Yellow Mealworm Composition after Convective and Freeze Drying—Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Insect Preparation and Drying
2.3. Laboratory Analyses
2.4. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER. A/423); United Nations: New York, NY, USA, 2019; p. 46. [Google Scholar]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects For Food And Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; p. 201. [Google Scholar]
- Payne, C.L.R.; Dobermann, D.; Forkes, A.; House, J.; Josephs, J.; McBride, A.; Müller, A.; Quilliam, R.S.; Soares, S. Insects as food and feed: European perspectives on recent research and future priorities. J. Insects Food Feed 2016, 2, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Bordiean, A.; Krzyżaniak, M.; Stolarski, M.J.; Czachorowski, S.; Peni, D. Will yellow mealworm become a source of safe proteins for europe? Agriculture 2020, 10, 233. [Google Scholar] [CrossRef]
- Dabbou, S.; Gasco, L.; Lussiana, C.; Brugiapaglia, A.; Biasato, I.; Renna, M.; Cavallarin, L.; Gai, F.; Schiavone, A. Yellow mealworm (Tenebrio molitor L.) larvae inclusion in diets for free-range chickens: Effects on meat quality and fatty acid profile. Renew. Agric. Food Syst. 2020, 35, 571–578. [Google Scholar] [CrossRef]
- Henry, M.A.; Gai, F.; Enes, P.; Peréz-Jiménez, A.; Gasco, L. Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2018, 83, 308–313. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar] [CrossRef]
- Hein, T. The Soybean Situation: 2021 and Beyond. In All About Feed. 2021. Available online: https://www.allaboutfeed.net/animal-feed/raw-materials/the-soybean-situation-2021-and-beyond/ (accessed on 5 January 2022).
- Hein, T. Animal By-Products in Feed: A Global Update. In All About Feed. 2021. Available online: https://www.allaboutfeed.net/animal-feed/feed-processing/animal-by-products-in-feed-a-global-update/ (accessed on 5 January 2022).
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Novaes, R.M.L.; Pazianotto, R.A.A.; Brandão, M.; Alves, B.J.R.; May, A.; Folegatti-Matsuura, M.I.S. Estimating 20-year land-use change and derived CO2 emissions associated with crops, pasture and forestry in Brazil and each of its 27 states. Glob. Change Biol. 2017, 23, 3716–3728. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Böschen, V.; Woyzichovski, J.; Demtröder, S.; Benning, R. Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2018, 50, 20–25. [Google Scholar] [CrossRef]
- Lenaerts, S.; Van Der Borght, M.; Callens, A.; Van Campenhout, L. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour. Food Chem. 2018, 254, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef]
- Latunde-Dada, G.O.; Yang, W.; Vera Aviles, M. In Vitro Iron Availability from Insects and Sirloin Beef. J. Agric. Food Chem. 2016, 64, 8420–8424. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; Van Keulen, P.; Finke, M.D.; Baines, F.M.; Vermeulen, M.; Bosch, G. Evidence of Vitamin D synthesis in insects exposed to UVb light. Sci. Rep. 2018, 8, 10807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Salinas-Castro, A. Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Scientific Committee. Scientific Opinion on a risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animals. Off. J. Eur. Union 2021, 295, 1–17. [Google Scholar]
- European Commission. Commission Regulation (EU) 2017/893 of 23 May 2017 amending Annexes I and IV o Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. Off. J. Eur. Union 2017, 138, 92–116. [Google Scholar]
- European Commission. Commission Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union 2015, 327, 1–22. [Google Scholar]
- European Commission. Commission Regulation (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal by-products and derived products not intended for human consumption and implementing Council Directive. Off. J. Eur. Union 2011, 54, 1–254. [Google Scholar]
- Caparros Megido, R.; Poelaert, C.; Ernens, M.; Liotta, M.; Blecker, C.; Danthine, S.; Tyteca, E.; Haubruge, É.; Alabi, T.; Bindelle, J.; et al. Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res. Int. 2018, 106, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, N.T.; Klein, G. Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Sci. Technol. Int. 2016, 23, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Borremans, A.; Lenaerts, S.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Marination and fermentation of yellow mealworm larvae (Tenebriomolitor). Food Control 2018, 92, 47–52. [Google Scholar] [CrossRef]
- Purschke, B.; Brüggen, H.; Scheibelberger, R.; Jäger, H. Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). Eur. Food Res. Technol. 2018, 244, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Selaledi, L.; Mabelebele, M. The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm (Tenebrio molitor L.). Insects 2021, 12, 333. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Finkel, A.J. The lipid composition of Tenebrio molitor larvae. Physiol. Zool. 1948, 21, 111–133. [Google Scholar] [CrossRef] [PubMed]
- Smets, R.; Claes, J.; Van Der Borght, M. On the nitrogen content and a robust nitrogen-to-protein conversion factor of black soldier fly larvae (Hermetia illucens). Anal. Bioanal. Chem. 2021, 413, 6365–6377. [Google Scholar] [CrossRef] [PubMed]
- Boulos, S.; Tännler, A.; Nyström, L. Nitrogen-to-protein conversion factors for edible insects on the Swiss market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020, 7, 89. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Kim, M.W.; Moon, C.; Seo, D.J.; Han, Y.S.; Jo, Y.H.; Noh, M.Y.; Park, Y.K.; Kim, S.A.; Kim, Y.W. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol. Res. 2018, 48, 227–233. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lease, H.M.; Wolf, B.O. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiol. Entomol. 2011, 36, 29–38. [Google Scholar] [CrossRef]
Code | Batch No. | Drying Method | Blanching Time (s) | Temperature (°C) | Drying Time (h) | Fresh Weight of Single Larvae (g) |
---|---|---|---|---|---|---|
B1T1 | 1 | convective | 60 | 60 | 12 | 0.101 |
B1T2 | 1 | 16 | 0.101 | |||
B1T3 | 3 | 80 | 12 | 0.133 | ||
B1T4 | 3 | 16 | 0.133 | |||
B2T1 | 2 | convective | 180 | 60 | 12 | 0.122 |
B2T2 | 2 | 16 | 0.122 | |||
B2T3 | 4 | 80 | 12 | 0.126 | ||
B2T4 | 4 | 16 | 0.126 | |||
B1FD1 | 1 | freeze drying | 60 | −30/(−40) | 16/(2) | 0.101 |
B1FD2 | 3 | 24/(2) | 0.133 | |||
B2FD1 | 2 | freeze drying | 180 | −30/(−40) | 16/(2) | 0.122 |
B2FD2 | 4 | 24/(2) | 0.126 |
Source of Variation | Water Activity | Moisture | Ash | Crude Fiber | Protein | Crude Fat |
---|---|---|---|---|---|---|
df | 11 | |||||
F | 12,954 | 754.3 | 70.2 | 118.4 | 188.6 | 356.1 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Method | Moisture Content (%) | Water Activity | Protein (% DM) | Crude Fat (% DM) | Crude Fiber (% DM) | Ash (% DM) |
---|---|---|---|---|---|---|
B1T1 | 4.05 ± 0.06 c | 0.14 ± 0.0 d | 54.5 ± 0.39 a | 30.9 ± 0.10 d | 5.49 ± 0.06 b | 3.52 ± 0.02 a |
B1T2 | 4.07 ± 0.04 c | 0.12 ± 0.001 f | 53.7 ± 0.48 ab | 30.9 ± 0.51 d | 5.95 ± 0.13 a | 3.52 ± 0.10 a |
B1T3 | 3.28 ± 0.01 f | 0.13 ± 0.001 de | 49.4 ± 0.10 c | 38.7 ± 0.39 bc | 4.18 ± 0.09 de | 2.80 ± 0.11 c |
B1T4 | 3.22 ± 0.01 fg | 0.13 ± 0.002 e | 48.6 ± 0.04 cd | 39.4 ± 0.13 b | 4.39 ± 0.14 d | 2.87 ± 0.02 bc |
B2T1 | 3.64 ± 0.05 d | 0.08 ± 0.001 g | 48.7 ± 0.35 cd | 39.9 ± 0.29 a | 4.21 ± 0.08 de | 2.94 ± 0.11 bc |
B2T2 | 3.66 ± 0.02 d | 0.07 ± 0.001 h | 49.0 ± 0.23 c | 39.5 ± 0.31 ab | 4.60 ± 0.11 cd | 2.77 ± 0.03 c |
B2T3 | 3.49 ± 0.06 e | 0.12 ± 0.007 f | 49.4 ± 0.01 c | 39.8 ± 0.56 a | 4.62 ± 0.02 cd | 3.00 ± 0.03 b |
B2T4 | 3.15 ± 0.04 g | 0.06 ± 0.001 h | 49.4 ± 0.30 c | 39.7 ± 0.30 ab | 4.81 ± 0.07 c | 2.91 ± 0.03 bc |
B1FD1 | 5.47 ± 0.06 a | 0.55 ± 0.004 a | 53.3 ± 0.15 b | 29.5 ± 0.13 e | 5.35 ± 0.09 b | 3.55 ± 0.02 a |
B1FD2 | 4.08 ± 0.05 c | 0.04 ± 0.002 i | 49.4 ± 0.29 c | 38.4 ± 0.56 bc | 5.26 ± 0.13 b | 2.98 ± 0.05 b |
B2FD1 | 4.79 ± 0.04 b | 0.49 ± 0.002 b | 47.1 ± 0.33 e | 38.0 ± 0.46 c | 4.05 ± 0.05 e | 2.98 ± 0.04 b |
B2FD2 | 4.04 ± 0.01 c | 0.23 ± 0.001 c | 48.1 ± 0.17 d | 37.8 ± 0.17 c | 4.69 ± 0.08 c | 2.89 ± 0.04 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyżaniak, M.; Aljewicz, M.; Bordiean, A.; Stolarski, M.J. Yellow Mealworm Composition after Convective and Freeze Drying—Preliminary Results. Agriculture 2022, 12, 149. https://doi.org/10.3390/agriculture12020149
Krzyżaniak M, Aljewicz M, Bordiean A, Stolarski MJ. Yellow Mealworm Composition after Convective and Freeze Drying—Preliminary Results. Agriculture. 2022; 12(2):149. https://doi.org/10.3390/agriculture12020149
Chicago/Turabian StyleKrzyżaniak, Michał, Marek Aljewicz, Anna Bordiean, and Mariusz Jerzy Stolarski. 2022. "Yellow Mealworm Composition after Convective and Freeze Drying—Preliminary Results" Agriculture 12, no. 2: 149. https://doi.org/10.3390/agriculture12020149
APA StyleKrzyżaniak, M., Aljewicz, M., Bordiean, A., & Stolarski, M. J. (2022). Yellow Mealworm Composition after Convective and Freeze Drying—Preliminary Results. Agriculture, 12(2), 149. https://doi.org/10.3390/agriculture12020149