Improvement of Gear Durability for an 86 kW Class Agricultural Tractor Transmission by Material Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Test
2.1.1. Agricultural Tractor
2.1.2. Working Conditions
2.1.3. Gear Failure Types
2.2. Simulation Analysis
2.2.1. Tractor Power Transmission System
2.2.2. Simulation Modeling
2.2.3. Gear Materials
2.3. Axle Dynamometr Test
2.3.1. Axle Dynamometer Configuration
2.3.2. Axle Dynamometer Test Conditions
3. Results
3.1. Safety Factor
3.2. Comparision of Gear Durability by Materials
3.2.1. Range Shift A
3.2.2. Range Shift B
3.3. Dynamometer Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.S.; Kim, W.S.; Abu Ayub Siddique, M.; Baek, S.Y.; Baek, S.M.; Cheon, S.H.; Lee, S.D.; Lee, K.H.; Hong, D.H.; Park, S.U.; et al. Power transmission efficiency analysis of 42 kW power agricultural tractor according to tillage depth during moldboard plowing. Agronomy 2020, 10, 1263. [Google Scholar] [CrossRef]
- Kim, W.S.; Kim, Y.J.; Baek, S.M.; Moon, S.P.; Lee, N.G.; Kim, Y.S.; Park, S.U.; Choi, Y.; Kim, Y.K.; Choi, I.S.; et al. Fatigue life simulation of tractor spiral bevel gear according to major agricultural operations. Appl. Sci. 2020, 10, 8898. [Google Scholar] [CrossRef]
- Baek, S.M.; Kim, W.S.; Park, S.U.; Kim, Y.J. Analysis of Equivalent Torque of 78 kW Agricultural Tractor during Rotary Tillage. J. Korea Inst. Inf. Electron. Commun. Technol. 2019, 12, 359–365. [Google Scholar]
- Kim, T.J.; Kim, W.S.; Kim, Y.S.; Chung, S.O.; Park, S.U.; Hong, S.J.; Choi, C.H.; Kim, Y.J. Strength analysis of mechanical transmission using equivalent torque of plow tillage of an 82 kW-class tractor. Korean J. Agric. Sci. 2019, 46, 723–735. [Google Scholar] [CrossRef]
- Baek, S.M.; Kim, W.S.; Kim, Y.S.; Baek, S.Y.; Lee, N.G.; Moon, S.P.; Jeon, H.H.; Choi, Y.S.; Kim, T.J.; Kim, Y.J. Strength analysis of the driving shift gears for a 67 kW class agricultural tractor according to tire type. Korean J. Agric. Sci. 2020, 47, 1147–1158. [Google Scholar]
- Wen, C.; Xie, B.; Li, Z.; Yin, Y.; Zhao, X.; Song, Z. Power density based fatigue load spectrum editing for accelerated durability testing for tractor front axles. Biosyst. Eng. 2020, 200, 73–88. [Google Scholar] [CrossRef]
- Biernacki, K. Analysis of the material and design modifications influence on strength of the cycloidal gear system. Int. J. Precis. Eng. Manuf. 2015, 16, 537–546. [Google Scholar] [CrossRef]
- Qin, Z.; Wu, Y.T.; Lyu, S.K. A Review of Recent Advances in Design Optimization of Gearbox. Int. J. Precis. Eng. Manuf. 2018, 19, 1753–1762. [Google Scholar] [CrossRef]
- Hu, C.; Smith, W.A.; Randall, R.B.; Peng, Z. Development of a gear vibration indicator and its application in gear wear monitoring. Mech. Syst. Signal Process. 2016, 76–77, 319–336. [Google Scholar] [CrossRef]
- Baek, S.M.; Kim, W.S.; Kim, Y.S.; Baek, S.Y.; Kim, Y.J. Development of a simulation model for HMT of a 50 kW class agricultural tractor. Appl. Sci. 2020, 10, 4064. [Google Scholar] [CrossRef]
- Kim, J.-G.; Park, J.-S.; Choi, K.-J.; Lee, D.-K.; Shin, M.-S.; Oh, J.-Y.; Nam, J.-S. Analysis of Agricultural Tractor Transmission Using Actual Farm Workload. Korean Soc. Manuf. Process Eng. 2020, 19, 42–48. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, T.J.; Kim, Y.J.; Lee, S.D.; Park, S.U.; Kim, W.S. Development of a Real-Time Tillage Depth Measurement System for Agricultural Tractors: Application to the Effect Analysis of Tillage Depth on Draft Force during Plow Tillage. Sensors 2020, 20, 912. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.M.; Kim, W.S.; Lee, J.H.; Kim, Y.J.; Suh, D.S.; Chung, S.O.; Choi, C.H.; Gam, B.W.; Kim, Y.J. A study on the emissions of SO x and NH 3 for a 78 kW class agricultural tractor according to agricultural operations. Korean J. Agric. Sci. 2020, 47, 1135–1145. [Google Scholar]
- Milani, A.S.; Shanian, A.; Madoliat, R.; Nemes, J.A. The effect of normalization norms in multiple attribute decision making models: A case study in gear material selection. Struct. Multidiscip. Optim. 2005, 29, 312–318. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, Y.S.; Han, J. Do Stress analysis of plate-spring-type landing gear materials. Trans. Korean Soc. Mech. Eng. A 2014, 38, 303–308. [Google Scholar] [CrossRef]
- Park, C. IL Effect of the Rib and Material Change for Noise Reduction and Lightweight of a Cylindrical Shell Type Gearbox. Trans. Korean Soc. Noise Vib. Eng. 2017, 27, 776–783. [Google Scholar] [CrossRef]
- Choi, E.; Kim, H.S. A Study on the Noise.Vibration Characteristics of Differential Gear according to the Materials. J. Korean Soc. Mach. Tool Eng. 1997, 6, 67–75. [Google Scholar]
- Hong, S.J.; Ha, J.K.; Kim, Y.J.; Seo, Y.W.; Chung, S.O. Performance Evaluation of a Driving Power Transmission System for 50 kW Narrow Tractors. J. Biosyst. Eng. 2018, 43, 1–13. [Google Scholar] [CrossRef]
- Kim, D.-C.; Kang, Y.-S. Case Study of Accelerated Life Test Method for Agricultural Tractor Transmission. J. Biosyst. Eng. 2009, 34, 325–330. [Google Scholar] [CrossRef]
- Huh, J.S.; Lee, K.H.; Park, Y.J.; Kim, M.K.; Kim, J.H. Development of a high-speed reduction gearbox for a small gas turbine engine of an unmanned aerial vehicle. Trans. Korean Soc. Mech. Eng. A 2021, 45, 167–173. [Google Scholar] [CrossRef]
- Kim, W.S.; Kim, Y.J.; Kim, Y.S.; Park, S.U.; Lee, K.H.; Hong, D.H.; Choi, C.H. Evaluation of the fatigue life of a tractor’s transmission spiral bevel gear. J. Terramech. 2021, 94, 13–22. [Google Scholar] [CrossRef]
Item | Specification | |
---|---|---|
Model | Luxen1100 | |
Length × Width × Height (mm3) | 4020 × 2270 × 2790 | |
Weight (kg) | Gross weight (kg) | 4080 |
Weight distribution (%) | 40.4 and 59.6 | |
Engine | Rated power (kW) | 86 @2400 rpm |
Max. torque (Nm) | 461 @1600 rpm | |
Transmission | Main shift | 4 stages (1, 2, 3, and 4) |
Range shift | 4 stages (A, B, C, and Creep) | |
Forward × Reverse | 16 × 16 | |
Tire | Front | 13.6–24 8PR |
Rear | 18.4–34 10PR |
Item | Specification | |
---|---|---|
Plow | Rotary | |
Model | WJR4PS | WJ255SE |
Length × Width × Height (mm3) | 3410 × 2020 × 1530 | 1000 × 2780 × 1240 |
Working width (mm) | 1400 | 2510 |
Weight (kg) | 930 | 815 |
Number of blades | 8 | 66 |
Required power (kW) | 80–100 | 80–100 |
Material | Chemical Composition (%) | ||||||
---|---|---|---|---|---|---|---|
C | Si | Mn | Ni | Cr | Mo | ||
SCM420 | Min. | 0.18 | 0.15 | 0.60 | - | 0.90 | 0.15 |
Max. | 0.23 | 0.35 | 0.85 | 1.20 | 0.30 | ||
SCr420 | Min. | 0.18 | 0.15 | 0.60 | - | 0.90 | - |
Max. | 0.23 | 0.35 | 0.85 | 1.20 | |||
SNCM220 | Min. | 0.17 | 0.15 | 0.60 | 0.40 | 0.40 | 0.15 |
Max. | 0.23 | 0.35 | 0.90 | 0.70 | 0.65 | 0.30 | |
SCM822 | Min. | 0.20 | 0.15 | 0.60 | - | 0.90 | 0.35 |
Max. | 0.25 | 0.35 | 0.85 | 1.20 | 0.45 | ||
SNC815 | Min. | 0.12 | 0.15 | 0.35 | 3.00 | 0.60 | - |
Max. | 0.18 | 0.35 | 0.65 | 3.50 | 1.00 |
Item | Specification |
---|---|
Model | TrCD 224 |
Max. power (kW) | 402.7 |
Max. torque (kNm) | 24.5 |
Max. slip speed (rpm) | 715 |
Max. air pressure (kPa) | 550 |
Max. coolant pressure (kPa) | 270 |
Heat Treatment | Tooth Face | Tooth Root |
---|---|---|
Carburizing | 6.610 | 8.738 |
Through hardening | 6.610 | 6.225 |
Nitrification | 5.709 | 17.035 |
Soft nitriding | 15.715 | 84.003 |
Material | Service Life (h) |
---|---|
SCM420 | 35.9 (100%) |
SCr420 | 53.0 (148%) |
SNCM220 | 158.6 (442%) |
SCM822 | 312.6 (871%) |
SNC815 | 53.0 (148%) |
Material | Service Life (h) |
---|---|
SCM420 | 41.9 (100%) |
SCr420 | 63.5 (152%) |
SNCM220 | 52.8 (126%) |
SCM822 | ∞ * |
SNC815 | 123.1 (294%) |
Item | Range Shift A | Range Shift B | ||
---|---|---|---|---|
Simulation Analysis | Dynamometer Test | Simulation Analysis | Dynamometer Test | |
Service life (h) | 312.6 | >250 | ∞ * | >250 |
Equivalent life (h) | 3632 | >2641 | ∞ | >5642 |
Required life (h) | 2496 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-M.; Baek, S.-Y.; Jeon, H.-H.; Kim, W.-S.; Kim, Y.-S.; Kim, N.-H.; Sim, T.; Kim, H.; Kim, Y.-J. Improvement of Gear Durability for an 86 kW Class Agricultural Tractor Transmission by Material Selection. Agriculture 2022, 12, 123. https://doi.org/10.3390/agriculture12020123
Baek S-M, Baek S-Y, Jeon H-H, Kim W-S, Kim Y-S, Kim N-H, Sim T, Kim H, Kim Y-J. Improvement of Gear Durability for an 86 kW Class Agricultural Tractor Transmission by Material Selection. Agriculture. 2022; 12(2):123. https://doi.org/10.3390/agriculture12020123
Chicago/Turabian StyleBaek, Seung-Min, Seung-Yun Baek, Hyeon-Ho Jeon, Wan-Soo Kim, Yeon-Soo Kim, Nam-Hyeok Kim, Taeyong Sim, Hyunggun Kim, and Yong-Joo Kim. 2022. "Improvement of Gear Durability for an 86 kW Class Agricultural Tractor Transmission by Material Selection" Agriculture 12, no. 2: 123. https://doi.org/10.3390/agriculture12020123
APA StyleBaek, S.-M., Baek, S.-Y., Jeon, H.-H., Kim, W.-S., Kim, Y.-S., Kim, N.-H., Sim, T., Kim, H., & Kim, Y.-J. (2022). Improvement of Gear Durability for an 86 kW Class Agricultural Tractor Transmission by Material Selection. Agriculture, 12(2), 123. https://doi.org/10.3390/agriculture12020123