Chemical Composition of Lupin (Lupinus spp.) as Influenced by Variety and Tillage System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Agronomic Management
2.2. Weather Conditions
2.3. Chemical Composition Analysis
2.4. Statistical Analysis
3. Results
3.1. Organic Components, Ash and Macroelements
3.2. Amino Acids
4. Discussion
4.1. Organic Components, Ash and Macroelements
4.2. Amino Acids
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Abraham, E.M.; Ganopoulos, I.; Madesis, P.; Mavromatis, A.; Mylona, P.; Nianiou-Obeidat, I.; Parissi, Z.; Polidoros, A.; Tani, E.; Vlachostergios, D. The use of lupin as a source of protein in animal feeding: Genomic tools and breeding approaches. Int. J. Mol. Sci. 2019, 20, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smýkal, P.; Vernoud, V.; Blair, M.W.; Soukup, A.; Thompson, R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant. Sci. 2014, 5, 351. [Google Scholar] [PubMed] [Green Version]
- Grela, E.R.; Kiczorowska, B.; Samolińska, W.; Matras, J.; Kiczorowski, P.; Rybiński, W.; Hanczakowska, E. Chemical composition of leguminous seeds: Part I—Content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. Eur. Food. Res. Technol. 2017, 243, 1385–1395. [Google Scholar] [CrossRef]
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frias, J.; Martinez-Villaluenga, C.; Sussmann, D. The future of lupin as a protein crop in Europe. Front. Plant. Sci. 2015, 6, 705. [Google Scholar] [CrossRef] [PubMed]
- Erbas, M. The effects of different debittering methods on the production of lupin bean snack from bitter Lupinus albus L. seeds. J. Food Qual. 2010, 33, 742–757. [Google Scholar] [CrossRef]
- Kocira, A.; Staniak, M.; Tomaszewska, M.; Kornas, R.; Cymerman, J.; Panasiewicz, K.; Lipińska, H. Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review. Agriculture 2020, 10, 394. [Google Scholar] [CrossRef]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Szukała, J.; Ratajczak, K.; Sulewska, H. The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy 2020, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Szpunar-Krok, E.; Kuźniar, P.; Pawlak, R.; Migut, D. The Effect of Foliar Fertilization on the Resistance of Pea (Pisum sativum L.) Seeds to Mechanical Damage. Agronomy 2021, 11, 189. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Starkute, V.; Krungleviciute, V.; Cizeikiene, D.; Zadeike, D.; Juodeikiene, G.; Maknickiene, Z. Chemical composition and nutritional value of seeds of Lupinus luteus L., L. angustifolius L. and new hybrid lines of L. angustifolius L. Zemdirb.-Agric. 2016, 103, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, J.R.; Urgulaga, S.; Boddey, R.M.; Dakora, F.D.; Battarai, S.; Maskey, S.L.; et al. The contribution of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Huub Waterval, W.A.; Bierau, J.; Verdijk, L.B. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalborczyk, E. Biologiczne uwarunkowania produktywności roślin strączkowych [Biological conditions of legumes productivity]. Fragm. Agron. 1993, 4, 147–150. (In Polish) [Google Scholar]
- Beyer, H.; Schmalenberg, A.K.; Jansen, G.; Jürgens, H.U.; Uptmoor, R.; Broer, I.; Huckauf, J.; Michel, V.; Zenk, A.; Ordon, F. Evaluation of variability, heritability and environmental stability of seed quality and yield parameters of L. angustifolius. Field Crops Res. 2015, 174, 40–47. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Frías, J.; Vidal-Valverde, C. Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food Chem. 2006, 98, 291–299. [Google Scholar] [CrossRef]
- Woźniak, A.; Soroka, M.; Stępniowska, A.; Makarski, B. Chemical composition of pea (Pisum sativum L.) seeds depending on tillage systems. J. Elem. 2014, 19, 1143–1152. [Google Scholar]
- Woźniak, A.; Rachoń, L. Yellow lupine (Lupinus luteus L.) response to reduced tillage. Arch. Agron. Soil Sci. 2021. [Google Scholar] [CrossRef]
- Sabo, M.; Jug, D.; Jug, I. Effect of reduced tillage on quality traits of soybean [Glycine max (L.) Merr.]. Acta Agronomica Hungarica. 2007, 55, 83–88. [Google Scholar] [CrossRef]
- Górynowicz, B.; Święcicki, W.; Osiecka, A.; Kaczmarek, Z. Terminal inflorescence (ti) and restricted branching (rb) genes in lupins (L. albus L., L. angustifolius L., L. luteus L.) and field bean (Vicia faba L.) breeding in Poland. J. Agric. Sci. Technol. B 2014, 4, 712–721. [Google Scholar]
- Yilmaz, Ş.; Mehmet, A.; Mustafa, E. Comparison of chemical composition in Lupin (Lupinus spp.) species. Revista de Chimie 2015, 66, 324–327. [Google Scholar]
- Boschin, G.; D’Agostina, A.; Annicchiarico, P.; Arnoldi, A. Effect of genotype and environment on fatty acid composition of Lupinus albus L. seed. Food Chem. 2008, 108, 600–606. [Google Scholar] [CrossRef]
- Saastamoinen, M.; Eurola, M.; Hietaniemi, V. The chemical quality of some legumes, peas, fava beans, blue and white lupins and soybeans cultivated in Finland. J. Agric. Sci. Technol. 2013, 3, 92–100. [Google Scholar]
- Mierlita, D.; Simeanu, D.; Pop, I.M.; Criste, F.; Pop, C.; Simeanu, C.; Lup, F. Chemical Composition and Nutritional Evaluation of the Lupine Seeds (Lupinus albus L.) from Low-Alkaloid Varieties. Rev. Chim. 2018, 69, 453–458. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Update 2015; World Soil Resources Report; FAO: Rome, Italy, 2015. [Google Scholar]
- Walter, H. Strefy Roślinności a Klimat [Vegetation Zones and Climate]; PWRiL: Warsaw, Poland, 1976; pp. 26–31. (In Polish) [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.Horwitz, W., Latimer, G.W., Jr., Eds.; Revision 4; AOAC International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- SAS Institute. SAS/STAT User’s Guide, 7th ed.; Carolina Inst.: Cary, NC, USA, 1999. [Google Scholar]
- Bhardwaj, H.L.; Hamama, A.A.; Santen, E. White lupin performance and nutritional value as affected by planting date and row spacing. Agron. J. 2004, 96, 580–583. [Google Scholar] [CrossRef]
- Sujak, A.; Kotlarz, A.; Strobel, W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006, 98, 711–719. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Harzic, N.; Carroni, A.M. Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Res. 2010, 119, 114–124. [Google Scholar] [CrossRef]
- Porres, J.M.; Aranda, P.; López-Jurado, M.; Urbano, G. Nitrogen fractions and mineral content in different lupin species (Lupinus albus, Lupinus angustifolius, and Lupinus luteus). Changes induced by the r-galactoside extraction process. J. Agric. Food Chem. 2007, 55, 7445–7452. [Google Scholar] [CrossRef]
- Saez, P.; Borquez, A.; Dantagnan, P.; Hernández, A. Effects of dehulling, steam-cooking and microwave-irradiation on digestive value of white lupin (Lupinus albus) seed meal for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Arch. Anim. Nutr. 2015, 69, 143–157. [Google Scholar] [CrossRef]
- Struti, D.I.; Mierlita, D.; Simeanu, D.; Pop, I.M.; Socol, C.T.; Papuc, T.; Macri, A.M. The effect of dehulling lupine seeds (Lupinus albus L.) from low-alkaloid varieties on the chemical composition and fatty acids content. Rev. Chim. 2020, 71, 59–70. [Google Scholar] [CrossRef]
- Wang, N.; Hatcher, D.W.; Warkentin, T.D.; Toews, R. Effect on cultivar and environment on physicochemical and cooking characteristic of field pea (Pisum sativum). Food Chem. 2010, 118, 109–115. [Google Scholar] [CrossRef]
- Amarakoon, D.; Thavarajah, D.; Mcphee, K.; Thavarajah, P. Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition. J. Food Compos Anal. 2012, 27, 8–13. [Google Scholar] [CrossRef]
- Wasilewko, J.; Buraczewska, L. Chemical composition including content of amino acids, minerals and alkaloids in seeds of three lupin species cultivated in Poland. J. Anim. Feed. Sci. 1999, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kotlarz, A.; Podleśny, J.; Strobel, W. Zawartość wybranych aminokwasów egzogennych w białku nasion łubinu wąskolistnego w zależności od typu odmiany i terminu siewu. [Amino-acid composition of proteins in narrow-leaf lupine in relations to variety type and sowing date]. Acta Agrophysica 2009, 14, 115–123. (In Polish) [Google Scholar]
- Tomczak, A.; Zielinska-Dawidziak, M.; Piasecka-Kwiatkowska, D.; Lampart-Szczapa, E. Blue lupine seeds protein content and amino acids composition. Plant Soil Environ. 2018, 64, 147–155. [Google Scholar]
Specification | df | CP | CF | A | CL | NFE | N | P | Mg | Na | K | Ca |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NL1 | ||||||||||||
Variety (A) | 1 | ns2 | ns | ns | ns | ns | ns | ns | ns | ns | * | ns |
Tillage system (B) | 2 | ** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
A × B | 2 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
YL | ||||||||||||
Variety (A) | 1 | ns | ** | ns | ** | ns | ns | ns | * | ns | ns | ns |
Tillage system (B) | 2 | ns | * | ns | ns | ns | ns | ns | ns | ns | ns | ns |
A × B | 2 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
WL | ||||||||||||
Variety (A) | 1 | ns | ns | ns | * | ns | ns | ** | ns | ns | ns | ns |
Tillage system (B) | 2 | * | ns | ns | ns | ns | ns | ** | ns | ns | ns | ns |
A × B | 2 | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | ns |
Factor | CP | CF | A | CL | NFE | |
---|---|---|---|---|---|---|
NL1 | ||||||
‘Dalbor’ | CT | 313 | 168 | 43 | 67 | 409 |
RT | 317 | 162 | 44 | 65 | 412 | |
NT | 340 | 163 | 39 | 64 | 394 | |
Mean | 323 | 164 | 42 | 65 | 405 | |
‘Regent’ | CT | 325 | 167 | 39 | 69 | 400 |
RT | 316 | 188 | 42 | 64 | 390 | |
NT | 340 | 157 | 38 | 67 | 398 | |
Mean | 327 | 171 | 39.7 | 66.7 | 396 | |
LSD value A/B/A × B | ns/15.1 **/ns | ns/ns/ns | ns/ns/ns | ns/ns/ns | ns/ns/ns | |
YL | ||||||
‘Lord’ | CT | 443 | 179 | 48 | 44 | 286 |
RT | 451 | 167 | 49 | 46 | 287 | |
NT | 442 | 184 | 48 | 43 | 283 | |
Mean | 445 | 177 | 48 | 44 | 285 | |
‘Perkoz’ | CT | 413 | 197 | 49 | 57 | 284 |
RT | 410 | 184 | 48 | 60 | 298 | |
NT | 409 | 185 | 49 | 59 | 298 | |
Mean | 411 | 189 | 49 | 59 | 293 | |
LSD value A/B/A × B | ns/ns/ns | 9.9 **/7.7 */ns | ns/ns/ns | 5.5 **/ns/ns | ns/ns/ns | |
WL | ||||||
‘Butan’ | CT | 389 | 154 | 45 | 107 | 305 |
RT | 386 | 142 | 46 | 107 | 319 | |
NT | 386 | 143 | 45 | 100 | 326 | |
Mean | 387 | 146 | 45 | 105 | 317 | |
‘Boros’ | CT | 391 | 143 | 43 | 114 | 309 |
RT | 392 | 155 | 45 | 110 | 298 | |
NT | 375 | 149 | 44 | 117 | 315 | |
Mean | 386 | 149 | 44 | 117 | 307 | |
LSD value A/B/A × B | ns/9.6 */ns | ns/ns/ns | ns/ns/ns | 5.3 */ns/ns | ns/ns/ns |
Factor | N | P | Mg | Na | K | Ca | |
---|---|---|---|---|---|---|---|
NL | |||||||
‘Dalbor’ | CT | 48.4 | 4.4 | 1.69 | 0.13 | 6.47 | 1.51 |
RT | 48.5 | 4.2 | 1.65 | 0.10 | 6.26 | 1.50 | |
NT | 51.5 | 4.2 | 1.80 | 0.13 | 6.05 | 1.41 | |
Mean | 49.5 | 4.3 | 1.71 | 0.12 | 6.26 | 1.47 | |
‘Regent’ | CT | 48.2 | 4.1 | 1.86 | 0.10 | 10.66 | 1.36 |
RT | 48.0 | 4.6 | 1.82 | 0.10 | 11.11 | 1.56 | |
NT | 51.7 | 4.0 | 1.69 | 0.11 | 10.02 | 1.41 | |
Mean | 49.3 | 4.2 | 1.79 | 0.10 | 10.60 | 1.44 | |
LSD value A/B/A × B | ns/ns/ns | ns/ns/ns | ns/ns/ns | ns/ns/ns | 4.09 */ns/ns | ns/ns/ns | |
YL | |||||||
‘Lord’ | CT | 62.3 | 6.2 | 3.1 | 0.10 | 11.69 | 1.16 |
RT | 64.9 | 6.6 | 3.1 | 0.20 | 11.87 | 1.26 | |
NT | 63.2 | 6.2 | 2.9 | 0.10 | 11.73 | 1.20 | |
Mean | 63.5 | 6.3 | 3.0 | 0.13 | 11.76 | 1.21 | |
‘Perkoz’ | CT | 59.7 | 6.1 | 2.5 | 0.10 | 11.85 | 1.46 |
RT | 60.3 | 6.0 | 2.8 | 0.10 | 12.15 | 1.36 | |
NT | 57.9 | 6.4 | 2.5 | 0.10 | 11.70 | 1.66 | |
Mean | 59.3 | 6.2 | 2.6 | 0.10 | 11.90 | 1.49 | |
LSD value A/B/A × B | ns/ns/ns | ns/ns/ns | 0.39 */ns/ns | ns/ns/ns | ns/ns/ns | ns/ns/ns | |
WL | |||||||
‘Butan’ | CT | 56.8 | 4.8 | 1.8 | 0.10 | 12.10 | 0.15 |
RT | 58.0 | 5.0 | 1.8 | 0.10 | 12.00 | 0.15 | |
NT | 56.7 | 4.8 | 1.8 | 0.10 | 12.00 | 0.15 | |
Mean | 57.2 | 4.9 | 1.8 | 0.10 | 12.03 | 0.15 | |
‘Boros’ | CT | 55.4 | 4.3 | 1.8 | 0.10 | 11.80 | 0.15 |
RT | 56.3 | 4.9 | 1.8 | 0.10 | 11.90 | 0.15 | |
NT | 55.8 | 4.7 | 1.9 | 0.10 | 12.10 | 0.15 | |
Mean | 55.8 | 4.6 | 1.8 | 0.10 | 11.93 | 0.15 | |
LSD value A/B/A × B | ns/ns/ns | 0.16 **/0.19 **/0.17 * | ns/ns/ns | ns/ns/ns | ns/ns/ns | ns/ns/ns |
Factor | Lys | Cys | Thr | Val | Met | Tyr | Leu | Phe | Ser | Pro | Gly | Ala | Iso | His | Arg | Asp | Glu | ∑NEAA | ∑EAA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Butan’ | CT | 4.61 | 1.00 | 3.21 | 3.56 | 0.55 | 3.85 | 6.41 | 3.46 | 4.42 | 3.06 | 3.41 | 2.84 | 3.72 | 2.23 | 10.3 | 9.10 | 16.5 | 49.6 | 32.6 |
RT | 5.18 | 1.02 | 3.69 | 0.98 | 0.58 | 4.29 | 7.15 | 3.91 | 4.87 | 3.34 | 3.81 | 3.19 | 4.18 | 2.46 | 11.3 | 10.2 | 18.3 | 55.0 | 33.4 | |
NT | 5.23 | 1.15 | 3.76 | 4.05 | 0.59 | 4.23 | 7.24 | 3.90 | 4.79 | 3.37 | 3.90 | 3.28 | 4.19 | 2.58 | 11.3 | 10.4 | 18.5 | 55.5 | 36.9 | |
Mean | 5.01 | 1.06 | 3.55 | 2.86 | 0.57 | 4.12 | 6.93 | 3.76 | 4.69 | 3.26 | 3.71 | 3.10 | 4.03 | 2.42 | 11.0 | 9.90 | 17.8 | 53.4 | 34.3 | |
‘Boros’ | CT | 5.26 | 0.99 | 3.68 | 4.03 | 0.57 | 4.33 | 7.12 | 3.93 | 4.89 | 3.40 | 3.88 | 3.25 | 4.20 | 2.48 | 12.4 | 10.2 | 18.2 | 56.2 | 36.6 |
RT | 5.25 | 1.01 | 3.70 | 4.03 | 0.60 | 4.35 | 7.09 | 3.93 | 4.84 | 3.42 | 3.84 | 3.22 | 4.22 | 2.42 | 12.3 | 10.3 | 18.1 | 56.0 | 36.6 | |
NT | 5.32 | 1.02 | 3.77 | 4.10 | 0.61 | 4.42 | 7.23 | 4.01 | 4.93 | 3.46 | 3.90 | 3.32 | 4.30 | 2.40 | 12.0 | 10.4 | 18.3 | 56.3 | 37.2 | |
Mean | 5.27 | 1.01 | 3.72 | 4.05 | 0.59 | 4.37 | 7.15 | 3.96 | 4.89 | 3.43 | 3.87 | 3.26 | 4.24 | 2.43 | 12.2 | 10.3 | 18.2 | 56.2 | 36.8 | |
LSD value | ||||||||||||||||||||
A | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 1.14 * | ns | ns | 1.03 * | 1.11 * | |
B | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.84 * | 0.95 * | |
A × B | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.64 * | 0.48 * |
Factor | Lys | Cys | Thr | Val | Met | Tyr | Leu | Phe | Ser | Pro | Gly | Ala | Iso | His | Arg | Asp | Glu | ∑NEAA | ∑EAA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Lord’ | CT | 5.33 | 1.48 | 3.10 | 3.44 | 0.54 | 2.70 | 7.10 | 3.78 | 4.63 | 3.03 | 3.63 | 3.06 | 3.65 | 2.81 | 12.5 | 9.34 | 19.8 | 56.0 | 33.9 |
RT | 5.45 | 1.48 | 3.16 | 3.52 | 0.55 | 2.82 | 7.22 | 3.90 | 4.70 | 3.07 | 3.72 | 3.13 | 3.76 | 2.89 | 13.0 | 9.59 | 20.1 | 57.3 | 34.7 | |
NT | 5.52 | 1.44 | 3.24 | 3.59 | 0.56 | 2.87 | 7.31 | 3.94 | 4.74 | 3.17 | 3.78 | 3.18 | 3.84 | 2.91 | 13.1 | 9.70 | 20.2 | 57.9 | 35.2 | |
Mean | 5.43 | 1.47 | 3.17 | 3.52 | 0.55 | 2.80 | 7.21 | 3.87 | 4.69 | 3.09 | 3.71 | 3.12 | 3.75 | 2.87 | 12.9 | 9.54 | 20.0 | 57.1 | 34.6 | |
‘Perkoz’ | CT | 5.74 | 1.60 | 3.42 | 3.68 | 0.56 | 2.92 | 7.59 | 4.05 | 4.69 | 3.12 | 3.88 | 3.29 | 3.92 | 2.95 | 12.4 | 9.88 | 20.9 | 58.2 | 36.4 |
RT | 5.84 | 1.53 | 3.48 | 3.77 | 0.56 | 2.97 | 7.75 | 4.15 | 4.92 | 3.20 | 3.97 | 3.33 | 4.00 | 3.01 | 12.4 | 10.1 | 21.1 | 59.0 | 37.1 | |
NT | 5.69 | 1.54 | 3.35 | 3.67 | 0.56 | 2.89 | 7.54 | 4.05 | 5.00 | 3.12 | 3.90 | 3.30 | 3.90 | 2.95 | 12.2 | 9.88 | 20.9 | 58.3 | 36.1 | |
Mean | 5.76 | 1.56 | 3.42 | 3.71 | 0.56 | 2.93 | 7.63 | 4.08 | 4.87 | 3.15 | 3.91 | 3.31 | 3.94 | 2.97 | 12.3 | 9.95 | 20.9 | 58.5 | 36.5 | |
LSD value | ||||||||||||||||||||
A | 0.23 * | ns | 0.20 ** | 0.18 * | ns | ns | 0.40 ** | 0.13 * | ns | ns | 0.16 * | 0.14 * | 0.18 * | ns | 0.50 * | 0.37 * | 0.65 * | 0.31 ** | 1.21 ** | |
B | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.20 * | 0.92 * | |
A × B | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.16 * | 0.75 * |
Factor | Lys | Cys | Thr | Val | Met | Tyr | Leu | Phe | Ser | Pro | Gly | Ala | Iso | His | Arg | Asp | Glu | ∑NEAA | ∑EAA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Dalbor’ | CT | 5.52 | 0.95 | 3.76 | 4.27 | 0.54 | 3.72 | 7.32 | 4.26 | 5.05 | 3.59 | 4.40 | 3.59 | 4.39 | 3.11 | 12.2 | 10.6 | 20.1 | 59.5 | 37.8 |
RT | 5.51 | 0.94 | 3.65 | 4.17 | 0.55 | 3.58 | 7.16 | 4.21 | 5.02 | 3.55 | 4.30 | 3.53 | 4.30 | 3.06 | 12.1 | 10.1 | 20.0 | 58.6 | 37.1 | |
NT | 5.43 | 0.91 | 3.55 | 4.03 | 0.50 | 3.53 | 6.94 | 4.02 | 4.91 | 3.47 | 4.13 | 3.38 | 4.15 | 2.91 | 11.8 | 10.1 | 19.4 | 57.2 | 36.0 | |
Mean | 5.49 | 0.93 | 3.65 | 4.16 | 0.53 | 3.61 | 7.14 | 4.17 | 5.00 | 3.54 | 4.28 | 3.50 | 4.28 | 3.03 | 12.0 | 10.3 | 19.8 | 58.4 | 37.0 | |
‘Regent’ | CT | 5.53 | 1.00 | 3.61 | 4.13 | 0.58 | 3.47 | 6.99 | 4.06 | 4.72 | 3.51 | 4.26 | 3.59 | 4.07 | 3.06 | 11.8 | 9.78 | 19.0 | 56.7 | 36.5 |
RT | 5.45 | 0.93 | 3.67 | 4.16 | 0.52 | 3.50 | 6.96 | 4.03 | 4.72 | 3.47 | 4.24 | 3.60 | 4.05 | 3.05 | 11.8 | 9.52 | 18.7 | 56.0 | 36.3 | |
NT | 5.60 | 0.98 | 3.49 | 4.05 | 0.60 | 3.35 | 6.94 | 4.01 | 4.68 | 3.49 | 4.20 | 3.56 | 4.02 | 3.02 | 12.0 | 9.64 | 19.0 | 56.6 | 36.1 | |
Mean | 5.53 | 0.97 | 3.59 | 4.11 | 0.57 | 3.44 | 6.96 | 4.04 | 4.71 | 3.49 | 4.23 | 3.58 | 4.05 | 3.04 | 11.9 | 9.65 | 18.9 | 56.4 | 36.3 | |
LSD value | ||||||||||||||||||||
A | ns | ns | ns | ns | ns | ns | 0.14 * | 0.12 ** | 0.22 ** | ns | ns | ns | 0.14 ** | ns | ns | 0.49 * | 0.41 ** | ns | ns | |
B | ns | ns | ns | ns | ns | ns | ns | 0.9 * | ns | ns | ns | ns | 0.11 * | ns | ns | ns | ns | ns | ns | |
A × B | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.34 * | ns | 0.46 * | ns | 0.11 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panasiewicz, K. Chemical Composition of Lupin (Lupinus spp.) as Influenced by Variety and Tillage System. Agriculture 2022, 12, 263. https://doi.org/10.3390/agriculture12020263
Panasiewicz K. Chemical Composition of Lupin (Lupinus spp.) as Influenced by Variety and Tillage System. Agriculture. 2022; 12(2):263. https://doi.org/10.3390/agriculture12020263
Chicago/Turabian StylePanasiewicz, Katarzyna. 2022. "Chemical Composition of Lupin (Lupinus spp.) as Influenced by Variety and Tillage System" Agriculture 12, no. 2: 263. https://doi.org/10.3390/agriculture12020263
APA StylePanasiewicz, K. (2022). Chemical Composition of Lupin (Lupinus spp.) as Influenced by Variety and Tillage System. Agriculture, 12(2), 263. https://doi.org/10.3390/agriculture12020263