Management of Chrysanthemum Verticillium Wilt through VIF Soil Mulching Combined with Fumigation at Label and Reduced Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experimental Location and Operative Conditions
2.2. Experimental Scheme, Treatments and Operative Conditions
2.3. Verticillium Disease and Chrysanthemum Yield Assessment
2.4. VIF Effects on Survival Verticillium dahliae Inoculum
2.5. Data Analysis
3. Results
3.1. Monitoring Environmental Conditions and Soil Temperatures
3.2. Evaluation of Treatment Performances, Disease and Yield Assessment and Pathogen Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Exporting Chrysanthemums to Europe. 2017. Available online: https://www.cbi.eu/market-information/cut-flowers-foliage/chrysanthemums/europe (accessed on 28 October 2021).
- Horst, R.K.; Nelson, P.E. Verticillium Wilt. In Compendium of Chrysanthemum Diseases; Horst, R.K., Nelson, P.E., Eds.; APS Press: St. Paul, MN, USA, 1997; pp. 11–13. [Google Scholar]
- Pegg, G.F.; Brady, B.L. Verticillium Wilts; CABI Publishing: New York, NY, USA, 2008; pp. 1–552. [Google Scholar]
- Han, K.S.; Park, J.H.; Lee, J.S.; Seo, S.T.; Cheong, S.R. Occurrence and pathogenicity of Verticillium wilt on Chrysanthemum caused by Verticillium dahliae. Res. Plant Dis. 2007, 13, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Ispahani, S.K.; Goud, J.C.; Termorshuizen, A.J.; Morton, A.; Barbara, D.J. Host specificity, but not high-temperature tolerance, is associated with recent outbreaks of Verticillium dahliae in chrysanthemum in The Netherlands. Eur. J. Plant Pathol. 2008, 122, 437–442. [Google Scholar] [CrossRef]
- Pecchia, S.; Franceschini, A.; Santori, A.; Vannacci, G.; Myrta, A. Efficacy of dimethyl disulfide (DMDS) for the control of chrysanthemum Verticillium wilt in Italy. Crop Prot. 2017, 93, 28–32. [Google Scholar] [CrossRef]
- Elena, K.; Paplomatas, E.J. Vegetative compatibility groups within Verticillium dahliae isolates from different hosts in Greece. Plant Pathol. 1998, 47, 635–640. [Google Scholar] [CrossRef]
- Korolev, N.; Katan, J.; Katan, T. Vegetative compatibility groups of Verticillium dahliae in Israel: Their distribution and association with pathogenicity. Phytopathology 2000, 90, 529–536. [Google Scholar] [CrossRef]
- Hiemstra, J.A.; Rataj-Guranowska, M. Vegetative compatibility groups in Verticillium dahliae isolates from The Netherlands as compared to VCG diversity in Europe and in the USA. Eur. J. Plant Pathol. 2003, 109, 827–839. [Google Scholar] [CrossRef]
- Green, R.J., Jr. Soil factors affecting survival of microsclerotia of Verticillium dahliae. Phytopathology 1980, 70, 353–355. [Google Scholar] [CrossRef]
- Schnathorst, W.C. Life cycle and epidemiology of Verticillium. In Fungal Wilt Diseases of Plants; Mace, M.A., Bell, A.A., Beckman, C.H., Eds.; Academic Press: New York, NY, USA, 1981; pp. 81–111. [Google Scholar]
- Gamliel, A.; Katan, J. Soil Solarization: Theory and Practice; APS Press: St. Paul, MN, USA, 2012; p. 266. [Google Scholar]
- Castello, I.; D’Emilio, A.; Raviv, M.; Vitale, A. Soil solarization as a sustainable solution to control tomato Pseudomonads infections in greenhouses. Agron. Sustain. Dev. 2017, 37, 59. [Google Scholar] [CrossRef] [Green Version]
- Dimartino, M.; Panebianco, S.; Vitale, A.; Castello, I.; Leonardi, C.; Cirvilleri, G.; Polizzi, G. Occurrence and pathogenicity of Pseudomonas fluorescens and P. putida on tomato plants in Italy. J. Plant Pathol. 2011, 93, 79–87. [Google Scholar]
- Vitale, A.; Castello, I.; Cascone, G.; D’Emilio, A.; Mazzarella, R.; Polizzi, G. Reduction of corky root infections on greenhouse tomato crops by soil solarisation in south Italy. Plant Dis. 2011, 95, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, A.; Castello, I.; D’Emilio, A.; Mazzarella, R.; Perrone, G.; Epifani, F.; Polizzi, G. Short-term effects of soil solarization in suppressing Calonectria microsclerotia. Plant Soil 2013, 368, 603–617. [Google Scholar] [CrossRef]
- Guyomard, H.; Bureau, J.C.; Chatellier, V.; Détang-Dessendre, C.; Dupraz, P.; Jacquet, F.; Reboud, X.; Réquillart, V.; Soler, L.G.; Tysebaert, M. Research for AGRI Committee—The Green Deal and the CAP: Policy Implications to Adapt Farming Practices and to Preserve the EU’s Natural Resources; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, November 2020. [Google Scholar]
- Chellemi, D.O. Plant Health Management: Soil Fumigation. Encycl. Agric. Food Syst. 2014, 4, 456–459. [Google Scholar]
- Ajwa, H.A.; Klose, S.; Nelson, S.D.; Minuto, A.; Gullino, M.L.; Lamberti, F.; Lopez-Aranda, J.M. Alternatives to methyl bromide in strawberry production in the United States of America and the Mediterranean region. Phytopathol. Mediterr. 2003, 42, 220–224. [Google Scholar]
- Ntalli, N.; Caboni, P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochem. Rev. 2017, 16, 827–834. [Google Scholar] [CrossRef]
- Aiello, D.; Vitale, A.; Polizzi, G. Sustainable approach for soil and substrate disinfestation against soilborne pathogens in nursery. Acta Hortic. 2020, 1270, 197–202. [Google Scholar] [CrossRef]
- Saeed, I.A.M.; Rouse, D.I.; Harkin, J.M.; Smith, K.P. Effects of soil water content and soil temperature on efficacy of metham sodium against Verticillium dahliae. Plant Dis. 1997, 81, 773–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frick, A.; Zebarth, B.J.; Szeto, S.Y. Behavior of the soil fumigant methyl isothiocyanate in repacked soil columns. J. Environ. Qual. 1998, 27, 1158–1169. [Google Scholar] [CrossRef]
- Brown, P.D.; Morra, J.M. Control of soil-borne plant pests using glucosinolate-containing plants. Adv. Agron. 1997, 61, 167–231. [Google Scholar]
- Ben-Yephet, Y.; Frank, Z.R. Effect of soil structure on penetration by metham-sodium and of temperature on concentrations required to kill soilborne pathogens. Phytopathology 1985, 75, 403–406. [Google Scholar] [CrossRef]
- Wang, D.; Yates, S.R.; Ernst, F.F.; Gan, J.; Jury, W.A. Reducing methyl bromide emission with a high barrier plastic film and reduced dosage. Environ. Sci. Technol. 1997, 31, 3686–3691. [Google Scholar] [CrossRef]
- Chellemi, D.; Mirusso, J.A. A new approach to fumigating soils under raised, plastic mulched beds. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, Orlando, FL, USA, 6–8 November 2002. Abstr. 38. [Google Scholar]
- Nelson, S.D.; Riegel, C.; Allen, L.H., Jr.; Dickson, D.W.; Gan, J.; Locascio, S.J.; Mitchell, D.J. Volatilization of 1,3-dichloropropene in Florida plasticulture and effects on fall squash production. J. Am. Soc. Hortic. Sci. 2001, 126, 381–511. [Google Scholar] [CrossRef] [Green Version]
- D’Emilio, A. Soil temperature in greenhouse soil solarization using TIF and VIF as mulching films. Trans. ASABE 2017, 60, 1349–1355. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Ajwa, H.A. Totally impermeable film retains fumigants, allowing lower application rates in strawberry. Calif. Agric. 2011, 65, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Hanson, B.D.; Wang, D.; Browne, G.T.; Qin, R.; Ajwa, H.A.; Yates, S.R. Methods evaluated to minimize emissions from preplant soil fumigation. Calif. Agric. 2011, 65, 41–46. [Google Scholar] [CrossRef]
- McAvoy, T.P.; Freeman, J.H. Retention of the soil fumigant dimethyl disulfide by virtually and totally impermeable film mulches. HortScience 2013, 48, 1154–1158. [Google Scholar] [CrossRef]
- Aiello, D.; Vitale, A.; Alfenas, R.F.; Alfenas, A.C.; Cirvilleri, G.; Polizzi, G. Effects of sublabeled rates of dazomet and metam-sodium applied under low-permeability films on Calonectria microsclerotia survival. Plant Dis. 2018, 102, 782–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoek, J. Chrysanthemum Plant Named Anastasia. Patent No. US PP13,550 P2, 4 February 2003. [Google Scholar]
- Violante, P. Metodi di Analisi Chimica del Suolo; Francoangeli, Ed.; ITA: Milano, Italy, 2000; pp. 1–536. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2014; pp. 1–372. [Google Scholar]
- Hawksworth, D.L.; Talboys, P.W. Descriptions of Plant Pathogenic Fungi and Bacteria, No. 256; Commonwealth Mycological Institute: Kew, Surrey, UK, 1970. [Google Scholar]
- Santori, A.; Zinser, J.H.; Yokota, M.; Ronca, A.; Minuto, A.; Myrta, A. Basamid effectivity against strawberry soil-borne pests in Europe. Acta Hortic. 2021, 1309, 759–763. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, S.; Zhang, K.; Zhao, J.; Jiang, J.; Chen, F.; Fang, W. Evaluation of soil-applied chemical fungicide and biofungicide for control of the Fusarium wilt of chrysanthemum and their effects on rhizosphere soil microbiota. Agriculture 2018, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Chen, X.; Deng, S.; Dong, X.; Song, A.; Yao, J.; Fan, W.; Chen, F. The effects of fungicide, soil fumigant, bio-organic fertilizer and their combined application on chrysanthemum Fusarium wilt controlling, soil enzyme activities and microbial properties. Molecules 2016, 21, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, C.-H.; Hu, B.-Y.; Chang, T.-T.; Hsueh, K.-L.; Hsu, W.-T. Evaluation of dazomet as fumigant for the control of brown root rot disease. Pest Manag. Sci. 2012, 68, 959–962. [Google Scholar] [CrossRef]
- Ben-Yephet, Y.; Melero-Vera, J.M.; DeVay, J.E. Interaction of soil solarization and metham-sodium in the destruction of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum. Crop Prot. 1988, 7, 327–331. [Google Scholar] [CrossRef]
- Cabrera, J.A.; Hanson, B.D.; Gerik, J.S.; Gao, S.; Qin, R.; Wang, D. Pre-plant soil fumigation with reduced rates under low permeability films for nursery production, orchard and vineyard replanting. Crop Prot. 2015, 75, 34–39. [Google Scholar] [CrossRef]
- Chamorro, M.; Seijo, T.E.; Noling, J.C.; De los Santos, B.; Peres, N.A. Efficacy of fumigant treatments and inoculum placement on control of Macrophomina phaseolina in strawberry beds. Crop Prot. 2016, 90, 163–169. [Google Scholar] [CrossRef]
- EFSA PLH Panel (EFSA Panel on Plant Health). Scientific Opinion on the pest categorization of Verticillium dahliae Kleb. EFSA J. 2014, 12, 3928. [Google Scholar]
- Subbarao, K.V.; Hubbard, J.C.; Koike, S.T. Evaluation of broccoli residue incorporation into field soil for Verticillium wilt control in cauliflower. Plant Dis. 1999, 83, 124–129. [Google Scholar] [CrossRef] [Green Version]
2012 | 2013 | |||||
---|---|---|---|---|---|---|
T (°C) | RH (%) | Irr (MJm−2) | T (°C) | RH (%) | Irr (MJm−2) | |
Min | 17.9 | 17.0 | 23.4 | 12.4 | 23.0 | 16.0 |
Mean | 26.8 | 51.8 | 28.2 | 23.0 | 59.7 | 26.9 |
Max | 37.7 | 100 | 30.5 | 36.7 | 100 | 30.1 |
2012 | 2013 | |||
---|---|---|---|---|
Bare Plots (°C) | VIF (°C) | Bare Plots (°C) | VIF (°C) | |
Min | 30.2 | 32.9 | 27.8 | 30.6 |
Mmin | 31.0 | 33.8 | 29.8 | 32.7 |
Mean | 32.4 | 35.9 | 31.1 | 34.5 |
Mmax | 33.6 | 38.2 | 32.4 | 36.9 |
Max | 34.9 | 39.3 | 34.5 | 39.4 |
Factor(s) | Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|
Disease Incidence y | Disease Severity y | Yield (No. of Marketable Stalks) z | |||||||
df | F | P value | χ2 | W | P value | df | F | P value | |
Treatment | 4 | 25.1985 | <0.0001 | 22.00 | … | 0.002 | 4 | 11.260 | <0.0001 |
Treatm. × Trial | 4 | 0.4533 | 0.769183 ns | … | 0.8577 | ... | 4 | 0.034 | 0.997692 ns |
Treatment | DI (%) x,y | SS (0-to-4 Scale) x,z | Sum of Ranks z |
---|---|---|---|
Untreated (bare) | 22.04 ± 4.28 a | 1.64 ± 0.24 a | 267.50 |
Dazomet (495 kg ha−1) plus VIF | 4.34 ± 0.73 d | 1.12 ± 0.04 c,d | 93.00 |
Dazomet (247.5 kg ha−1) plus VIF | 7.80 ± 0.58 c | 1.22 ± 0.06 b,c | 151.50 |
Dazomet (495 kg ha−1) | 11.93 ± 0.97 b | 1.37 ± 0.12 b | 218.00 |
Metam-Na (510 kg ha−1) plus VIF | 3.55 ± 0.42 d | 1.10 ± 0.04 d | 90.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castello, I.; D’Emilio, A.; Baglieri, A.; Polizzi, G.; Vitale, A. Management of Chrysanthemum Verticillium Wilt through VIF Soil Mulching Combined with Fumigation at Label and Reduced Rates. Agriculture 2022, 12, 141. https://doi.org/10.3390/agriculture12020141
Castello I, D’Emilio A, Baglieri A, Polizzi G, Vitale A. Management of Chrysanthemum Verticillium Wilt through VIF Soil Mulching Combined with Fumigation at Label and Reduced Rates. Agriculture. 2022; 12(2):141. https://doi.org/10.3390/agriculture12020141
Chicago/Turabian StyleCastello, Ivana, Alessandro D’Emilio, Andrea Baglieri, Giancarlo Polizzi, and Alessandro Vitale. 2022. "Management of Chrysanthemum Verticillium Wilt through VIF Soil Mulching Combined with Fumigation at Label and Reduced Rates" Agriculture 12, no. 2: 141. https://doi.org/10.3390/agriculture12020141
APA StyleCastello, I., D’Emilio, A., Baglieri, A., Polizzi, G., & Vitale, A. (2022). Management of Chrysanthemum Verticillium Wilt through VIF Soil Mulching Combined with Fumigation at Label and Reduced Rates. Agriculture, 12(2), 141. https://doi.org/10.3390/agriculture12020141