Tile Drainage Flow Partitioning and Phosphorus Export in Vermont USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Measurements
2.3. Water Quality Analysis
2.4. Analytical Methodology
2.4.1. Four Component Hydrograph Separation
2.4.2. Rainfall Pulse Analysis
2.4.3. Statistical Analysis
3. Results
3.1. General Hydrology and P Transport
3.2. Rainfall, TD Discharge, and P Export Dynamics
3.2.1. Seasonal Differences
3.2.2. P Export Relative to P Application Periods
3.2.3. P Concentrations in TD during Events
3.3. Flow Pathway and Source Connectivity
3.3.1. QF, SF, New and Old Water Metrics
3.3.2. Four Component Hydrograph Separation
3.4. Rainfall Pulse Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sharpley, A.N. Agriculture, Nutrient Management and Water Quality. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Simpson, R.J.; Oberson, A.; Culvenor, R.A.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 2011, 349, 89–120. [Google Scholar] [CrossRef]
- Vadas, P.A.; Fiorellino, N.M.; Coale, F.J.; Kratochvil, R.; Mulkey, A.S.; McGrath, J.M. Estimating Legacy Soil Phosphorus Impacts on Phosphorus Loss in the Chesapeake Bay Watershed. J. Environ. Qual. 2018, 47, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpley, A.N.; Chapra, S.C.; Wedepohl, R.; Sims, J.T.; Daniel, T.C.; Reddy, K.R. Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options. J. Environ. Qual. 1994, 23, 437–451. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Moore, J. Literature Review: Tile Drainage and Phosphorus Losses from Agricultural Land; Stone, Environmental, Technical Report 83; Lake Champlain Basin Program: Grand Isle, VT, USA, 2016. [Google Scholar]
- Wolfe, D.W.; DeGaetano, A.T.; Peck, G.; Carey, M.; Ziska, L.H.; Lea-Cox, J.; Kemanian, A.; Hoffmann, M.P.; Hollinger, D.Y. Unique challenges and opportunities for northeastern US crop production in a changing climate. Clim. Change 2018, 146, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Klaiber, L.B. Edge-Of-Field Water and Phosphorus Losses. In Surface and Subsurface Agricultural Runoff; University of Vermont: Burlington, VT, USA, 2016. [Google Scholar]
- Klaiber, L.B.; Kramer, S.R.; Young, E.O. Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York. Water 2020, 12, 328. [Google Scholar] [CrossRef] [Green Version]
- Madison, A.M.; Ruark, M.D.; Stuntebeck, T.D.; Komiskey, M.J.; Good, L.W.; Drummy, N.; Cooley, E.T. Characterizing phosphorus dynamics in tile-drained agricultural fields of eastern Wisconsin. J. Hydrol. 2014, 519, 892–901. [Google Scholar] [CrossRef]
- Kokulan, V.; Macrae, M.; Ali, G.; Lobb, D.; Morison, M.; Brooks, B. Temporal variability in water and nutrient movement through vertisols into agricultural tile drains in the northern Great Plains. J. Soil Water Conserv. 2021, 76, 317–328. [Google Scholar] [CrossRef]
- Nazari, S.; Ford, W.I.; King, K.W. Impacts of preferential flow and agroecosystem management on subsurface particulate phosphorus loadings in tile-drained landscapes. J. Environ. Qual. 2020, 49, 1370–1383. [Google Scholar] [CrossRef]
- King, K.W.; Williams, M.R.; Macrae, M.; Fausey, N.R.; Frankenberger, J.; Smith, D.R.; Kleinman, P.J.A.; Brown, L.C. Phosphorus Transport in Agricultural Subsurface Drainage: A Review. J. Environ. Qual. 2015, 44, 467–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dils, R.; Heathwaite, A. The controversial role of tile drainage in phosphorus export from agricultural land. Water Sci. Technol. 1999, 39, 55–61. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 2013, 49, 3071–3092. [Google Scholar] [CrossRef] [Green Version]
- Nazari, S.; Ford, W.I.; King, K.W. Quantifying hydrologic pathway and source connectivity dynamics in tile drainage: Implications for phosphorus concentrations. Vadose Zone J. 2021, 20, e20154. [Google Scholar] [CrossRef]
- Fiorillo, F. The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resour. Manag. 2014, 28, 1781–1805. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jones, C.S. Hydrograph separation of subsurface tile discharge. Environ. Monit. Assess. 2019, 191, 231. [Google Scholar] [CrossRef]
- Amado, A.A.; Schilling, K.E.; Jones, C.S.; Thomas, N.; Weber, L.J. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data. Environ. Monit. Assess. 2017, 189, 426. [Google Scholar] [CrossRef]
- Smith, E.A.; Capel, P.D. Specific Conductance as a Tracer of Preferential Flow in a Subsurface-Drained Field. Vadose Zone J. 2018, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vidon, P.; Cuadra, P.E. Impact of precipitation characteristics on soil hydrology in tile-drained landscapes. Hydrol. Process. 2010, 24, 1821–1833. [Google Scholar] [CrossRef]
- Williams, M.R.; King, K.W.; Ford, W.; Buda, A.R.; Kennedy, C.D. Effect of tillage on macropore flow and phosphorus transport to tile drains. Water Resour. Res. 2016, 52, 2868–2882. [Google Scholar] [CrossRef] [Green Version]
- Jahanzad, E.; Saporito, L.S.; Karsten, H.D.; Kleinman, P.J.A. Varying Influence of Dairy Manure Injection on Phosphorus Loss in Runoff over Four Years. J. Environ. Qual. 2019, 48, 450–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaynor, J.D.; Findlay, W.I. Soil and Phosphorus Loss from Conservation and Conventional Tillage in Corn Production. J. Environ. Qual. 1995, 24, 734–741. [Google Scholar] [CrossRef]
- Geohring, L.D.; McHugh, O.V.; Walter, M.T.; Steenhuis, T.S.; Akhtar, M.S. Phosphorus Transport into Subsurface Drains by Macropores after Manure Applications: Implications for Best Manure Management Practices. Soil Sci. 2001, 166, 896–909. [Google Scholar] [CrossRef]
- Torbert, H.A.; Potter, K.N.; Morrison, J.E., Jr. Management Effects on Nitrogen and Phosphorus Losses in Runoff on Expansive Clay Soils. Trans. ASAE 1996, 39, 161–166. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, X. High performance tool for liquid manure injection. Soil Tillage Res. 2002, 67, 75–83. [Google Scholar] [CrossRef]
- Uusi-Kämppä, J.; Heinonen-Tanski, H. Evaluating Slurry Broadcasting and Injection to Ley for Phosphorus Losses and Fecal Microorganisms in Surface Runoff. J. Environ. Qual. 2008, 37, 2339–2350. [Google Scholar] [CrossRef]
- Coelho, B.B.; Murray, R.; Lapen, D.; Topp, E.; Bruin, A. Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices. Agric. Water Manag. 2012, 104, 51–61. [Google Scholar] [CrossRef]
- Sharpley, A.N. Dependence of Runoff Phosphorus on Extractable Soil Phosphorus. J. Environ. Qual. 1995, 24, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Phosphorus Sources—Lake Champlain Basin Program. 2021. Available online: https://www.lcbp.org/our-goals/clean-water/nutrients-and-cyanobacteria/phosphorus-sources/ (accessed on 21 May 2021).
- Miller, S.A.; Lyon, S.W. Tile Drainage Increases Total Runoff and Phosphorus Export During Wet Years in the Western Lake Erie Basin. Front. Water 2021, 3, 757106. [Google Scholar] [CrossRef]
- Willard, A.; Harris, K.; Kahler, E.; Claro, J.; Danly, S.; Warren, B. Vermont Agriculture and Food System Plan: 2020. p. 110. Available online: https://agriculture.vermont.gov/sites/agriculture/files/doc_library/Vermont%20Agriculture%20and%20Food%20System%20Plan%202020.pdf (accessed on 20 March 2021).
- Hanrahan, B.R.; King, K.W.; Williams, M.R. Controls on subsurface nitrate and dissolved reactive phosphorus losses from agricultural fields during precipitation-driven events. Sci. Total Environ. 2021, 754, 142047. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Hanrahan, B.R.; King, K.W. Legacy phosphorus concentration–discharge relationships in surface runoff and tile drainage from Ohio crop fields. J. Environ. Qual. 2020, 49, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; King, K.W.; Baker, D.B.; Johnson, L.T.; Smith, D.R.; Fausey, N.R. Hydrologic and biogeochemical controls on phosphorus export from Western Lake Erie tributaries. J. Great Lakes Res. 2016, 42, 1403–1411. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff. Web Soil Survey; United States Department of Agriculture, Natrual Resources Conservation Service: Washington, DC, USA, 2021.
- National Oceanic and Atmospheric Administration, United States Department of Commerce. NOWData. Available online: https://www.weather.gov/climateservices/nowdatafaq (accessed on 17 November 2021).
- Pierzynski, G.M. Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters, 2nd ed.; North Carolina State University: Raleigh, NC, USA, 2009; Available online: http://www.soil.ncsu.edu/sera17/publications/sera17-2/abstract.htm (accessed on 29 May 2021).
- Williams, M.R.; Livingston, S.J.; Penn, C.J.; Smith, D.R.; King, K.W.; Huang, C.-H. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin. J. Hydrol. 2018, 559, 749–761. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2015. [Google Scholar]
- Twombly, C.; Faulkner, J.; Hurley, S. The effects of soil aeration prior to dairy manure application on edge-of-field hydrology and nutrient fluxes in cold climate hayland agroecosystems. J. Soil Water Conserv. 2021, 76, 1–13. [Google Scholar] [CrossRef]
- Gregor, M.; Malík, P. HydroOffice. Available online: http://hydrooffice.org/Files/UM%20RC.pdf (accessed on 20 March 2021).
- Husic, A.; Fox, J.; Adams, E.; Backus, J.; Pollock, E.; Ford, W.; Agouridis, C. Inland impacts of atmospheric river and tropical cyclone extremes on nitrate transport and stable isotope measurements. Environ. Earth Sci. 2019, 78, 36. [Google Scholar] [CrossRef]
- Schilling, K.E.; Helmers, M. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed. J. Hydrol. 2008, 349, 291–301. [Google Scholar] [CrossRef]
- Vidon, P.; Cuadra, P. Phosphorus dynamics in tile-drain flow during storms in the US Midwest. Agric. Water Manag. 2011, 98, 532–540. [Google Scholar] [CrossRef]
- Sharpley, A.N. Depth of Surface Soil-runoff Interaction as Affected by Rainfall, Soil Slope, and Management. Soil Sci. Soc. Am. J. 1985, 49, 1010–1015. [Google Scholar] [CrossRef] [Green Version]
- Mangiafico, S.S. An R Companion for the Handbook of Biological Statistics Version 1.3.3. 2015. Available online: rcompanion.org/documents/RCompanionBioStatistics.pdf (accessed on 5 July 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 February 2020).
- Macrae, M.L.; Ali, G.A.; King, K.W.; Plach, J.M.; Pluer, W.T.; Williams, M.; Morison, M.Q.; Tang, W. Evaluating Hydrologic Response in Tile-Drained Landscapes: Implications for Phosphorus Transport. J. Environ. Qual. 2019, 48, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Van Esbroeck, C.J.; Macrae, M.L.; Brunke, R.I.; McKague, K. Annual and seasonal phosphorus export in surface runoff and tile drainage from agricultural fields with cold temperate climates. J. Great Lakes Res. 2016, 42, 1271–1280. [Google Scholar] [CrossRef]
- Tiessen, K.H.D.; Elliott, J.A.; Yarotski, J.; Lobb, D.A.; Flaten, D.N.; Glozier, N.E. Conventional and Conservation Tillage: Influence on Seasonal Runoff, Sediment, and Nutrient Losses in the Canadian Prairies. J. Environ. Qual. 2010, 39, 964–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidon, P.; Hubbard, L.; Soyeux, E. Seasonal solute dynamics across land uses during storms in glaciated landscape of the US Midwest. J. Hydrol. 2009, 376, 34–47. [Google Scholar] [CrossRef]
- Williams, M.R.; Livingston, S.J.; Heathman, G.C.; McAfee, S.J. Thresholds for run-off generation in a drained closed depression. Hydrol. Process. 2019, 33, 2408–2421. [Google Scholar] [CrossRef]
- King, K.W.; Williams, M.R.; Fausey, N.R. Contributions of Systematic Tile Drainage to Watershed-Scale Phosphorus Transport. J. Environ. Qual. 2015, 44, 486–494. [Google Scholar] [CrossRef]
- Chen, C.; Roseberg, R.J.; Selker, J.S. Using microsprinkler irrigation to reduce leaching in a shrink/swell clay soil. Agric. Water Manag. 2002, 54, 159–171. [Google Scholar] [CrossRef]
- Poon, D.; Whalen, J.K.; Michaud, A.R. Re-conceptualizing the Soil and Water Assessment Tool to Predict Subsurface Water Flow through Macroporous Soils. Front. Water 2021, 3, 704291. [Google Scholar] [CrossRef]
- Messing, I.; Wesström, I. Efficiency of old tile drain systems in soils with high clay content: Differences in the trench backfill zone versus the zone midway between trenches. Irrig. Drain. 2006, 55, 523–531. [Google Scholar] [CrossRef]
- Øgaard, A.F. Freezing and thawing effects on phosphorus release from grass and cover crop species. Acta Agric. Scand. Sect. B-Plant Soil Sci. 2015, 65, 529–536. [Google Scholar] [CrossRef]
- Grant, K.N.; Macrae, M.L.; Ali, G.A. Differences in preferential flow with antecedent moisture conditions and soil texture: Implications for subsurface P transport. Hydrol. Process. 2019, 33, 2068–2079. [Google Scholar] [CrossRef]
- Ford, W.; Williams, M.R.; Young, M.B.; King, K.W.; Fischer, E. Assessing Intra-Event Phosphorus Dynamics in Drainage Water Using Phosphate Stable Oxygen Isotopes. Trans. ASABE 2018, 61, 1379–1392. [Google Scholar] [CrossRef] [Green Version]
- Stone, W.W.; Wilson, J. Preferential Flow Estimates to an Agricultural Tile Drain with Implications for Glyphosate Transport. J. Environ. Qual. 2006, 35, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- NRCS VT and UVM Extension. Vermont Phosphorus Index (VT P-Index); USDA: Washington, DC, USA, 2020.
- Beauchemin, S.; Simard, R.R.; Cluis, D. Forms and Concentration of Phosphorus in Drainage Water of Twenty-Seven Tile-Drained Soils. J. Environ. Qual. 1998, 27, 721–728. [Google Scholar] [CrossRef]
- Tian, J.; Boitt, G.; Black, A.; Wakelin, S.; Chen, L.; Cai, K.; Condron, L. Mass balance assessment of phosphorus dynamics in a fertilizer trial with 57 years of superphosphate application under irrigated grazed pasture. Nutr. Cycl. Agroecosyst. 2019, 114, 33–44. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Czymmek, K.J.; Reid, W.S.; Wildman, R.F. Conversion of modified morgan and mehlich-III soil tests to morgan soil test values. Soil Sci. 2002, 167, 830–837. [Google Scholar] [CrossRef]
- Chikhaoui, M.; Madramootoo, C.A.; Eastman, M.; Michaud, A. Estimating Preferential Flow to Agricultural Tile Drains. In Proceedings of the 2008 Providence, Providence, RI, USA, 29 June–2 July 2008. [Google Scholar] [CrossRef]
- Smith, L.; Watzin, M.C.; Druschel, G. Relating sediment phosphorus mobility to seasonal and diel redox fluctuations at the sediment-water interface in a eutrophic freshwater lake. Limnol. Oceanogr. 2011, 56, 2251–2264. [Google Scholar] [CrossRef]
F1 | DC | ||||
---|---|---|---|---|---|
Date | Action | P.A.E (g/ha) | Date | Action | P.A.E (g/ha) |
10/6/18 | Manure injected | 152,435 | 9/29/19 | Cover crop planted | |
5/19/19 | Pop-up | 22,949 | 10/12/19 | Manure injected | 152,435 |
Corn planted | 4/27/20 | Cover crop terminated | 154 | ||
Starter | 15,300 | 4/30/20 | Light chisel till | ||
Cover crop terminated (A standard application rate of 0.34 kg (0.75 lbs) of glyphosate (acid equivalent) per acre assumed) | 154 | Pop-up | 22,949 | ||
7/2/19 | Nitrogen side dress | Corn planted | |||
9/25/19 | Corn harvested | Starter | 15,300 | ||
9/29/19 | Cover crop planted | 6/23/20 | Nitrogen side dress | ||
10/6/19 | Manure injected | 152,435 | 9/12/20 | Corn harvested | |
5/5/20 | Light chisel till | 9/19/20 | Cover crop planted | ||
Pop-up | 9/28/20 | Manure injected | 121,948 | ||
Corn planted | 11/13/20 | Subsoiled | |||
Starter | 15,300 | 4/15/21 | Cover crop terminated | 154 | |
Cover crop terminated | 154 | 5/21/21 | Light chisel till | ||
6/20/20 | Nitrogen side dress | 5/24/21 | Pop-up | 22,949 | |
9/18/20 | Corn harvested | Corn planted | |||
9/22/20 | Cover crop planted | Starter | 15,300 | ||
10/6/20 | Manure injected | 121,948 | 6/20/21 | Nitrogen side dress |
2019 | 2020 | 2021 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseflow | Event | Baseflow | Event | Baseflow | Event | |||||||||||
Site | Metric | G | NG | G | NG | WY Total | G | NG | G | NG | WY Total | G | NG | G | NG | WY Total |
F1 | TP.Load | 3.3 | 4.5 | 536 | 852.3 | 1396.1 a | 1.4 | 4.3 | 64 | 1484 | 1554.1 b | |||||
Volume | 8.97 | 17.65 | 10.41 | |||||||||||||
RR | 0.53 | 0.6 | 0.51 | |||||||||||||
DCN | TP.Load | 6.7 | 21.2 | 64 | 3268 | 3359.9 c | 15.4 | 16 | 742.2 | 762.8 | 1536.4 d | |||||
Volume | 2.73 | 17.02 | 9.18 | 23.2 | ||||||||||||
RR | 0.09 | 0.92 | 0.35 | 0.59 | ||||||||||||
DCS | TP.Load | 1.6 | 5.1 | 21 | 1313 | 1340.6 e | 3.7 | 3.9 | 533.1 | 416.5 | 957.2 f | |||||
Volume | 1.03 | 5.18 | 7.55 | 20.15 | ||||||||||||
RR | 0.03 | 0.26 | 0.29 | 0.41 |
Flow Metric | FTF | TTP | |
---|---|---|---|
(N = 25) | (N = 25) | (N = 25) | |
Flow Volume (mm) | |||
Mean (SD) | 15.8 (12.7) | NA (NA) | 12.8 (13.3) |
Median [Min, Max] | 13.4 [1.23, 55.0] | NA [NA, NA] | 8.83 [0.917, 49.6] |
Missing | 0 (0%) | 25 (100%) | 0 (0%) |
QF | |||
Mean (SD) | 13.2 (10.6) | 0.821 (0.108) | 12.0 (11.5) |
Median [Min, Max] | 11.3 [0.893, 45.0] | 0.828 [0.579, 0.973] | 8.83 [0.917, 49.6] |
SF | |||
Mean (SD) | 2.61 (2.51) | 0.179 (0.108) | 34.3 (21.2) |
Median [Min, Max] | 2.23 [0.0955, 10.1] | 0.172 [0.0273, 0.421] | 28.5 [10.0, 89.7] |
New | |||
Mean (SD) | 9.23 (9.61) | 0.493 (0.191) | 13.2 (13.5) |
Median [Min, Max] | 7.25 [0.325, 41.2] | 0.542 [0.102, 0.803] | 9.75 [1.33, 52.8] |
Old | |||
Mean (SD) | 6.58 (3.81) | 0.507 (0.191) | 11.3 (9.57) |
Median [Min, Max] | 6.60 [0.900, 13.8] | 0.458 [0.197, 0.898] | 8.17 [0.833, 32.3] |
QF old | |||
Mean (SD) | 4.30 (2.50) | 0.344 (0.150) | 11.3 (9.57) |
Median [Min, Max] | 4.11 [0.575, 9.63] | 0.321 [0.0845, 0.696] | 8.17 [0.833, 32.3] |
QF new | |||
Mean (SD) | 8.89 (9.00) | 0.477 (0.179) | 13.2 (13.5) |
Median [Min, Max] | 7.09 [0.318, 38.2] | 0.529 [0.100, 0.776] | 9.75 [1.33, 52.8] |
SF old | |||
Mean (SD) | 2.28 (1.92) | 0.163 (0.105) | 32.0 (17.8) |
Median [Min, Max] | 1.95 [0.0955, 7.25] | 0.133 [0.0273, 0.419] | 27.1 [9.92, 66.7] |
SF new | |||
Mean (SD) | 0.337 (0.706) | 0.0157 (0.0270) | 28.0 (26.3) |
Median [Min, Max] | 0.0262 [0, 3.08] | 0.00279 [0, 0.121] | 28.2 [0, 89.8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggiero, R.; Ross, D.; Faulkner, J.W. Tile Drainage Flow Partitioning and Phosphorus Export in Vermont USA. Agriculture 2022, 12, 167. https://doi.org/10.3390/agriculture12020167
Ruggiero R, Ross D, Faulkner JW. Tile Drainage Flow Partitioning and Phosphorus Export in Vermont USA. Agriculture. 2022; 12(2):167. https://doi.org/10.3390/agriculture12020167
Chicago/Turabian StyleRuggiero, Ryan, Donald Ross, and Joshua W. Faulkner. 2022. "Tile Drainage Flow Partitioning and Phosphorus Export in Vermont USA" Agriculture 12, no. 2: 167. https://doi.org/10.3390/agriculture12020167
APA StyleRuggiero, R., Ross, D., & Faulkner, J. W. (2022). Tile Drainage Flow Partitioning and Phosphorus Export in Vermont USA. Agriculture, 12(2), 167. https://doi.org/10.3390/agriculture12020167