sci. Mansoura Univ. 1994, 19, 863–873. [Google Scholar]
- Farghly, B.S. Effect of the preceding winter crop and nitrogen fertilization on yield and yield components of maize and sunflower. Egypt. J. Agric. Res. 2001, 79, 1423–1437. [Google Scholar]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Cover Crops and Nitrogen Fertilization Effects on Soil Aggregation and Carbon and Nitrogen Pools. Can. J. Soil Sci. 2003, 83, 155–165. [Google Scholar] [CrossRef]
- Mahdi, A.A.; Mustafa, E.M.A. Response of Guar to Bradyrhizobium inoculation and to nitrogen and phosphate fertilization. J. Agric. Sci. 2005, 13, 97–110. [Google Scholar]
- Lehmann, A.; Rillig, M.C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-a meta-analysis. Soil Biol. Biochem. 2015, 81, 147–158. [Google Scholar] [CrossRef]
- Mobasser, H.R.; Moradgholi, A. Mycorrhizal bio-fertilier applications on yield seed corn varieties in Iran. Ann. Biol. Res. 2012, 3, 1109–1116. [Google Scholar]
- Abdullahi, R.; Sheriff, H.H. Effect of arbuscular mycorrhizal fungi and chemical fertilizer on growth and shoot nutrients content of onion under field condition in Northern Sudan Savanna Nigeria. J. Agric. Vet. Sci. 2013, 3, 85–90. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, 2nd ed.; Amercen Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Bremner, J.M. Total nitrogen. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 1149–1178. [Google Scholar] [CrossRef]
- Black, C.R.; Evans, D.D.; Ensminger, L.E.; White, J.L.; Clark, F.E. Methods of Soil Analysis, Part 1 and 2 Agronomy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1965. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists (AOAC): Gaithersburg, MD, USA, 2012. [Google Scholar]
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition Indices of Common Vetch and Cereal Intercrops in Two Seeding Ratio. Field Crops Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- de Wit, C.T.; van den Bergh, J.P. Competition between Herbage Plants. Neth. J. Agric. Sci. 1965, 13, 212–221. [Google Scholar] [CrossRef]
- Banik, P.; Midya, A.; Sarkar, B.K.; Ghose, S.S. Wheat and Chickpea Intercropping Systems in an Additive Series Experiment: Advantages and Weed Smothering. Eur. J. Agron. 2006, 24, 325–332. [Google Scholar] [CrossRef]
- Willey, R.W. Intercropping, its importance and research needs. Agron. J. 1979, 71, 115–119. [Google Scholar]
- Al-Ahram, B. 59 Million Tonnes of Removals Can Be Rotated and Earning of 35 Million Pounds; Agricultural Research Center, Waste Areas: Cairo, Egypt, 2021. [Google Scholar]
- Alfallahalyoum. The price of green feed tons of fodder cowpea. Feed. Prices 2021. Available online: https://alfallahalyoum.news/ (accessed on 20 September 2021).
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 5th ed.; Iowa State University: Press, IA, USA, 1967. [Google Scholar]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1. [Google Scholar] [CrossRef]
- CoStat Ver. 6.4, 2005. Cohort Software798 Light House Ave. Available online: http://www.cohort.com/DownloadCoStatPart2.html (accessed on 10 March 2020).
- Veneklaas, E.J.; Stevens, J.; Cawthray, G.R.; Turner, S.; Grigg, A.M.; Lambers, H. Chickpea and White Lupin Rhizosphere Carboxylates Vary with Soil Properties and Enhance Phosphorus Uptake. Plant Soil 2003, 248, 187–197. [Google Scholar] [CrossRef]
- Meek, B.D.; Carter, D.L.; Westermann, D.T.; Peckenpaugh, R.E. Root-Zone Mineral Nitrogen Changes as Affected by Crop Sequence and Tillage. Soil Sci. Soc. Am. J. 1994, 58, 1464–1469. [Google Scholar] [CrossRef]
- Campbell, C.A.; Zentner, R.P.; Selles, F.; Akinremi, O.O. Nitrate Leaching as Influenced by Fertilization in the Brown Soil Zone. Can. J. Soil Sci. 1993, 73, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Zamir, M.S.I.; Din, S.M.U.; Farooq, U.; Arshad, H.; Bilal, A.; Sajjad, M.T. Evaluating the Intercropping of Millet with Cowpea for Forage Yield and Quality. Am. J. Plant Sci. 2018, 9, 1781–1793. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Tiwana, U.S.; Singh, A.; Ram, H. Productivity and quality of intercropped maize (Zea mays L.) + cowpea [Vigna unguiculata (L.) Walp.] fodder as influenced by nitrogen and phosphorus levels. Range Manag. Agrofor. 2014, 35, 263–267. [Google Scholar]
- Jahanban, L.; Panahpour, E.; Gholami, A.; Davari, M.R.; Lotfifar, O. Combined effect of chickpea cultivation and type of fertilizer on growth, yield and mineral element concentration of corn (Zea mays L.). Appl. Eco. Environ. Res. 2018, 16, 3159–3169. [Google Scholar] [CrossRef]
- Gao, C.; El-Sawah, A.M.; Ali, D.F.I.; Alhaj Hamoud, Y.; Shaghaleh, H.; Sheteiwy, M.S. The Integration of Bio and Organic Fertilizers Improve Plant Growth, Grain Yield, Quality and Metabolism of Hybrid Maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Mahrous, N.; Ragab, A.; Abotaleb, H.; Taha, M.; El-Metwally, M. Effect of Inorganic, Organic and Bio Fertilizers on Yield and Yield Components of Sunflower under Newly Reclaimed Soils. J. Plant Prod. 2014, 5, 427–441. [Google Scholar] [CrossRef]
- Arihara, J.; Karasawa, T. Effect of Previous Crops on Arbuscular Mycorrhizal Formation and Growth of Succeeding Maize. Soil Sci. Plant Nutr. 2000, 46, 43–51. [Google Scholar] [CrossRef]
- Baghdadi, A.; Halim, R.A.; Ghasemzadeh, A.; Ramlan, M.F.; Sakimin, S.Z. Impact of Organic and Inorganic Fertilizers on the Yield and Quality of Silage Corn Intercropped with Soybean. PeerJ 2018, 6, e5280. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Wahab, S.; Sayed, W.; Manzlawy, A. Influences of Some Preceding Winter Crops and Nitrogen Fertilizer Rates on Yield and Quality of Intercropped Maize with Cowpea. Am. J. Exp. Agric. 2016, 11, 1–19. [Google Scholar] [CrossRef]
- Marchiol, L.; Miceli, F.; Pinosa, M.; Zerbi, G. Intercropping of Soybean and Maize for Silage in Northern Italy: Effect of Nitrogen Level and Plant Density on Growth, Yield and Protein Content. Eur. J. Agron. 1992, 1, 207–211. [Google Scholar] [CrossRef]
- Ngongoni, N.T.; Mwale, M.; Mapiye, C.; Moyo, M.T.; Hamudikuwada, H.; Titterton, M. Evaluation of Cereal Legume Intercropped Forages for Small Holder Dairy Production in Zimbabwe. Livest. Res. Rural Dev. 2007, 19, 145–148. [Google Scholar]
- Krishna, A.; Raikhelkar, S.V.; Reddy, A.S. Effect of Planting Pattern and Nitrogen on Fodder Maize Intercropped with Cowpea. Indian J. Agron. 1998, 43, 237–240. [Google Scholar]
- Ayub, M.; Tanveer, A.; Nadeem, M.A.; Shah, S.M.A. Studies on the Fodder Yield and Quality of Sorghum Grown Alone and in Mixture with Rice Bean. Pak. J. Life Soc. Sci. 2004, 2, 46–48. [Google Scholar]
- Ayub, M.; Shoaib, M. Studies on Fodder Yield and Quality of Sorghum Grown Alone and in Mixture with Guara under Different Planting Techniques. Pak. J. Agric. Res. 2009, 46, 25–29. [Google Scholar]
- Salama, H.S.A.; Nawar, A.I.; Khalil, H.E. Intercropping Pattern and N Fertilizer Schedule Affect the Performance of Additively Intercropped Maize and Forage Cowpea in the Mediterranean Region. Agronomy 2022, 12, 107. [Google Scholar] [CrossRef]
- Negash, F.; Mulualem, T.; Fikirie, K. Effect of cropping sequence on agricultural crops: Implications for Productivity and Utilization of Natural Resources. Res. Artic. Adv. Crop Sci. Tech. 2017, 6, 326–342. [Google Scholar] [CrossRef] [Green Version]
- Asem, M.; Zen El-Dein, A.; Ahmed, N. Forge Yield and Its Quality of Sudangrass and Cowpea under Different Intercropping Patterns. Al-Azhar J. Agric. Res. 2020, 45, 77–88. [Google Scholar] [CrossRef]
- Saudy, H.S. Maize–Cowpea Intercropping as an Ecological Approach for Nitrogen-Use Rationalization and Weed Suppression. Arch. Agron. Soil Sci. 2014, 61, 1–14. [Google Scholar] [CrossRef]
Soil Properties | Soil Texture | Sand% | Silt% | Clay% | PH | Organic Matter% | Available N (%) | Available P (%) | Available K (%) | EC (m mhos) cm−1 (1;5) |
---|---|---|---|---|---|---|---|---|---|---|
2019/20 | Clay | 7.08 | 32.53 | 60.39 | 7.71 | 2.10 | 0.017 | 0.010 | 0.221 | 1.5 |
2020/21 | Clay | 7.09 | 32.96 | 59.95 | 7.79 | 2.14 | 0.017 | 0.011 | 0.301 | 1.6 |
Soil Variable | Berseem | Sugar Beet | Wheat | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
PH | 8.11 | 7.99 | 7.93 | 7.85 | 8.03 | 7.89 |
Organic matter (%) | 3.05 | 301 | 2.29 | 2.21 | 2.09 | 2.07 |
Available N (%) | 0.075 | 0.072 | 0.061 | 0.059 | 0.039 | 0.040 |
Available P (%) | 0.0277 | 0.0275 | 0.0267 | 0.0236 | 0.021 | 0.0206 |
Available K (%) | 0.0684 | 0.0697 | 0.0691 | 0.0681 | 0.0545 | 0.0551 |
Month | Temperature (°C) | Relative Humidity (%) | ||||
---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | |||
Min | Max | Min | Max | |||
May | 17 | 32 | 18 | 34 | 80 | 79 |
June | 21 | 34 | 22 | 35 | 81 | 80 |
July | 24 | 35 | 23 | 36 | 85 | 83 |
August | 24 | 36 | 23 | 37 | 75 | 74 |
September | 23 | 32 | 23 | 32 | 70 | 71 |
October | 18 | 31 | 17 | 30 | 69 | 70 |
Plant Height (cm) | No. of Grain /Row | 100-Grain Weight (g) | Grain Weight/Ear (g) | Grain Yield (Ton /Fed) | Straw Yield (Ton/Fed) | Biological Yield (Ton/Fed) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Preceding Crops | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Berseem | 237.29 | 234.07 | 29.94 | 30.81 | 29.36 | 30.09 | 102.04 | 108.62 | 2.34 | 2.51 | 6.58 | 6.62 | 8.92 | 9.13 | |
Sugar beet | 227.89 | 227.55 | 26.40 | 29.83 | 27.58 | 28.09 | 97.19 | 102.55 | 2.27 | 2.36 | 6.47 | 6.45 | 8.70 | 8.80 | |
Wheat | 199.13 | 202.30 | 20.84 | 23.93 | 27.25 | 28.11 | 87.80 | 90.61 | 2.03 | 2.08 | 5.53 | 5.66 | 7.56 | 7.79 | |
L.S.D.at 5% | 3.68 | 3.18 | 0.28 | 0.30 | 0.63 | 0.74 | 1.40 | 1.03 | 0.20 | 0.11 | 0.07 | 0.16 | 0.13 | 0.10 | |
Sole maize | After berseem | 252.16 | 249.24 | 31.79 | 30.91 | 28.91 | 29.52 | 125.03 | 122.05 | 3.25 | 3.18 | 8.11 | 8.02 | 11.26 | 11.13 |
After S. beet | 243.07 | 239.87 | 31.53 | 30.87 | 28.65 | 29.31 | 123.73 | 120.23 | 3.18 | 3.11 | 8.09 | 7.97 | 11.18 | 11.05 | |
After wheat | 231.25 | 229.61 | 30.55 | 29.75 | 27.66 | 28.50 | 115.11 | 112.13 | 2.93 | 2.95 | 7.78 | 7.67 | 10.90 | 10.72 | |
Average | 242.16 | 239.57 | 31.29 | 30.51 | 28.41 | 29.11 | 120.29 | 117.47 | 3.12 | 3.08 | 8.00 | 7.89 | 11.12 | 10.97 |
Fertilizer Treatment | Plant Height (cm) | No. of Grain/Row | 100-Grain Weight (g) | Grain Weight/Ear (g) | Grain Yield (Ton/Fed) | Straw Yield (Ton/Fed) | Biological Yield (Ton/Fed) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
T1 (100% NPK) | 224.13 | 224.04 | 27.23 | 29.11 | 29.20 | 29.72 | 99.15 | 104.71 | 2.28 | 2.40 | 6.38 | 6.44 | 8.65 | 8.85 |
T2 (75%NPK+AMF) | 224.37 | 225.11 | 27.53 | 29.21 | 29.68 | 30.60 | 99.17 | 104.93 | 2.29 | 2.43 | 6.40 | 6.46 | 8.69 | 8.87 |
T3 (50%NPK +AMF) | 223.18 | 222.62 | 25.22 | 28.08 | 27.98 | 28.61 | 95.12 | 100.05 | 2.19 | 2.30 | 6.10 | 6.16 | 8.28 | 8.48 |
T4 (75%NPK +Mycrobein) | 221.00 | 219.17 | 25.39 | 28.42 | 28.37 | 29.19 | 96.83 | 101.36 | 2.21a | 2.33 | 6.18 | 6.24 | 8.39 | 8.59 |
T5 (50%NPK +Mycrobein) | 214.52 | 215.59 | 23.26 | 26.14 | 25.09 | 25.70 | 88.11 | 91.92 | 2.03 | 2.11 | 5.92 | 6.05 | 7.95 | 8.00 |
L.S.D.at 5% | 8.24 | 4.84 | 0.49 | 0.28 | 0.67 | 0.68 | 1.38 | 2.43 | 0.17 | 0.10 | 0.15 | 0.13 | 0.19 | 0.11 |
Interaction | ns | ns | * | * | ns | ns | * | * | ns | * | * | ns | * | * |
Fertilizer Treatment | No. of Grain/Row | 100-Grain Weight(g) | Grain Weight/Ear (g) | Grain Yield (Ton/Fed) | Straw Yield (Ton/Fed) | Biological Yield (Ton/Fed) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Berssem | T1 | 31.40 | 32.13 | 30.47 | 30.90 | 104.15 | 112.56 | 2.40 | 2.60 | 6.68 | 6.65 | 9.08 | 9.29 |
T2 | 31.93 | 32.22 | 30.65 | 31.90 | 105.01 | 113.30 | 2.46 | 2.62 | 6.77 | 6.94 | 9.23 | 9.53 | |
T3 | 29.80 | 30.73 | 29.85 | 30.43 | 103.99 | 110.04 | 2.32 | 2.53 | 6.61 | 6.57 | 8.93 | 9.18 | |
T4 | 29.86 | 31.10 | 30.01 | 31.26 | 104.37 | 111.79 | 2.39 | 2.59 | 6.56 | 6.68 | 8.95 | 9.31 | |
T5 | 26.70 | 27.87 | 25.80 | 25.97 | 92.70 | 95.42 | 2.13 | 2.19 | 6.27 | 6.17 | 8.40 | 8.36 | |
S. beet | T1 | 28.30 | 31.00 | 28.65 | 28.87 | 103.31 | 109.45 | 2.37 | 2.51 | 6.70 | 6.73 | 9.04 | 9.24 |
T2 | 28.33 | 30.80 | 28.97 | 30.10 | 101.83 | 108.64 | 2.34 | 2.50 | 6.72 | 6.59 | 9.06 | 9.09 | |
T3 | 25.80 | 29.80 | 27.20 | 27.70 | 95.88 | 99.47 | 2.20 | 2.29 | 6.35 | 6.45 | 8.55 | 8.74 | |
T4 | 26.10 | 30.30 | 27.90 | 28.20 | 96.80 | 100.74 | 2.19 | 2.33 | 6.43 | 6.36 | 8.62 | 8.66 | |
T5 | 23.47 | 27.26 | 25.20 | 25.60 | 88.13 | 94.44 | 2.03 | 2.17 | 6.21 | 6.11 | 8.24 | 8.28 | |
Wheat | T1 | 22.00 | 24.20 | 28.47 | 29.40 | 90.01 | 92.11 | 2.07 | 2.12 | 5.76 | 5.91 | 7.83 | 8.03 |
T2 | 22.33 | 24.60 | 29.43 | 29.80 | 90.67 | 92.84 | 2.08 | 2.13 | 5.71 | 5.85 | 7.79 | 7.98 | |
T3 | 20.07 | 23.70 | 26.90 | 27.70 | 85.50 | 90.63 | 2.04 | 2.08 | 5.33 | 5.45 | 7.37 | 7.53 | |
T4 | 20.20 | 23.87 | 27.20 | 28.10 | 89.33 | 91.56 | 2.06 | 2.10 | 5.55 | 5.69 | 7.61 | 7.79 | |
T5 | 19.60 | 23.30 | 24.27 | 25.53 | 83.50 | 85.89 | 1.92 | 1.97 | 5.29 | 5.38 | 7.21 | 7.35 | |
L.S.D.at 5% | 0.71 | 0.41 | ns | ns | 1.97 | 3.49 | ns | 0.08 | 0.21 | ns | 0.23 | 0.26 |
2020 | 2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Treatments | 1st Cut (Ton /Fed) | 2nd Cut (Ton /Fed) | 3rd Cut (Ton /Fed) | Total Yield (Ton/Fed) | 1st Cut (Ton /Fed) | 2nd Cut (Ton /Fed) | 3rd Cut (Ton /Fed) | Total Yield (Ton/Fed) | |
Berseem | 8.44 | 3.86 | 2.19 | 14.49 | 8.88 | 3.75 | 2.20 | 14.83 | |
Sugar beet | 7.67 | 3.26 | 1.98 | 12.91 | 8.12 | 3.01 | 2.00 | 13.13 | |
Wheat | 6.73 | 2.50 | 1.85 | 11.08 | 7.10 | 2.38 | 1.86 | 11.34 | |
L.S.D. 5% | 0.115 | 0.068 | 0.025 | 0.143 | 0.372 | 0.134 | 0.014 | 0.389 | |
F1(100% NPK) | 7.87 | 3.40 | 2.16 | 13.43 | 8.42 | 3.22 | 2.19 | 13.82 | |
F2(75%NPK+AMF) | 8.00 | 3.59 | 2.20 | 13.79 | 8.55 | 3.41 | 2.21 | 14.17 | |
F3(50%NPK +AMF) | 7.55 | 3.11 | 1.89 | 12.55 | 7.84 | 2.98 | 1.92 | 12.75 | |
F4(75%NPK +Mycrobein) | 7.60 | 3.17 | 1.95 | 12.72 | 7.93 | 3.04 | 1.93 | 12.90 | |
F5(50%NPK +Mycrobein) | 7.05 | 2.74 | 1.84 | 11.63 | 7.43 | 2.59 | 1.82 | 11.84 | |
L.S.D. 5% | 0.164 | 0.119 | 0.032 | 0.211 | 0.197 | 0.111 | 0.034 | 0.205 | |
Interaction | * | * | ns | * | * | * | * | * | |
Sole cowpea | After berseem | 10.26 | 6.82 | 3.87 | 20.95 | 10.34 | 6.90 | 3.78 | 21.02 |
After S. beet | 9.95 | 6.51 | 3.56 | 20.02 | 10.23 | 6.78 | 3.67 | 20.68 | |
After wheat | 9.70 | 6.26 | 3.31 | 19.27 | 9.95 | 6.51 | 3.40 | 19.86 | |
Average | 9.97 | 6.53 | 3.58 | 20.08 | 10.17 | 6.74 | 3.61 | 20.52 |
2020 | 2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Treatments | 1st Cut (Ton /Fed) | 2nd Cut(Ton /Fed) | 3rd Cut (Ton /Fed) | Total (Ton /fed) | 1st Cut (Ton /Fed) | 2nd Cut(Ton /Fed) | 3rd Cut (Ton /Fed) | Total (Ton /Fed) | |
Berssem | T1(100% NPK) | 8.83 | 3.90 | 2.35 | 15.08 | 9.32 | 3.84 | 2.37 | 15.53 |
T2 (75%NPK+ AMF) | 9.02 | 4.33 | 2.41 | 15.76 | 9.59 | 4.13 | 2.39 | 16.11 | |
T3 (50%NPK+ AMF) | 8.25 | 3.86 | 2.07 | 14.18 | 8.64 | 3.73 | 2.11 | 14.48 | |
T4 (75%NPK+ Microbean) | 8.30 | 3.89 | 2.15 | 14.34 | 8.69 | 3.80 | 2.13 | 14.62 | |
T5 (50%NPK+ Microbean) | 7.81 | 3.30 | 1.96 | 13.07 | 8.16 | 3.26 | 1.98 | 13.40 | |
S. beet | T1(100% NPK) | 8.01 | 3.57 | 2.13 | 13.71 | 8.71 | 3.22 | 2.17 | 14.10 |
T2 (75%NPK+ AMF) | 8.17 | 3.64 | 2.16 | 13.97 | 8.77 | 3.40 | 2.18 | 14.35 | |
T3 (50%NPK+ AMF) | 7.70 | 3.12 | 1.85 | 12.67 | 7.85 | 2.96 | 1.89 | 12.70 | |
T4 (75%NPK+ Microbean) | 7.76 | 3.20 | 1.90 | 12.86 | 7.89 | 3.03 | 1.91 | 12.83 | |
T5 (50%NPK+ Microbean) | 6.70 | 2.76 | 1.86 | 11.32 | 7.38 | 2.43 | 1.85 | 11.66 | |
Wheat | T1(100% NPK) | 6.78 | 2.75 | 1.99 | 11.52 | 7.23 | 2.61 | 2.02 | 11.86 |
T2 (75%NPK+ AMF) | 6.81 | 2.81 | 2.03 | 11.65 | 7.29 | 2.69 | 2.05 | 12.03 | |
T3 (50%NPK+ AMF) | 6.70 | 2.35 | 1.74 | 10.79 | 7.04 | 2.26 | 1.77 | 11.07 | |
T4 (75%NPK+ Microbean) | 6.75 | 2.42 | 1.79 | 10.96 | 7.20 | 2.30 | 1.76 | 11.26 | |
T5 (50%NPK+ Microbean) | 6.63 | 2.17 | 1.71 | 10.51 | 6.75 | 2.04 | 1.68 | 10.47 | |
L.S.D.at 5% | 0.348 | 0.171 | ns | 0.302 | 0.283 | 0.159 | 0.283 | 0.294 |
Treatments | Land Equivalent Ratio (LER) | Relative Crowding Coefficient (K) | Aggressivity (A) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||||||||||||
Lm | Lco | LER | Lm | Lco | LER | Km | Kco | K | Km | Kco | K | Am | Aco | Am | Aco | ||
Berssem | T1 | 0.74 | 0.72 | 1.46 | 0.82 | 0.74 | 1.56 | 2.82 | 2.57 | 7.25 | 4.48 | 2.83 | 12.68 | +0.037 | −0.037 | +0.158 | −0.158 |
T2 | 0.76 | 0.75 | 1.51 | 0.83 | 0.77 | 1.60 | 3.11 | 3.04 | 9.45 | 4.68 | 3.28 | 15.35 | +0.009 | −0.009 | +0.115 | −0.115 | |
T3 | 0.71 | 0.68 | 1.39 | 0.80 | 0.69 | 1.49 | 2.49 | 2.09 | 4.58 | 3.89 | 2.22 | 8.64 | +0.074 | −0.074 | +0.213 | −0.213 | |
T4 | 0.74 | 0.69 | 1.43 | 0.81 | 0.70 | 1.51 | 2.93 | 2.16 | 6.33 | 4.39 | 2.28 | 10.01 | +0.102 | −0.102 | +0.238 | −0.238 | |
T5 | 0.66 | 0.62 | 1.28 | 0.69 | 0.64 | 1.33 | 1.90 | 2.60 | 4.94 | 2.21 | 1.76 | 3.89 | +0.063 | −0.063 | +0.108 | −0.108 | |
S. beet | T1 | 0.75 | 0.69 | 1.44 | 0.81 | 0.68 | 1.49 | 2.63 | 2.17 | 5.71 | 4.18 | 2.15 | 8.99 | +0.121 | −0.121 | +0.250 | −0.250 |
T2 | 0.74 | 0.70 | 1.44 | 0.81 | 0.69 | 1.50 | 2.79 | 2.31 | 6.44 | 4.10 | 2.27 | 9.31 | +0.076 | −0.076 | +0.219 | −0.219 | |
T3 | 0.69 | 0.63 | 1.32 | 0.74 | 0.61 | 1.35 | 2.25 | 1.72 | 3.87 | 2.79 | 1.59 | 4.44 | +0.118 | −0.118 | +0.147 | −0.147 | |
T4 | 0.69 | 0.64 | 1.33 | 0.75 | 0.62 | 1.37 | 2.21 | 1.80 | 3.98 | 2.99 | 1.64 | 4.90 | +0.093 | −0.093 | +0.257 | −0.257 | |
T5 | 0.64 | 0.57 | 1.21 | 0.70 | 0.57 | 1.27 | 1.77 | 1.30 | 2.30 | 2.31 | 1.29 | 2.98 | +0.145 | −0.145 | +0.267 | −0.267 | |
Wheat | T1 | 0.71 | 0.60 | 1.31 | 0.72 | 0.60 | 1.32 | 2.41 | 1.49 | 3.18 | 2.60 | 1.46 | 3.80 | +0.217 | −0.217 | +0.243 | −0.243 |
T2 | 0.71 | 0.61 | 1.32 | 0.72 | 0.61 | 1.33 | 2.45 | 1.53 | 3.75 | 2.60 | 1.54 | 4.00 | +0.211 | −0.211 | +0.233 | −0.233 | |
T3 | 0.70 | 0.56 | 1.26 | 0.71 | 0.56 | 1.27 | 2.29 | 1.27 | 2.90 | 2.39 | 1.26 | 3.01 | +0.273 | −0.273 | +0.295 | −0.295 | |
T4 | 0.70 | 0.57 | 1.27 | 0.71 | 0.57 | 1.28 | 2.37 | 1.32 | 3.13 | 2.47 | 1.31 | 3.24 | +0.269 | −0.269 | +0.290 | −0.290 | |
T5 | 0.65 | 0.55 | 1.20 | 0.67 | 0.54 | 1.21 | 1.90 | 1.20 | 2.28 | 2.01 | 1.12 | 2.25 | +0.220 | −0.220 | +0.281 | −0.281 | |
L.S.D.at 5% | 0.017 | ns | 0.027 | 0.028 | ns | 0.044 | 0.046 | 0.042 | 0.053 | 0.025 | 0.037 | 0.054 | − or + 0.007 | − or + 0.009 |
Gross Return (L.E.) | Net Return (L.E.) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Cowpea | Grain Maize | Straw Maize | Summation | |||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Berssem | T1 | 6786.0 | 6988.5 | 12,978.0 | 13,680.0 | 668.0 | 675.7 | 20,432.0 | 21,344.2 | 14,335.0 | 15,247.2 |
T2 | 7092.0 | 7249.5 | 13,284.0 | 13,986.0 | 677.0 | 697.7 | 21,053.0 | 21,933.2 | 15,506.0 | 16,386.3 | |
T3 | 6381.0 | 6516.0 | 12,528.0 | 14,076.0 | 661.0 | 657.0 | 19,570.0 | 21,249.0 | 14,647.0 | 16,326.0 | |
T4 | 6453.0 | 6579.0 | 12,888.0 | 14,166.0 | 656.0 | 655.0 | 19,997.0 | 21,400.0 | 14,495.0 | 15,898.0 | |
T5 | 5881.5 | 6030.0 | 11,502.0 | 11,826.0 | 627.0 | 617.3 | 18,010.5 | 18,473.3 | 13,132.5 | 13,595.3 | |
S. beet | T1 | 6169.5 | 6345.0 | 12,798.0 | 13,554.0 | 667.0 | 673.0 | 19,634.5 | 20,572.0 | 13,537.5 | 14,475.0 |
T2 | 6286.5 | 6457.5 | 12,636.0 | 13,518.0 | 672.0 | 659.0 | 19,594.5 | 20,634.5 | 14,047.5 | 15,087.5 | |
T3 | 5701.5 | 5715.0 | 11,880.0 | 12,366.0 | 635.0 | 645.0 | 18,216.5 | 18,726.0 | 13,293.5 | 13,803.0 | |
T4 | 5787.0 | 5773.5 | 11,826.0 | 12,420.0 | 643.0 | 636.3 | 18,256.0 | 18,829.8 | 12,754.0 | 13,327.8 | |
T5 | 5094.0 | 5247.0 | 10,962.0 | 11,736.0 | 621.0 | 611.0 | 16,677.0 | 17,594.0 | 11,799.0 | 12,716.0 | |
Wheat | T1 | 5184.0 | 5337.0 | 11,160.0 | 11,448.0 | 576.0 | 590.7 | 16,920.0 | 17,375.7 | 10,823.0 | 11,278.7 |
T2 | 5242.5 | 5413.5 | 11,232.0 | 11,502.0 | 571.0 | 585.0 | 17,045.5 | 17,500.5 | 11,498.5 | 11,953.5 | |
T3 | 4855.5 | 4981.5 | 11,016.0 | 11,232.0 | 533.0 | 545.0 | 16,404.5 | 16,758.5 | 11,481.5 | 11,835.5 | |
T4 | 4932.0 | 5067.0 | 11,124.0 | 11,340.0 | 555.0 | 568.7 | 16,611.0 | 16,975.7 | 11,109.0 | 11,473.7 | |
T5 | 4729.5 | 4711.5 | 10,386.0 | 10,638.0 | 529.0 | 538.3 | 15,644.5 | 15,887.8 | 10,766.5 | 11,009.8 | |
L.S.D.at 5% | 202.4 | 132.4 | ns | 417.3 | ns | ns | 480.5 | 478.3 | 565.3 | 478.3 | |
Sole maize | AB | --- | --- | 17,550.0 | 17,172.0 | 811.0 | 802.0 | 18,361.0 | 17,974.0 | 12,264.0 | 11,877.0 |
AS | --- | --- | 17,172.0 | 16,794.0 | 809.0 | 797.0 | 17,981.0 | 17,591.0 | 11,884.0 | 11,494.0 | |
AW | --- | --- | 15,822.0 | 15,930.0 | 778.0 | 767.0 | 16,600.0 | 16,697.0 | 10,503.0 | 10,600.0 | |
Avrage | --- | --- | 16,848.0 | 16,632.0 | 799.0 | 788.7 | 17,647.3 | 17,420.7 | 11,550.3 | 11,323.7 | |
Sole cowpea | AB | 9427.5 | 9459.0 | --- | --- | --- | 9427.5 | 9459.0 | 5747.5 | 5779.0 | |
AS | 9009.0 | 9301.5 | --- | --- | --- | 9009.0 | 9301.5 | 5329.0 | 5621.5 | ||
AW | 8671.5 | 8937.0 | --- | --- | --- | 8671.5 | 8937.0 | 4991.5 | 5257.0 | ||
Avrage | 9036.0 | 9232.5 | --- | --- | --- | 9036.0 | 9232.5 | 5359.3 | 5552.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zen El-Dein, A.A.M.; Koriem, M.H.M.; Alsubeie, M.S.; Alsalmi, R.A.; Masrahi, A.S.; Al-Harbi, N.A.; Al-Qahtani, S.M.; Awad-Allah, M.M.A.; Hefny, Y.A.A. Effect of Mycorrhiza Fungi, Preceding Crops, Mineral and Bio Fertilizers on Maize Intercropping with Cowpea. Agriculture 2022, 12, 1934. https://doi.org/10.3390/agriculture12111934
Zen El-Dein AAM, Koriem MHM, Alsubeie MS, Alsalmi RA, Masrahi AS, Al-Harbi NA, Al-Qahtani SM, Awad-Allah MMA, Hefny YAA. Effect of Mycorrhiza Fungi, Preceding Crops, Mineral and Bio Fertilizers on Maize Intercropping with Cowpea. Agriculture. 2022; 12(11):1934. https://doi.org/10.3390/agriculture12111934
Chicago/Turabian StyleZen El-Dein, Atef A. M., Mohamed H. M. Koriem, Moodi Saham Alsubeie, Reem A. Alsalmi, Abdurrahman S. Masrahi, Nadi Awad Al-Harbi, Salem Mesfir Al-Qahtani, Mamdouh M. A. Awad-Allah, and Yaser A. A. Hefny. 2022. "Effect of Mycorrhiza Fungi, Preceding Crops, Mineral and Bio Fertilizers on Maize Intercropping with Cowpea" Agriculture 12, no. 11: 1934. https://doi.org/10.3390/agriculture12111934
APA StyleZen El-Dein, A. A. M., Koriem, M. H. M., Alsubeie, M. S., Alsalmi, R. A., Masrahi, A. S., Al-Harbi, N. A., Al-Qahtani, S. M., Awad-Allah, M. M. A., & Hefny, Y. A. A. (2022). Effect of Mycorrhiza Fungi, Preceding Crops, Mineral and Bio Fertilizers on Maize Intercropping with Cowpea. Agriculture, 12(11), 1934. https://doi.org/10.3390/agriculture12111934