Nutrient Profile of Baltic Coastal Red Algae (Delesseria sanguinea), Baltic Blue Mussel (Mytilus spp.) and King Ragworm (Alitta virens) as Potential Feed Material in the Diet of Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792): A Preliminary Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feed Assessment
2.2. Diets, Fish and Experimental Feeding
2.3. Analysis of Data and Statistics
3. Results
3.1. Nutritional Profile of Baltic Coastal Marine Feeding Sources
3.2. Performance of Rainbow Trout Fed the Experimental Diets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gladyshev, M.I.; Sushchik, N.N.; Gubanenko, G.A.; Demirchieva, S.M.; Kalachova, G.S. Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (Oncorhynchus gorbuscha). Food Chem. 2006, 96, 446–451. [Google Scholar] [CrossRef]
- Celik, M.; Goekce, M.A.; Başusta, N.; Kuecuekguelmez, A.; Taşbozan, O.; Tabakoğlu, Ş.S. Nutritional quality of rainbow trout (Oncorhynchus mykiss) caught from the Atatürk Dam lake in Turkey. J. Muscle Foods 2008, 19, 50–61. [Google Scholar] [CrossRef]
- Øverli, Ø.; Sørensen, C.; Kiessling, A.; Pottinger, T.G.; Gjøen, H.M. Selection for improved stress tolerance in rainbow trout (Oncorhynchus mykiss) leads to reduced feed waste. Aquaculture 2006, 261, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ perspective on circular economy strategy for reducing food waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Buffa, G.; Atzori, A.S.; Cappai, M.G.; Fais, G.; Pulina, G. Small amounts of agro-industrial by-products in dairy ewes diets affect milk production traits and haematological parameters. Anim. Feed Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Javaherdoust, S.; Yeganeh, S.; Amirkolaie, A.K. Effects of dietary visceral protein hydrolysate of rainbow trout on growth performance, carcass composition, digestibility and antioxidant enzyme in juvenile Oncorhynchus mykiss. Aquac. Nutr. 2020, 26, 134–144. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. Feed. Feed. Pract. Aquac. 2015, 8, 203–233. [Google Scholar]
- Chemello, G.; Renna, M.; Caimi, C.; Guerreiro, I.; Oliva-Teles, A.; Enes, P.; Biasato, I.; Schiavone, A.; Gai, F.; Gasco, L. Partially defatted tenebriomolitor larva meal in diets for grow-out rainbow trout, Oncorhynchus mykiss (Walbaum): Effects on growth performance, diet digestibility and metabolic responses. Animals 2020, 10, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, R.W. Alternate protein sources for salmon and trout diets. Anim. Feed Sci. Technol. 1996, 59, 71–80. [Google Scholar] [CrossRef]
- Sanz, A.; Gallego, M.G.; Higuera, M. Protein nutrition in fish: Protein/energy ratio and alternative protein sources to fish meal. J. Physiol. Biochem. 2000, 56, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Gaylord, G.T.; Barrows, F.T.; Teague, A.M.; Johansen, K.A.; Overturf, K.E.; Shepherd, B. Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 2007, 269, 514–524. [Google Scholar] [CrossRef]
- Ferrer Llagostera, P.; Kallas, Z.; Reig, L.; Amores de Gea, D. The use of insect meal as a sustainable alternative in aquaculture: Current situation, Spanish consumers’ perception and willingness to pay. J. Clean. Prod. 2019, 229, 10–21. [Google Scholar] [CrossRef]
- Bassler, R. Methodenbuch Band III—Die Chemischeuntersuchung von Futtermitteln, 3rd ed.; Bassler, R., Ed.; VDLUFA: Darmstadt, Germany, 1993. [Google Scholar]
- Hackl, W.; Pieper, B.; Pieper, R.; Korn, U.; Zeyner, A. Effects of ensiling cereal grains (barley, wheat, triticale and rye) on total and pre-caecal digestibility of proximate nutrients and amino acids in pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, 729–735. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. NRC Nutrient Requirements of Fish; National Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Grünewald, N.; Groth, I.; Alban, S. Evaluation of seasonal variations of the structure and anti-inflammatory activity of sulfated polysaccharides extracted from the red alga Delesseriasanguinea (Hudson) Lamouroux (Ceramiales, Delesseriaceae). Biomacromolecules 2009, 10, 1155–1162. [Google Scholar] [CrossRef]
- Berge, G.M.; Austreng, E. Blue mussel in feed for rainbow trout. Aquaculture 1989, 81, 79–90. [Google Scholar] [CrossRef]
- Soler-Vila, A.; Coughlan, S.; Guiry, M.D.; Kraan, S. The red alga Porphyradioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): Effects on growth, feed efficiency, and carcass composition. J. Appl. Phycol. 2009, 21, 617–624. [Google Scholar] [CrossRef]
- Sàez, M.I.; Martìnez, T.; Alarcòn, J. Effect of dietary inclusion of seaweeds on intestinal proteolytic activity of juvenile sea bream. Int. Aquafeed 2013, 16, 38–40. [Google Scholar]
- Valente, L.M.P.; Rema, P.; Ferraro, V.; Pintado, M.; Sousa-Pinto, I.; Cunha, L.M.; Araújo, M. Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 2015, 446, 132–139. [Google Scholar] [CrossRef]
- Cappai, M.G.; Lunesu, M.G.A.; Accioni, F.; Liscia, M.; Pusceddu, M.; Burrai, L.; Nieddu, M.; Dimauro, C.; Boatto, G.; Pinna, W. Blood serum retinol levels in Asinara white donkeys reflect albinism adaptation to photoperiod at Mediterranean latitudes. Ecol. Evol. 2017, 7, 390–398. [Google Scholar] [CrossRef] [PubMed]
D. sanguinea | Mytilus spp. | A. virens | |
---|---|---|---|
Nutrients (% DM) | |||
Crude ash | 28.1 | 84.4 | 20.1 |
HCl insoluble ash | 1.70 | 3.80 | 3.20 |
Crude protein | 21.8 | 10.9 | 63.1 |
Crude fat | <1.00 | <1.00 | 7.62 |
Crude fibre | 5.45 | 2.40 | n.a. |
N-free extract | 43.7 | 1.30 | 9.18 |
Gross Energy (GE MJ × kg−1) | 12.1 | 2.93 | 18.8 |
Minerals (g × kg−1) | |||
Ca | 47.5 | 299 | 3.29 |
P | 2.41 | 2.09 | 7.82 |
Cl | 57.0 | 11.1 | 63.7 |
Na | 33.5 | 8.47 | 38.0 |
K | 42.7 | 2.33 | 15.3 |
Mg | 8.20 | 1.96 | 5.41 |
Fe | 1.66 | 0.04 | 0.54 |
Mn | 2.91 | 0.01 | 0.01 |
Zn | 0.16 | 0.02 | 0.11 |
Cu | 0.02 | 0.004 | 0.01 |
Amino acids (g∗100 g−1) protein | |||
THR | 4.34 | 3.58 | 3.43 |
LYS | 4.62 | 4.98 | 5.64 |
ARG | 5.92 | 5.64 | 5.90 |
CYS | 2.29 | 1.49 | 1.00 |
MET | 1.42 | 2.00 | 1.74 |
TRP | 0.70 | 0.94 | 0.70 |
Diets | |||||
---|---|---|---|---|---|
Diet C | Diet A | Diet M | Diet W | Diet AW | |
Items | Control | D. sanguinea | Mytilus spp. | A. virens | D. sanguinea + A. virens |
Ingredients | |||||
Complete diet | 100 | 45.0 | 45.0 | 45.0 | 40.0 |
Blue mussel | 0.00 | 0.00 | 10.0 | 0.00 | 0.00 |
King rag worm | 0.00 | 0.00 | 0.00 | 35.0 | 30.0 |
Red alga | 0.00 | 10.0 | 0.00 | 0.00 | 10.0 |
Fish meal | 0.00 | 25.0 | 25.0 | 0.00 | 0.00 |
Linoil | 0.00 | 15.0 | 15.0 | 15.0 | 15.0 |
Gluten | 0.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Nutrients | |||||
crude ash | 8.45 | 12.2 | 18.4 | 8.20 | 9.55 |
crude protein | 46.7 | 43.3 | 42.1 | 46.9 | 42.9 |
crude fat | 23.2 | 28.0 | 27.3 | 18.7 | 21.9 |
crude fibre | 4.16 | 2.54 | 3.17 | 3.53 | 3.80 |
N-free extract | 17.5 | 14.0 | 9.03 | 22.7 | 21.9 |
GE (MJ × kg−1) | 17.5 | 14.0 | 9.03 | 22.7 | 21.9 |
Amino acids | |||||
THR | 3.49 | 3.35 | 3.36 | 3.48 | 3.38 |
LYS | 6.14 | 5.41 | 5.51 | 5.73 | 5.38 |
ARG | 5.52 | 5.44 | 5.55 | 5.40 | 5.19 |
CYS | 1.00 | 1.01 | 0.99 | 0.98 | 0.94 |
MET | 1.86 | 1.68 | 1.74 | 1.95 | 1.81 |
TRP | 0.77 | 0.82 | 0.77 | 0.71 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thum, G.; Cappai, M.G.; Bochert, R.; Schubert, H.; Wolf, P. Nutrient Profile of Baltic Coastal Red Algae (Delesseria sanguinea), Baltic Blue Mussel (Mytilus spp.) and King Ragworm (Alitta virens) as Potential Feed Material in the Diet of Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792): A Preliminary Assessment. Agriculture 2022, 12, 196. https://doi.org/10.3390/agriculture12020196
Thum G, Cappai MG, Bochert R, Schubert H, Wolf P. Nutrient Profile of Baltic Coastal Red Algae (Delesseria sanguinea), Baltic Blue Mussel (Mytilus spp.) and King Ragworm (Alitta virens) as Potential Feed Material in the Diet of Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792): A Preliminary Assessment. Agriculture. 2022; 12(2):196. https://doi.org/10.3390/agriculture12020196
Chicago/Turabian StyleThum, Gregor, Maria Grazia Cappai, Ralf Bochert, Hendrik Schubert, and Petra Wolf. 2022. "Nutrient Profile of Baltic Coastal Red Algae (Delesseria sanguinea), Baltic Blue Mussel (Mytilus spp.) and King Ragworm (Alitta virens) as Potential Feed Material in the Diet of Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792): A Preliminary Assessment" Agriculture 12, no. 2: 196. https://doi.org/10.3390/agriculture12020196
APA StyleThum, G., Cappai, M. G., Bochert, R., Schubert, H., & Wolf, P. (2022). Nutrient Profile of Baltic Coastal Red Algae (Delesseria sanguinea), Baltic Blue Mussel (Mytilus spp.) and King Ragworm (Alitta virens) as Potential Feed Material in the Diet of Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792): A Preliminary Assessment. Agriculture, 12(2), 196. https://doi.org/10.3390/agriculture12020196