Optimizing Food and Feed in Maize–Livestock Systems in Northern Ghana: The Effect of Maize Leaf Stripping on Grain Yield and Leaf Fodder Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Agronomic Practice
2.4. Data Collection
2.4.1. Weather Data
2.4.2. Stripped Leaf Biomass and Chemical Analysis
2.4.3. Cob Dimension, Grain, and Stover Yields
2.5. Statistical Analysis
3. Results
3.1. Stripped Leaf Biomass and Chemical Composition
3.2. Cob Dimension
3.3. Grain and Stover Yields
3.4. Correlation among Yield, Cob Dimension and Amount of Rainfall Received during Maize Growth
4. Discussion
4.1. Stripped Leaf Biomass and Chemical Composition
4.2. Cob Dimension
4.3. Grain and Stover Yields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, J.M.; Pearson, R.A.; Hiernaux, P.H. Crop–livestock interactions in the West African drylands. Agron. J. 2004, 96, 469–483. [Google Scholar] [CrossRef]
- Lenné, J.M.; Thomas, D. Integrating Crop—Livestock Research and Development in Sub-Saharan Africa: Option, Imperative or Impossible? Outlook Agric. 2006, 35, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Badu-Apraku, B.; Oyekunle, M.; Menkir, A.; Obeng-Antwi, K.; Yallou, C.G.; Usman, I.S.; Alidu, H. Comparative performance of early-maturing maize cultivars developed in three eras under drought stress and well-watered environments in West Africa. Crop Sci. 2013, 53, 1298–1311. [Google Scholar] [CrossRef]
- MacCarthy, D.S.; Adiku, S.G.; Freduah, B.S.; Gbefo, F. Using CERES-Maize and ENSO as decision support tools to evaluate climate-sensitive farm management practices for maize production in the northern regions of Ghana. Front. Plant Sci. 2017, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Ragasa, C.; Dankyi, A.; Acheampong, P.; Wiredu, A.N.; Chapoto, A.; Asamoah, M.; Tripp, R. Patterns of Adoption of Improved Rice Technologies in Ghana; Working Paper; International Food Policy Research Institute: Washington, DC, USA, 2013; Volume 35, pp. 6–8. [Google Scholar]
- Konlan, S.P.; Ayantunde, A.A.; Addah, W.; Dei, H.K.; Avornyo, F.K. Evaluation of feed resource availability for ruminant production in northern Ghana. Int. J. Livest. Res. 2016, 6, 39–59. [Google Scholar] [CrossRef]
- Jahnke, H.E. Livestock Production Systems and Livestock Development in Tropical Africa; Kiefer Wissenschafts Verlag and Vauk: Kiel, Germany, 1982; pp. 19–56. [Google Scholar]
- Sallah, P.Y.K.; Obeng-Anti, K.; Asiedu, E.A.; Ewoll, M.B.; Dzah, B.D. Recent advances in the development and promotion of quality protein maize in Ghana. In Maize Revolution in West and Central Africa; Badu-Apraku, B., Ed.; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2003; pp. 410–424. [Google Scholar]
- MoFA (Ministry of Food and Agriculture). Agriculture in Ghana: Facts and Figures (2016); Statistics, Research and Information Directorate (SIRD): Accra, Ghana, 2017.
- CountrySTAT. Available online: http://countrystat.org/home.aspx?c=GHA (accessed on 4 December 2021).
- Amikuzino, J.; Donkoh, S.A. Climate variability and yields of major staple food crops in Northern Ghana. Afr. Crop Sci. J. 2012, 20, 349–360. [Google Scholar]
- Bawayelaazaa Nyuor, A.; Donkor, E.; Aidoo, R.; Saaka, B.S.; Naab, J.B.; Nutsugah, S.K.; Bayala, J.; Zougmoré, R. Economic impacts of climate change on cereal production: Implications for sustainable agriculture in Northern Ghana. Sustainability 2016, 8, 724. [Google Scholar] [CrossRef] [Green Version]
- Amankwah, K.; Klerkx, L.; Oosting, S.J.; Sakyi-Dawson, O.; Van der Zijpp, A.J.; Millar, D. Diagnosing constraints to market participation of small ruminant producers in northern Ghana: An innovation systems analysis. NJAS-Wagen. J. Life Sci. 2012, 60, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Duku, S.; van der Zijpp, A.J.; Howard, P. Small ruminant feed systems: Perceptions and practices in the transitional zone of Ghana. J. Ethnobiol. Ethnomed. 2010, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- De Groote, H.; Dema, G.; Sonda, G.B.; Gitonga, Z.M. Maize for food and feed in East Africa—The farmers’ perspective. Field Crops Res. 2013, 153, 22–36. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; van Wijk, M.T.; Corbeels, M.; Rufino, M.C.; Giller, K.E. Maize crop residue uses and trade-offs on smallholder crop-livestock farms in Zimbabwe: Economic implications of intensification. Agric. Ecosyst. Environ. 2015, 214, 31–45. [Google Scholar] [CrossRef]
- Fasae, O.A.; Adu, F.I.; Aina, A.B.; Elemo, K.A. Effects of defoliation time of maize on leaf yield, quality and storage of maize leafs as dry season forage for ruminant production. Rev. Bras. Ciênc. Agrár. 2009, 4, 353–357. [Google Scholar]
- Komarek, A.M.; Abdul Rahman, N.; Bandyopadhyay, A.; Kizito, F.; Koo, J.; Addah, W. Trade-offs and synergies associated with maize leaf stripping within crop-livestock systems in northern Ghana. Agric. Syst. 2021, 193, 103206. [Google Scholar] [CrossRef]
- Thomison, P.R.; Nafziger, E.D. Defoliation Affects Grain Yield, Protein, and Oil of TopCross High-Oil Corn. Crop Manag. 2003, 2, 1–9. [Google Scholar] [CrossRef]
- Barimavandi, A.R.; Sedaghathoor, S.; Ansari, R. Effect of different defoliation treatments on yield and yield components in maize (Zea mays L.) cultivar of S. C704. Aust. J. Crop Sci. 2010, 4, 9–15. [Google Scholar]
- Heidari, H. Effect of defoliation intensity on maize yield, yield components and seed germination. Life Sci. J. 2012, 9, 1594–1598. [Google Scholar]
- Subedi, K.D. Effect of leaf stripping, de-tasselling and topping of maize on the yield of maize and relay intercropped finger millet. Exp. Agric. 1996, 32, 57–61. [Google Scholar] [CrossRef]
- Yang, Z.; Midmore, D.J. Experimental assessment of the impact of defoliation on growth and production of water-stressed maize and cotton plants. Exp. Agric. 2004, 40, 189–199. [Google Scholar] [CrossRef]
- Mashingaidze, A.B.; Van der Werf, W.; Lotz, L.A.; Mudita, I.; Nyakanda, C.; Kropff, M.J. Leaf stripping and detasselling increase ear growth rate and maize grain yield. In Proceedings of the 2010 JKUAT Scientific Technological and Industrialization Conference, Nairobi, Kenya, 17–19 November 2010; Jomo Kenyatta University of Agriculture and Technology: Nairobi, Kenya, 2017; pp. 820–834. [Google Scholar]
- Tetteh, F.M.; Larbi, A.; Nketia, K.A.; Senaya, J.N.; Hoeschle-Zeledon, I.; Abdul Rahman, N. Suitability of Soils for Cereal Cropping in Northern Ghana. Evaluation and Recommendations; International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 2016. [Google Scholar]
- Borrás, L.; Maddonni, G.A.; Otegui, M.E. Leaf senescence in maize hybrids: Plant population, row spacing and kernel set effects. Field Crops Res. 2003, 82, 13–26. [Google Scholar] [CrossRef]
- Iqbal, N.; Masood, A.; Khan, N.A. Analyzing the significance of defoliation in growth, photosynthetic compensation and source-sink relations. Photosynthetica 2012, 50, 161–170. [Google Scholar] [CrossRef]
- Ghana Meteorological Agency. Available online: https://www.meteo.gov.gh/gmet/ (accessed on 28 September 2021).
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1998, 28, 7–55. [Google Scholar]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 92, 217–222. [Google Scholar] [CrossRef] [Green Version]
- SAS (Statistical Analytical Software) Institute. Base SAS 9.4 Procedures Guide; SAS Institute Incorporation: Cary, NC, USA, 2012. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Armstrong, R.A. Should Pearson’s correlation coefficient be avoided? Ophthal. Physiol. Opt. 2019, 39, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Abdul Rahman, N.; Ansah, T.; Osuman, A.S.; Stephen, F.; Amppiah, A. Improved Arachis hypogeae variety effect on grain yield, fodder quality and livestock growth. Agric. Nat. Resour. 2019, 53, 244–250. [Google Scholar]
- Defoer, T.; Budelman, A.; Toulmin, C.; Carter, S.E. Managing Soil Fertility in the Tropics. Building Common Knowledge: Participatory Learning and Action Research; Royal Tropical Institute, KIT Press: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Gupta, B.K.; Bhardwaj, B.L.; Ahuja, A.K. Nutritional Value of Forage Crops of Punjab; Punjab Agricultural University Publication: Ludhiana, India, 2004. [Google Scholar]
- NRC (National Research Council). NRC Nutrient Requirements of Small Ruminants; NRC: Washington, DC, USA, 2006. [Google Scholar]
- Garba, L.L.; Namo, O.A.T. Productivity of Maize hybrid maturity classes in Savanna agroecologies. Afr. Crop Sci. J. 2013, 21, 323–335. [Google Scholar]
- Tahiru, F.; Fosu, M.; Gaiser, T.; Becker, M.; Inusah, B.I.; Mutari, A.; Buah, S.S.; Atakora, W.K.; Mohammed, A.M. Fertilizer and Genotype Effects on Maize Production on Two Soils in the Northern Region of Ghana. Sustain. Agric. Res. 2015, 4, 76–87. [Google Scholar] [CrossRef] [Green Version]
- MacCarthy, D.S.; Adiku, S.G.; Freduah, B.S.; Kamara, A.Y.; Narh, S.; Abdulai, A.L. Evaluating maize yield variability and gaps in two agroecologies in northern Ghana using a crop simulation model. S. Afr. J. Plant Soil. 2018, 35, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.X.; Midmore, D.J.; Radford, B.J.; Yule, D.F. Effect of timing of defoliation on wheat (Triticum aestivum) in central Queensland: 1. Crop response and yield. Field Crops Res. 2004, 88, 211–226. [Google Scholar] [CrossRef]
Stripped Leaf Biomass (kg/ha) | ||||
---|---|---|---|---|
Northern | Upper East | Upper West | Mean | |
Maize maturity type | ||||
Abontem (Extra-early) | 731.3 | 910 | 296.4 | 593.1 |
Omankwa (Early) | 820.4 | 990.2 | 408.2 | 689.5 |
Obatanpa (Medium) | 1049.2 | 1057.3 | 544.0 | 848.7 |
Standard error of mean | 62.38 | 96.66 | 25.82 | 36.51 |
Extra-early vs. (Early + Medium) | 0.2552 | 0.1796 | 0.0001 | 0.0461 |
Early vs. Medium | 0.2676 | 0.4668 | 0.0026 | 0.1167 |
Leaf stripping | ||||
Control (No leaf stripping) | ||||
Leaf stripping @ 50% Tasseling | 752.1 | 944.7 | 416.0 | 656.2 |
Leaf stripping @ 50% Silking | 981.8 | 1027.0 | 416.4 | 764.7 |
Standard error of mean | 126.06 | 73.57 | 9.25 | 47.34 |
Tasseling vs. Silking | 0.175 | 0.2879 | 0.9905 | 0.1897 |
Grain Yield (kg/ha) | Stover Yield (kg/ha) | |||||||
---|---|---|---|---|---|---|---|---|
Northern | Upper East | Upper West | Mean | Northern | Upper East | Upper West | Mean | |
Maize maturity-type | ||||||||
Abontem (Extra-early) | 2426.1 | 1956.9 | 2296.7 | 2221.4 | 3456.6 | 2732.3 | 2483.3 | 2881.8 |
Omankwa (Early) | 2655.6 | 1779.4 | 2739.4 | 2412.8 | 3497.7 | 2431.7 | 3170.0 | 3061.6 |
Obatanpa (Medium) | 2463.3 | 1181.0 | 2589.4 | 2137.0 | 5215.1 | 3246.7 | 5161.1 | 4634.4 |
Standard error of mean | 161.02 | 262.97 | 150.47 | 143.79 | 99.96 | 359.31 | 155.59 | 113.20 |
Extra-early vs. (Early + Medium) | 0.4612 | 0.0039 | 0.0967 | 0.6720 | 0.0125 | 0.7018 | 0.0001 | 0.0001 |
Early vs. Medium | 0.3583 | 0.0019 | 0.5525 | 0.0597 | 0.0001 | 0.0149 | 0.0001 | 0.0001 |
Leaf stripping | ||||||||
Control (No leaf stripping) | 2708.9 | 1591.9 | 2538.9 | 2314.7 | 4360.0 | 2907.9 | 3816.1 | 3751.2 |
Leaf stripping @ 50% Tasseling | 2416.1 | 1732.5 | 2438.9 | 2215.6 | 4034.1 | 2949.1 | 3477.8 | 3508.2 |
Leaf stripping @ 50% Silking | 2420.0 | 1592.9 | 2647.8 | 2240.8 | 3775.2 | 2553.7 | 3520.6 | 3318.4 |
Standard error of mean | 137.45 | 149.35 | 152.84 | 61.76 | 237.04 | 192.69 | 169.26 | 88.45 |
Control vs. leaf stripping | 0.1117 | 0.6509 | 0.9838 | 0.4935 | 0.1955 | 0.5753 | 0.3785 | 0.1215 |
Tasseling vs. Silking | 0.9851 | 0.4409 | 0.4089 | 0.8630 | 0.5210 | 0.2239 | 0.9177 | 0.4503 |
Cob Length (cm) | Cob Width (cm) | |||||||
---|---|---|---|---|---|---|---|---|
Northern | Upper East | Upper West | Mean | Northern | Upper East | Upper West | Mean | |
Maize maturity type | ||||||||
Abontem (Extra-early) | 14.4 | 11.9 | 12.7 | 13.2 | 7.1 | 3.6 | 3.9 | 5.0 |
Omankwa (Early) | 14.9 | 11.3 | 12.9 | 13.2 | 7.0 | 3.8 | 4.1 | 5.1 |
Obatanpa (Medium) | 15.5 | 11.3 | 13.6 | 13.7 | 7.3 | 3.7 | 4.6 | 5.4 |
Standard error of mean | 0.42 | 0.35 | 0.30 | 0.12 | 0.30 | 0.09 | 0.07 | 0.10 |
Extra-early vs. (Early + Medium) | 0.5672 | 0.1640 | 0.1950 | 0.6116 | 0.9547 | 0.2130 | 0.0001 | 0.5859 |
Early vs. Medium | 0.6804 | 0.9397 | 0.1744 | 0.3713 | 0.7865 | 0.5670 | 0.0001 | 0.5864 |
Leaf stripping | ||||||||
Control (No leaf stripping) | 14.4 | 11.4 | 13.5 | 13.3 | 6.5 | 3.7 | 4.2 | 4.9 |
Leaf stripping @ 50% Tasseling | 15.5 | 11.6 | 12.5 | 13.3 | 7.6 | 3.8 | 4.1 | 5.3 |
Leaf stripping @ 50% Silking | 15.0 | 11.5 | 13.2 | 13.4 | 7.3 | 3.7 | 4.2 | 5.2 |
Standard error of mean | 0.28 | 0.21 | 0.28 | 0.12 | 0.31 | 0.06 | 0.04 | 0.12 |
Control vs. leaf stripping | 0.5259 | 0.8244 | 0.1376 | 0.8351 | 0.3547 | 0.9324 | 0.2510 | 0.4821 |
Tasseling vs. Silking | 0.7927 | 0.8994 | 0.1808 | 0.8783 | 0.8357 | 0.5182 | 0.7159 | 0.8666 |
LY 1 | GY 2 | SY 3 | CL 4 | CW 5 | ARV 6 | ARR 7 | |
---|---|---|---|---|---|---|---|
LY | 1 | ||||||
GY | −0.25 ns | 1 | |||||
SY | 0.28 ns | 0.45 ** | 1 | ||||
CL | 0.03 ns | 0.54 ** | 0.45 ** | 1 | |||
CW | 0.25 ns | 0.41 ** | 0.44 ** | 0.88 ** | 1 | ||
ARV | 0.52 ** | −0.75 ** | −0.25 ns | −0.42 ** | −0.35 * | 1 | |
ARR | −0.41 ** | 0.76 ** | 0.42 ** | 0.54 ** | 0.44 ** | −0.82 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Rahman, N.; Larbi, A.; Addah, W.; Sulleyman, K.W.; Adda, J.K.; Kizito, F.; Hoeschle-Zeledon, I. Optimizing Food and Feed in Maize–Livestock Systems in Northern Ghana: The Effect of Maize Leaf Stripping on Grain Yield and Leaf Fodder Quality. Agriculture 2022, 12, 275. https://doi.org/10.3390/agriculture12020275
Abdul Rahman N, Larbi A, Addah W, Sulleyman KW, Adda JK, Kizito F, Hoeschle-Zeledon I. Optimizing Food and Feed in Maize–Livestock Systems in Northern Ghana: The Effect of Maize Leaf Stripping on Grain Yield and Leaf Fodder Quality. Agriculture. 2022; 12(2):275. https://doi.org/10.3390/agriculture12020275
Chicago/Turabian StyleAbdul Rahman, Nurudeen, Asamoah Larbi, Weseh Addah, Kassim Wachiebine Sulleyman, Joshua Kubasari Adda, Fred Kizito, and Irmgard Hoeschle-Zeledon. 2022. "Optimizing Food and Feed in Maize–Livestock Systems in Northern Ghana: The Effect of Maize Leaf Stripping on Grain Yield and Leaf Fodder Quality" Agriculture 12, no. 2: 275. https://doi.org/10.3390/agriculture12020275
APA StyleAbdul Rahman, N., Larbi, A., Addah, W., Sulleyman, K. W., Adda, J. K., Kizito, F., & Hoeschle-Zeledon, I. (2022). Optimizing Food and Feed in Maize–Livestock Systems in Northern Ghana: The Effect of Maize Leaf Stripping on Grain Yield and Leaf Fodder Quality. Agriculture, 12(2), 275. https://doi.org/10.3390/agriculture12020275