The Agro-Climatic Change Characteristics across China during the Latest Decades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Resources
2.2. Indices for Agro-Climatic Change and Variation
3. Results
3.1. The Effects of Climate Change on the Agricultural Growing Season
3.2. Characteristics of Agro-Climatic Change
3.3. Characteristics of Agro-Climatic Variation
3.4. A Comparison of Agro-Climatic and Climate Change/Variation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Sun, Y.; Zhang, X.B.; Zwiers, F.W.; Song, L.C.; Wan, H.; Hu, T.; Yin, H.; Ren, G.Y. Rapid increase in the risk of extreme summer heat in eastern China. Nat. Clim. Change 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University: Cambridge, UK, 2021. [Google Scholar]
- Hegerl, G.C.; Black, E.; Allan, R.P.; Ingram, W.J.; Polson, D.; Trenberth, K.E.; Chadwick, R.S.; Arkin, P.A.; Sarojini, B.B.; Becker, A.; et al. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc. 2015, 96, 1097–1115. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.R.; Moise, A.F.; Colman, R.A. Projected increases in daily to decadal variability of Asian-Australian monsoon rainfall. Geophys. Res. Lett. 2017, 44, 5683–5690. [Google Scholar] [CrossRef]
- CMA Climate Change Centre. Blue Book on Climate Change in China; Science Press: Beijing, China, 2021. [Google Scholar]
- Huang, D.P.; Zhang, L.; Gao, G.; Shao, S. Projected changes in population exposure to extreme heat in China under a RCP8.5 scenario. J. Geogr. Sci. 2018, 28, 1371–1384. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Wang, Z.L.; Xu, Y.Y.; Zhang, X.Y.; Zhang, H.; Dong, W.J. Additional intensification of seasonal heat and flooding extreme over China in a 2 °C warmer world compared to 1.5 °C. Earths Future 2018, 6, 968–978. [Google Scholar] [CrossRef]
- Shortridge, J. Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Clim. Change 2019, 157, 429–444. [Google Scholar] [CrossRef]
- Zhang, W.X.; Furtado, K.; Wu, P.L.; Zhou, T.J.; Chadwick, R.; Marzin, C.; Rsotorn, J.; Sexton, D. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef]
- Praveen, B.; Sharma, P. A review of literature on climate change and its impacts on agriculture productivity. J. Public Affairs 2019, 19, 1472–3891. [Google Scholar] [CrossRef]
- Xia, J.J.; Jin, S.F.; Yan, Z.W.; Xiong, Z.; Zheng, Z.Y.; Han, Z.Q. Shifts in timing of local growing season in China during 1961–2012. Theor. Appl. Climatol. 2019, 137, 1637–1642. [Google Scholar] [CrossRef]
- Wang, H.J.; Rutishauser, T.; Dai, J.H. Phenological response to climate change in China: A meta-analysis. Glob. Change Biol. 2015, 21, 265–274. [Google Scholar] [CrossRef]
- Xiao, D.P.; Liu, D.L.; Feng, P.Y.; Wang, B.; Waters, C.; Shen, Y.J.; Qi, Y.Q.; Bai, H.Z.; Tang, J.Z. Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain. Agric. Water Manag. 2021, 246, 106685. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Fuglie, K. Climate change upsets agriculture. Nat. Clim. Change 2021, 11, 294–295. [Google Scholar] [CrossRef]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Polley, H.W.; McCarl, B.A.; Bailey, D.W. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Steiner, J.L.; Briske, D.D.; Brown, D.P.; Rottler, C.M. Vulnerability of Southern Plains agriculture to climate change. Clim. Change 2018, 146, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Sloat, L.L.; Davis, S.J.; Gerber, J.S.; Moore, F.C.; Ray, D.K.; West, P.C.; Mueller, N.D. Climate adaptation by crop migration, Climate adaptation by crop migration. Nat. Commun. 2020, 11, 1241. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.P.; Liu, D.L.; Wang, B.; Feng, P.Y.; Bai, H.Z.; Tang, J.Z. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, X.B.; Jiao, C.C.; Xu, C.D.; Liu, Y.; Wu, G.N. Increased association between climate change and vegetation index variation promotes the coupling of dominant factors and vegetation growth. Sci. Total Environ. 2021, 767, 144669. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Licker, R.; Kucharik, C.J.; Doré, T.; Lindemane, M.J.; Makowski, D. Climatic impacts on winter wheat yields in Picardy, France and Rostov, Russia: 1973-2010. Agric. For. Meteorol. 2013, 176, 25–37. [Google Scholar] [CrossRef]
- Gourdji, S.; Läderach, P.; Valle, A.M.; Martinez, C.Z.; Lobell, D.B. Historical climate trends, deforestation, and maize and bean yields in Nicaragua. Agric. For. Meteorol. 2015, 200, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Guo, J.P.; Zhao, J.F. Impacts of projected climate change on agricultural climate resources in Northeast China. Acta Geogr. Sin. 2017, 72, 1248–1260. [Google Scholar] [CrossRef]
- Li, X.H.; Xu, Y.L.; Meng, C.C.; Wang, C.G. Analysis on the changes of agro-meteorological thermal indices in Northeast China under RCP4.5 scenario using the PRECIS2.1. Atmosphere 2018, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Yang, X.G.; Dai, S.W.; Chen, G.S.; Li, Y.; Zhang, C.X. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China. Agric. Water Manag. 2015, 159, 35–44. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Tan, F.Y.; Guo, A.H.; Huo, Z.G. Potential agro-thermal resources dynamic for double-season rice cultivation across China under greenhouse gas emission scenarios. Theor. Appl. Climatol. 2021, 144, 67–75. [Google Scholar] [CrossRef]
- World Meteorological Organization. The 17th Congress held by World Meteorological Organization; World Meteorological Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Cui, X.M.; Xie, W. Adapting agriculture to climate change through growing season adjustments: Evidence from corn in China. Am. J. Agric. Econ. 2021, 104, 249–272. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.B.; Ren, G.Y.; Zwiers, F.W.; Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Change 2016, 4, 1082–1085. [Google Scholar] [CrossRef]
- Wang, Y.J.; Sun, Y.; Hu, T.; Qin, D.H.; Song, L.C. Attribution of temperature changes in Western China. Int. J. Climatol. 2018, 38, 742–750. [Google Scholar] [CrossRef]
- Zhou, B.T.; Xu, Y.; Wu, J.; Dong, S.Y.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol. 2016, 36, 1051–1066. [Google Scholar] [CrossRef]
- He, C.; Li, T. Does global warming amplify interannual climate variability? Clim. Dyn. 2019, 52, 2667–2684. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Parker, D.; Ren, G.Y.; Dunn, R. Tempo-spatial characteristics of sub-daily temperature trends in mainland China. Clim. Dyn. 2016, 46, 2737–2748. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.H.; Chen, M.T.; Liu, D.; Li, D.; Jin, L.; Liu, S.H.; Cui, Y.L.; Dong, B.; Khan, S.; Luo, Y.F. Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 2018: The role of climate change and rice area expansion. Agric. Water Manag. 2021, 253, 106912. [Google Scholar] [CrossRef]
- Yang, X.L.; Jin, X.N.; Chu, Q.Q.; Pacenka, S.; Steenhuis, T.S. Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain. Agric. Water Manag. 2021, 243, 106502. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhu, Y.; Tang, L.; Cao, W.X.; Wang, E. Impacts of climate changes, soil nutrients, variety types and management practices on rice yield in East China: A case study in the Taihu region. Field Crop. Res. 2013, 149, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.Z.; Tao, F.L.; Xiao, D.P.; Liu, F.S.; Zhang, H. Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Clim. Change 2016, 135, 539–553. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.F.; Pan, X.B.; Li, Q.Y.; Shao, C.X.; Pan, Z.H.; Wei, Y.R. Trends in agricultural heat and solar radiation resources in Northeast China: A multistage spatio-temporal analysis. Int. J. Climatol. 2016, 36, 2461–2468. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.; Huo, Z.H.; Li, X.X.; Wang, P.J.; Wu, D.R. Hot weather event-based characteristics of double-early rice heat risk: A study of Jiangxi province, South China. Ecol. Indic. 2020, 113, 106148. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, B.Y.; Li, S.; Hou, Y.Y.; Huang, D.P. Potential rice exposure to heat stress along the Yangtze River in China under RCP8.5 scenario. Agric. For. Meteorol. 2018, 248, 185–196. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Z.; Zhang, L.; Kong, R.; Jiang, M.; Zhang, H. The Agro-Climatic Change Characteristics across China during the Latest Decades. Agriculture 2022, 12, 147. https://doi.org/10.3390/agriculture12020147
Huo Z, Zhang L, Kong R, Jiang M, Zhang H. The Agro-Climatic Change Characteristics across China during the Latest Decades. Agriculture. 2022; 12(2):147. https://doi.org/10.3390/agriculture12020147
Chicago/Turabian StyleHuo, Zhiguo, Lei Zhang, Rui Kong, Mengyuan Jiang, and Haiyan Zhang. 2022. "The Agro-Climatic Change Characteristics across China during the Latest Decades" Agriculture 12, no. 2: 147. https://doi.org/10.3390/agriculture12020147
APA StyleHuo, Z., Zhang, L., Kong, R., Jiang, M., & Zhang, H. (2022). The Agro-Climatic Change Characteristics across China during the Latest Decades. Agriculture, 12(2), 147. https://doi.org/10.3390/agriculture12020147