Effect of Micro- and Macro-Mechanical Characteristics of Jujube Bark on Jujube Girdling Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Bark Growth Stress Modeling
2.2.2. Tensile Test of Jujube Bark
2.2.3. Transverse Cutting Experiment of Jujube Bark
3. Results and Analysis
3.1. Results of Growth Stress Model Analysis of Jujube Bark
3.2. Tensile Test Results of Jujube Bark
3.2.1. Longitudinal Tensile Test Results of Jujube Bark
3.2.2. Transverse Tensile Test Results of Jujube Bark
3.3. Transverse Cutting Test Results of Jujube Bark
4. Discussion
4.1. Effect of Growth Stress of Jujube Bark on Girdling
4.2. Effect of Mechanical Properties of Jujube Bark on Girdling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, H.; Wang, J.L.; Yuan, H. Quality evaluation of Xinjiang jujube based on principal component analysis and cluster analysis. Food Ind. 2020, 41, 305–309. [Google Scholar]
- He, W.Z.; Zhao, D.Y.; Fan, Y.Y.; Wang, C.; Liu, Z. Comparison of the Nutrient Quality, Stable Isotope and Multi-Element Characteristics of Xinjiang Jujube for Origin Traceability. J. Nucl. Agric. Sci. 2021, 35, 1099–1112. [Google Scholar]
- Zhao, A.L.; Xue, X.F.; Ren, H.Y.; Wang, Y.K.; Ling, D.K.; Ling, Y. Analysis of composition and content characteristics of organic acids in Jujube germplasm. Acta Agric. Boreali-Occident. Sin. 2021, 30, 1185–1198. [Google Scholar]
- Guan, Q.L. Study on the Potential and Strategy to Develop Jujube in Xinjiang Province. Master’s Dissertation, Huazhong Agricultural University, Wuhan, China, 2010. [Google Scholar]
- Liu, C. Studies on Functional Components and Processing Technology of Xinjiang Jujube Dates. Master’s Dissertation, Zhejiang University, Hangzhou, China, 2014. [Google Scholar]
- Jiao, B.Z.; Sun, Z.J.; Han, L.; He, J. Effects of depth and irrigation amount of subsurface infiltration irrigation pipes on water use efficiency and yield of jujube. Trans. CSAE 2020, 36, 94–105. [Google Scholar]
- Xu, H.B.; Feng, J.C.; Fan, L.L. Research progress on girdling mechanism and non-invasive girdling technology of pomiculture. J. Henan Agric. Sci. 2020, 49, 1–9. [Google Scholar]
- Khandaker, M.M.; Hossain, A.S.; Osman, N. Application of girdling for improved fruit retention, yield and fruit quality in Syzygium samarangense under field conditions. Int. J. Agric. Biol. 2011, 13, 18–24. [Google Scholar]
- Deschepper, V.; Steppe, K. Tree girdling responses simulated by a water and carbon transport model. Ann. Bot. 2011, 108, 1147–1154. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Wanjura, J.D.; Holt, G.A. Chemical-free cotton defoliation by: Mechanical, flame and laser girdling. Agronomy 2017, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Urban, L.; Alphonsout, L. Girdling decreases photo-synthetic electron fluxes and induces sustained photo-protection in mango leaves. Tree Physiol. 2007, 27, 345–352. [Google Scholar] [CrossRef]
- Quentin, A.G.; Close, D.C.; Hennen, L.M. Down-regulation of photosynthesis following girdling, but contrasting effects on fruit set and retention, in two sweet cherry cultivars. Plant Physiol. Bio-Chem. 2013, 73, 359–367. [Google Scholar] [CrossRef]
- Choi, S.T.; Song, W.D.; Park, D.S. Effect of girdling dates on dry matter increase and reserve accumulations in permanent parts of ‘Nishimurawase’ persimmon trees. Korean J. Hortic. Sci. Technol. 2009, 27, 18–225. [Google Scholar]
- Tombesi, S.; Dayk, R.; Johnson, R.S. Vigour reduction in girdled peach trees is related to lower midday stem water potentials. Funct. Plant Biol. 2014, 41, 1336–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, L.E.; Retzlaff, W.A.; Yang, W.G. Effect of girdling on leaf gas exchange, water status, and nonstructural carbohydrates of field-grown Vitis vinifera L. (cv. flame seedless). Am. J. Enol. Vitic. 2000, 51, 49–54. [Google Scholar]
- Yang, J.; Zhang, Y.H.; Gao, F.L. Effects of species and habit on quality in Zizyphus jujuba date and quality assessment. Food Sci. Technol. 2021, 35, 143–145. [Google Scholar]
- Hamant, O.; Traas, J. The mechanics behind plant development. New Phytol. 2010, 185, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Boudaoud, A. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci. 2010, 15, 353–360. [Google Scholar] [CrossRef]
- Yan, Z. The Characteristic of Larix Gmelini Bark Pyrolysis and the Preparation of Pyrolysate Adhesive. Master’s Thesis, Beijing Forestry University, Beijing, China, 2006. [Google Scholar]
- Gindl, W. The effect of lignin on the moisture-dependent behavior of spruce wood in axial compression. J. Mater. Sci. Lett. 2001, 20, 2161–2162. [Google Scholar] [CrossRef]
- Gong, M.; Smith, I. Effect of load type on failure mechanisms of spruce in compression parallel to grain. Wood Sci. Technol. 2004, 37, 435–445. [Google Scholar] [CrossRef]
- Gindl, W.; Teischinger, A. Axial compression strength of Norway spruce related to structural variability and lignin content. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1623–1628. [Google Scholar] [CrossRef]
- Feng, H.J.; Feng, L.; Kang, Y.L. Mechanics and modeling of crack formation in tree epidermis. Acta Biophys. Sinica. 2011, 27, 779–788. [Google Scholar]
- Biechele, T.; Nutto, L. Growth stress in Eucalyptus nitens at different stages of development. In Proceedings of the 51st International Convention of Society of Wood Science and Technology, Concepcion, Chile, 12 November 2008; pp. 10–12. [Google Scholar]
- Luo, Z.D.; Li, S.J. Anisotropic Material Mechanics; Shanghai Jiao Tong University Press: Shanghai, China, 1994. [Google Scholar]
- Liao, Y.T.; Liao, Q.X.; Tian, B.P.; Shu, C.X.; Wang, J.; Ma, A.L. Experimental research on the mechanical physical parameters of bottom stalk of the Arundo donax L. in harvesting period. Trans. CSAE 2007, 23, 124–129. [Google Scholar]
- Liu, Z.P.; Xie, F.P.; Wu, M.L.; Wang, X.; Liu, J.F. Study of mechanical property parameters of ramie bottom stalk in harvesting period. J. Hunan Agric. Univ. Nat. Sci. 2011, 37, 329–332. [Google Scholar] [CrossRef]
- Shen, C.; Li, X.W.; Tian, K.P.; Zhang, B.; Huang, J.C.; Chen, Q.M. Experimental analysis on mechanical model of ramie stalk. Trans. CSAE 2015, 31, 26–33. [Google Scholar]
- Zhong, W.Z.; Deng, Z.F.; Huang, X.C.; He, Z.M. Investigation on anisotropic behavior of spruce mechanical properties under medium strain rate loading conditions. Eng. Mech. 2016, 33, 25–33. [Google Scholar]
- Luo, H.; Tang, C.Z.; Zou, D.S. Experiment on reciprocating cutting of eulaliopsis binata stem. Trans. CSAE 2012, 28, 13–17. [Google Scholar]
- Wu, M.L.; Guan, C.Y.; Tang, C.Z. Experiments on influencing factors of cutting force of rape stem. Trans. CSAE 2009, 25, 141–144. [Google Scholar]
- Hamada, K.; Ogata, T.; Fujiwara, S.; Hasegawa, K. Healing process of the wounds of the branches of the Japanese persimmon that were caused by girdling, scoring, and strangulation. Sci. Hortic. 2009, 120, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Chano, V.; López, R.; Pita, P.; Collada, C.; Soto, Á. Proliferation of axial parenchymatic xylem cells is a key step in wound closure of girdled stems in Pinus canariensis. BMC Plant Biol. 2015, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Wan, Q.; Zhu, F.T.; Liu, X.F. Changes in the microstructure and properties of the egg-break blade after boronisation and vanadizing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 291–297. [Google Scholar]
- Guo, Q.; Zhang, X.L.; Xu, Y.F. Design and experiment of cutting blade for cane straw. Trans. Chin. Soc. Agric. Eng. 2014, 30, 47–53. [Google Scholar]
- Tian, K.P.; Li, X.W.; Shen, C.; Zhang, B.; Huang, J.C.; Wang, J.G.; Zhou, Y. Design and test of cutting blade of cannabis harvester based on longicorn bionic principle. Trans. Chin. Soc. Agric. Eng. 2017, 33, 56–61. [Google Scholar]
Number | Diameter of Trunk (mm) | Thickness of Bark (mm) | Moisture Content of Bark (%) | Density of Bark (g·cm−3) |
---|---|---|---|---|
1 | 17.68 | 1.17 | 55.78 | 0.69 |
2 | 20.82 | 1.66 | 54.23 | 0.65 |
3 | 25.32 | 1.75 | 61.49 | 0.82 |
4 | 32.51 | 2.25 | 55.92 | 0.71 |
5 | 36.22 | 2.58 | 57.22 | 0.78 |
6 | 41.12 | 3.16 | 53.44 | 0.61 |
Average value | 28.94 | 2.09 | 56.34 | 0.71 |
Standard deviation | 8.36 | 0.65 | 2.60 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, J.; Hu, C.; Zhang, F.; Wang, X.; Li, P. Effect of Micro- and Macro-Mechanical Characteristics of Jujube Bark on Jujube Girdling Quality. Agriculture 2022, 12, 278. https://doi.org/10.3390/agriculture12020278
Ran J, Hu C, Zhang F, Wang X, Li P. Effect of Micro- and Macro-Mechanical Characteristics of Jujube Bark on Jujube Girdling Quality. Agriculture. 2022; 12(2):278. https://doi.org/10.3390/agriculture12020278
Chicago/Turabian StyleRan, Junhui, Can Hu, Fengkui Zhang, Xufeng Wang, and Ping Li. 2022. "Effect of Micro- and Macro-Mechanical Characteristics of Jujube Bark on Jujube Girdling Quality" Agriculture 12, no. 2: 278. https://doi.org/10.3390/agriculture12020278
APA StyleRan, J., Hu, C., Zhang, F., Wang, X., & Li, P. (2022). Effect of Micro- and Macro-Mechanical Characteristics of Jujube Bark on Jujube Girdling Quality. Agriculture, 12(2), 278. https://doi.org/10.3390/agriculture12020278