Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Emitter
2.2. Test Device
2.3. Research Methods
2.3.1. Monitoring of the Clogging Degree of the Emitter
2.3.2. System Performance Evaluation
- (1)
- Christiansen uniformity coefficient
- (2)
- Statistical uniformity coefficient
- (3)
- System performance evaluation index
2.3.3. Analysis of Microbial Diversity of Emitter Plugs
3. Results and Analysis
3.1. Influence of Air Filling on the Filling Law of the Emitter
- (1)
- Influence of air filling on average flow ratio Dra of the emitter
- (2)
- The influence of air filling on the clogged space distribution of the emitter
3.2. Dra Regression Analysis of Emitters under Different Filling Modes
3.3. Influence of Air-Fed Drip Irrigation Emitter Clogging on System Uniformity
3.3.1. Variation Law of Uniformity Coefficient of Air-Fed Drip Irrigation System
3.3.2. Relationship between Uniformity Coefficient of Air-Fed Drip Irrigation System and Average Flow Ratio of Emitter
3.4. Microbial Diversity of Plugging Material in Air Drip Irrigation Emitter
3.4.1. Influence of Gas Addition on Microbial Quantity
3.4.2. Effects of Aeration on Microbial Community Diversity
4. Discussion
4.1. Influence of Air Feeding on the Law of Emitter Blockage of Drip Irrigation System
4.2. Influence of Air Feeding on Uniformity of Drip Irrigation System
4.3. Influence of Air Refueling on Microbial Diversity of Clog in Emitter
5. Conclusions
- Inflating can affect the blockage performance of the emitter; in particular, the micro/nano inflating mode can significantly optimize the anti-clogging performance of the drip irrigation system and prolong the service life of the drip irrigation system.
- The nano-aerating mode can maintain good uniformity in the drip irrigation system, reduce the sensitivity of Christiansen uniformity coefficient Cu and statistical uniformity coefficient Us to the change in average flow ratio Dra, and effectively extend the service life of drip irrigation systems, while the influence of the Venturi aerating mode is limited.
- The micro and nano gas filling method can increase the microbial abundance of the clogging substance of the emitter, significantly inhibit the growth of the Gram-positive bacterial microbial community, promote the growth of the Gram-negative bacterial microbial community, reduce the extracellular polymer content of microorganisms and effectively alleviate the impact of microorganisms on the blockage of the emitter.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fiebig, A.; Dodd, I.C. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene. Physiol. Plant. 2016, 156, 70–83. [Google Scholar] [CrossRef]
- Yu, C.Q.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, H.; Song, L.; Chen, H. Aerated Irrigation Promotes Soil Respiration and Microorganism Abundance around Tomato Rhizosphere. Soil Sci. Soc. Am. J. 2019, 83, 1343–1355. [Google Scholar] [CrossRef]
- Zhu, Y.; Miles, D.; Cai, H.-J.; Song, L.-B.; Chen, H. The effects of aerated irrigation on soil respiration, oxygen, and porosity. J. Integr. Agric. 2019, 18, 2854–2868. [Google Scholar] [CrossRef]
- Ben-Noah, I.; Friedman, S.P. Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments. Agric. Water Manag. 2016, 176, 222–233. [Google Scholar] [CrossRef]
- Pendergast, L.; Bhattarai, S.P.; Midmore, D.J. Evaluation of aerated subsurface drip irrigation on yield, dry weight partitioning and water use efficiency of a broad-acre chickpea (Cicer arietinum, L.) in a vertosol. Agric. Water Manag. 2019, 217, 38–46. [Google Scholar] [CrossRef]
- Chen, H.; Hou, H.J.; Wang, X.Y.; Zhu, Y.; Saddique, Q.; Wang, Y.F.; Cai, H. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in a greenhouse tomato production system. J. Integr. Agric. 2018, 17, 12. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, L.; Yue, B.; Tonoli, E.; Verderio, E.A.M.; Ma, Y.; Pan, G. Enhancement of Tomato Plant Growth and Productivity in Organic Farming by Agri-Nanotechnology Using Nanobubble Oxygation. J. Agric. Food Chem. 2019, 67, 10823–10831. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Wang, T.; Li, L.; Yin, Z.; Wang, R.V.; Fan, X.; Tan, D. Dynamic characteristics and wall effects of bubble bursting in gas-liquid-solid three-phase particle flow. J. Process. 2020, 8, 760. [Google Scholar] [CrossRef]
- Wang, T.S.; Sun, T.Z.; Wang, C.; Xu, C.; Wei, Y.J. Large Eddy simulation of microbubble drag reduction in fully developed turbulent boundary layers. J. Mar. Sci. Eng. 2020, 8, 524. [Google Scholar] [CrossRef]
- Pereira, D.; Lavanholi, R.; Araujo, A.; de Camargo, A.P.; Ait-Mouheb, N.; Frizzone, J.A.; Molle, B. Evaluating Sensitivity to Clogging by Solid Particles in Irrigation Emitters: Assessment of a Laboratory Protocol. J. Irrig. Drain. Eng. 2020, 146, 04020033. [Google Scholar] [CrossRef]
- Nguyen, A.V. New method and equations for determining attachment tenacity and particle size limit in flotation. Int. J. Miner. Process. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Li, Y.K.; Song, P.; Zhou, B. Microbiology mechanism and controlling methods for emitter clogging in the reclaimed water drip irrigation system. Trans. Chin. Soc. Agric. Eng. 2013, 29, 98–107. [Google Scholar]
- Zhou, B.; Li, Y.; Xue, S.; Feng, J. Variation of microorganisms in drip irrigation systems using high-sand surface water. Agric. Water Manag. 2019, 218, 37–47. [Google Scholar] [CrossRef]
- Bounoua, S.; Tomas, S.; Labille, J.; Molle, B.; Granier, J.; Haldenwang, P.; Izzati, S.N. Understanding physical clogging in drip irrigation: In situ, in-lab and numerical approaches. Irrig. Sci. 2016, 34, 327–342. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Xiao, Y.; Li, Y.K.; Zhou, B.; Feng, J.; Han, S.; Muhammad, T. Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water. Agric. Water Manag. 2019, 213, 174–184. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, P.; Li, Y.; Ren, S. Effects of flow path geometrical parameters on flow characteristics and hydraulic performance of drip irrigation emitters. Irrig. Drain. 2016, 65, 426–438. [Google Scholar] [CrossRef]
- Li, G.B.; Li, Y.K.; Xu, T.W.; Liu, Y.Z.; Jin, H.; Yang, P.L.; Yan, D.Z.; Ren, S.M.; Tian, Z.F. Effects of average velocity on the growth and surface topography of biofilms attached to the reclaimed wastewater drip irrigation system laterals. Irrig. Sci. 2012, 30, 103–113. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Zhu, D.; Zheng, C. Effect of pulsating pressure on labyrinth emitter clogging. Irrig. Sci. 2017, 35, 267–274. [Google Scholar] [CrossRef]
- Li, Y.F.; Li, J.S. Effect of chlorination on yield and nitrogen uptake of tomato and emitter clogging in a drip irrigation system with sewage effluent. Trans. CSAE 2010, 26, 18–24. [Google Scholar]
- Li, H.; Li, H.; Han, Q.; Huang, X.; Jiang, Y.; Sun, H.; Li, H. Influence of micro/nanobubbles on clogging in drip irrigation systems. RSC Adv. 2020, 10, 38912–38922. [Google Scholar] [CrossRef] [PubMed]
- Bucks, D.A.; Nakayama, F.S.; Gilbert, R.G. Trickle irrigation water quality and preventive maintenance. Agric. Water Manag. 1979, 2, 149–162. [Google Scholar] [CrossRef]
- Cui, B.J.; Gao, F.; Hu, C.; Li, Z.Y.; Fan, X.Y.; Cui, E.P. The use of brackish and reclaimed waste water in agriculture: A review. J. Irrig. Drain. 2019, 38, 60–68. [Google Scholar]
- Wang, H.; Wang, J.; Wang, C.; Wang, S.; Qiu, X.; Sun, Y.; Li, G. Characterization of labyrinth emitter-clogging substances in biogas slurry drip irrigation systems. Sci. Total Environ. 2022, 820, 153315. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Y.; Pei, Y.; Liu, Y.; Zhang, Z.; Jiang, Y. Quantitative relationship between biofilms components and emitter clogging under reclaimed water drip irrigation. Irrig. Sci. 2013, 31, 1251–1263. [Google Scholar] [CrossRef]
- ISO 9261; Agricultural Irrigation Equipment—Emitters and Emitting Pipe—Specifications and Test Methods. International Organization for Standardization: Geneva, Switzerland, 2004.
- ASAE Standards. EP405.1.; Design and Installation of Microirrigation Systems. ASAE: St. Joseph, MI, USA, 2003.
- ISO. TC 23/SC 18 N; Clogging Test Methods for Emitters. International Organization for Standardization: Geneva, Switzerland, 2003.
- ASAE Standards. EP458; Field Evaluation of Microirrigation Systems. ASAE: St. Joseph, MI, USA, 1988.
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [Green Version]
- Reinders, F.B.; Van Niekerk, A.S. Technology smart approach to keep drip irrigation systems functional. Irrig. Drain. 2018, 67, 82–88. [Google Scholar] [CrossRef]
- Feng, J.; Li, Y.; Liu, Z.; Muhammad, T.; Wu, R. Composite clogging characteristics of emitters in drip irrigation systems. Irrig. Sci. 2019, 37, 105–122. [Google Scholar] [CrossRef]
- Goorahoo, D.; Carstensen, G.; Zoldoske, D.F.; Norum, E.; Mazzei, A. Using air in sub-surface drip irrigation (SDI) to increase yields in bell peppers. Int. Water Irrig. 2002, 22, 39–42. [Google Scholar]
- Bagatur, T. Evaluation of plant growth with aerated irrigation water using venturi pipe part. Arab. J. Sci. Eng. 2014, 39, 2525–2533. [Google Scholar] [CrossRef]
- Atkinson, A.J.; Apul, O.G.; Schneider, O.; Garcia-Segura, S.; Westerhoff, P. Nanobubble Technologies Offer Opportunities to Improve Water Treatment. Acc. Chem. Res. 2019, 52, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Xu, F.; Muhammad, T.; Li, Y. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agric. Water Manag. 2019, 223, 105713. [Google Scholar] [CrossRef]
- Sun, Y.M.; Wang, S.; Niu, J. Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology. Bioresour. Technol. 2018, 258, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Cui, Y.Z.; Shi, X.G.; Gao, J.S.; Lan, X.Y. Direct numerical simulation of mass transfer process of single free rising microbubbles under the influence of surface active materials. Chin. J. Process Eng. 2021, 21, 877–886. [Google Scholar]
- Tanaka, S.; Kastens, S.; Fujioka, S.; Schlüter, M.; Terasaka, K. Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt. Chem. Eng. J. 2019, 387, 121246. [Google Scholar] [CrossRef]
- Li, P.; Takahashi, M.; Chiba, K. Enhanced free-radical generation by shrinking microbubbles using a copper catalyst. Chemosphere 2009, 77, 1157–1160. [Google Scholar] [CrossRef]
- Takahashi, M.; Chiba, K.; Li, P. Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. J. Phys. Chem. B 2007, 111, 11443–11446. [Google Scholar] [CrossRef]
- Nazari, S.; Shafaei, S.Z.; Gharabaghi, M.; Ahmadi, R.; Shahbazi, B.; Maoming, F. Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation. Int. J. Min. Sci. Technol. 2019, 29, 289–295. [Google Scholar] [CrossRef]
- Fan, M.; Tao, D. A study on picobubble enhanced coarse phosphate froth flotation. Sep. Sci. Technol. 2008, 43, 1–10. [Google Scholar] [CrossRef]
- Long, X.; Zhang, J.; Wang, J.; Xu, M.; Lyu, Q.; Ji, B. Experimental investigation of the global cavitation dynamic behavior in a venturi tube with special emphasis on the cavity length variation. Int. J. Multiph. Flow 2017, 89, 290–298. [Google Scholar] [CrossRef]
- Sato, K.; Hachino, K.; Saito, Y. Inception and Dynamics of Traveling-Bubble-Type Cavitation in a Venturi. In Fluids Engineering Division Summer Meeting; ASME: New York, NY, USA, 2004; Volume 36967, pp. 279–285. [Google Scholar]
- Sperandeo, P.; Martorana, A.M.; Polissi, A. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2017, 1862, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Zi, Z.; Yang, Z.W. Protein Secretion Pathways in Bacterial Cells. Biotechnol. Bull. 2011, 8, 44–50+54. [Google Scholar]
- Owji, H.; Nezafat, N.; Negahdaripour, M.; Hajiebrahimi, A.; Ghasemi, Y. A comprehensive review of signal peptides: Structure, roles, and applications. Eur. J. Cell Biol. 2018, 97, 422–441. [Google Scholar] [CrossRef]
- Ushida, A.; Hasegawa, T.; Takahashi, N.; Nakajima, T.; Murao, S.; Narumi, T.; Uchiyama, H. Effect of mixed nanobubble and microbubble liquids on the washing rate of cloth in an alternating flow. J. Surfactants Deterg. 2012, 15, 695–702. [Google Scholar] [CrossRef]
- Bishop, P.L. The role of biofilms in water reclamation and reuse. Water Sci. Technol. 2007, 55, 19–26. [Google Scholar] [CrossRef]
Emitter | Rated Flow (L h−1) | Connection Method | Compensation Function | Flow Channel Size (mm) | Filtering Area (mm2) | Discharge Coefficient k | Flow Index m | Cv (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
Width | Depth | Length | ||||||||
1.0 | Set Within patch | No pressure compensation | 0.6 | 0.74 | 65 | 45 | 0.347 | 0.48 | 1.74 |
Total Nitrogen | Total Phosphorus | COD | TDS | Calcium Ions | Magnesium Ions | Iron Ions | Manganese Ion | Bicarbonate | Carbonate | Sodium Ions | pH Value | Total Salt Content | Sulfate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | S cm−1 | mg L−1 | |
6.3 | 0.36 | <15 | 2.69 | 96.39 | 95.4 | 0.074 | 0.022 | 153.52 | 26.96 | 109.50 | 7.26 | 2.66 | 87.31 |
100~95 | 90~85 | 80~75 | 70~65 | <60 | |
Grades | Excellent | Good | Medium | Inferior | Unqualified |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Li, H.; Li, J.; Huang, X.; Liu, Y.; Jiang, Y. Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter. Agriculture 2022, 12, 1941. https://doi.org/10.3390/agriculture12111941
Li P, Li H, Li J, Huang X, Liu Y, Jiang Y. Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter. Agriculture. 2022; 12(11):1941. https://doi.org/10.3390/agriculture12111941
Chicago/Turabian StyleLi, Peng, Hao Li, Jinshan Li, Xiuqiao Huang, Yang Liu, and Yue Jiang. 2022. "Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter" Agriculture 12, no. 11: 1941. https://doi.org/10.3390/agriculture12111941
APA StyleLi, P., Li, H., Li, J., Huang, X., Liu, Y., & Jiang, Y. (2022). Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter. Agriculture, 12(11), 1941. https://doi.org/10.3390/agriculture12111941