Valorization of Quality of Vermicomposts and Composts Using Various Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Procedure and Raw Materials
2.2. Chemical Analysis of the Compost
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Jiang, P.; Hemzal, M.; Klemes, J.J. An update of COVID-19 influence on waste management. Sci. Total Environ. 2021, 754, 142014. [Google Scholar] [CrossRef] [PubMed]
- Makanjuola, O.; Arowosola, T.; Chenyu, D. The Utilization of Food Waste: Challenges and Opportunities. J. Food Chem. Nanotechnol. 2020, 6, 182–188. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A. Impact of COVID–19 pandemic on waste management. Environ. Dev. Sustain. 2020, 26, 7951–7960. [Google Scholar] [CrossRef] [PubMed]
- Jribi, S.; Ismail, H.B.; Doggui, D.; Debbabi, H. COVID–19 virus outbreak lockdown: What impacts on household food wastage? Environ. Dev. Sustain. 2020, 22, 3939–3955. [Google Scholar] [CrossRef] [Green Version]
- Stenmarck, A.; Jensen, C.; Quested, T.; Moates, G. Estimates of European Food Waste Levels. Fusion 2016. Available online: https://www.eu-fusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdf (accessed on 15 December 2021).
- Delgado, M.; Lopez, A.; Cuartas, M.; Rico, C.; Lobo, A. A decision support tool for planning biowaste management systems. J. Clean Prod. 2020, 242, 118460. [Google Scholar] [CrossRef]
- Penteado, C.S.C.; Soare de Castro, M.A. COVID-19 effects on municipal solid waste management: What can effectively be done in the Brazilian scenario? Resour. Conserv. Recycl. 2021, 164, 105152. [Google Scholar] [CrossRef]
- Jakubus, M.; Stejskal, B. Municipal solid waste management systems in Poland and the Czech Republic. A comparative study. Environ. Prot. Eng. 2020, 46, 61–78. [Google Scholar] [CrossRef]
- Vazquez, M.A.; Soto, M. The efficiency of home composting programmes and compost quality. Waste Manag. 2017, 64, 39–50. [Google Scholar] [CrossRef]
- Jakubus, M.; Michalak-Oparowska, W. Social participation in the biowaste disposal system before and during the COVID-19 pandemic. A case study for Poznań. Environ. Prot. Eng. 2021, 47, 109–123. [Google Scholar] [CrossRef]
- Soobhany, N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. J. Clean Prod. 2019, 241, 118413. [Google Scholar] [CrossRef]
- Biruntha, M.; Karmegam, N.; Archana, J.; Karunau, B.S.K.; Arockia, J.J.P.; Alamuralikrishnan, B.; Chang, S.W.; Ravindran, B. Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour. Technol. 2020, 297, 122398. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, J.; Kandoria, A.; Quadar, J.; Bhat, S.A.; Chowdhary, A.B.; Vig, A.P. Bioconversion of different organic wastes into fortified vermicompost with the help of earthworms: A comprehensive review. Int. J. Recycl. Org. Waste Agric. 2020, 9, 432–439. [Google Scholar] [CrossRef]
- Zziwa, A.; Jagwe, J.; Kizito, S.; Kabeng, I.; Komaken, A.J.; Kayondo, H. Nutrient recovery from pineapple waste through controlled batch and continuous vermicomposting systems. J. Environ. Manag. 2021, 279, 111784. [Google Scholar] [CrossRef] [PubMed]
- Biswas, I.; Mitra, D.; Senapati, A.; Mitra, D.; Chattaraj, S.; Ali, M.; Basak, G.; Panneerselvam, P.; Das Mohapatra, P.K. Valorization of vermicompost with bacterial fermented chicken feather hydrolysate for the yield improvement of tomato plant: A novel organic combination. Int. J. Recycl. Org. Waste Agric. 2021, 10, 29–42. [Google Scholar] [CrossRef]
- Ding, Z.; Kheir, A.M.S.; Osama, A.M.A.; Hafez, E.M.; El Shamey, E.A.; Zhou, Z.; Wang, B.; Lin, X.; Ge, Y.; Fahmy, A.E.; et al. A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity. J. Environ. Manag. 2021, 277, 111388. [Google Scholar] [CrossRef]
- Jakubus, M. A comparative study of composts prepared from various organic waste based on biological and chemical parameters. Agronomy 2020, 10, 869. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilisation of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Lv, B.; Xing, M.; Yang, J.; Qi, W.; Lu, Y. Chemical and spectroscopic characterisation of water extractable organic matter during vermicomposting of cattle dung. Bioresour. Technol. 2013, 132, 320–326. [Google Scholar] [CrossRef]
- Kleber, M.; Lehmann, J. humic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystems. J. Environ. Qual. 2019, 48, 207–216. [Google Scholar] [CrossRef]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives OJ L 312, 22 November 2008. p. 3. Available online: https://www.legislation.gov.uk/eudr/2008/98 (accessed on 15 December 2021).
- Ostrowska, A.; Gawliński, S.; Szczubialka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties, 1st ed.; IOŚ: Warszawa, Poland, 1991; pp. 158–167. (In Polish) [Google Scholar]
- Dziadowiec, H.; Gonet, S. A Methodological Guide to Soil Organic Matter Research, 1st ed.; PTG: Warszawa, Poland, 1999; Volume 120, pp. 43–51. (In Polish) [Google Scholar]
- Loginov, W.; Wisniewski, W.; Gonet, S.S.; Cieścinska, B. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci. 1987, 20, 47–52. [Google Scholar]
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 2003, 35, 1231. [Google Scholar] [CrossRef]
- Orlov, D.S.; Grišina, L.A. Guide of Humus Chemistry, 1st ed.; IMU: Moskva, Russia, 1981; pp. 1–272. (In Russian) [Google Scholar]
- Mushtaq, M.; Iqbal, M.K.; Khalid, A.; Khan, R.A. Humification of poultry waste and rice husk using additives and its application. Int. J. Recycl. Org. Waste Agric. 2019, 8, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, S.; Dede, G.; Dede, O.H.; Turo, S.M. Composting of sewage sludge with mole cricket: Stability, maturity and sanitation aspects. Int. J. Environ. Sci. Technol. 2019, 16, 5827–5834. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Mak, K.F.; Chan, N.W.; Lam, A.; Fang, M.; Zhou, L.X.; Wu, Q.T.; Lia, X.D. Co-composting of soybean residues and leaves in Hong Kong. Bioresour. Technol. 2001, 76, 99–106. [Google Scholar] [CrossRef]
- Sciubba, L.; Cavani, L.; Grigatti, M.; Ciavatta, C.; Marzadori, C. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality. Environ. Sci. Pollut. Res. 2015, 22, 13393–13403. [Google Scholar] [CrossRef]
- Ibrahim, M.I.M.; Awad, E.A.M.; Dahdouh, S.M.M.; El-Etr, W.M.T.; Ibrahim, A.S.M. Characterisations of some organic materials sources and analysis of the humic acids extracted from them. Zagazig J. Agric. Res. 2019, 46, 685–698. [Google Scholar]
- Regulation of the Minister of Agriculture and Rural Development of 18 June 2008. J. Laws 2008, 119, 765. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20081190765 (accessed on 15 December 2021). (In Polish).
- Ramnarain, Y.I.; Ansari, A.A.; Ori, L. Vermicomposting of different organic materials using the epigenic earthworm. Int. J. Recycl. Org. Waste Agric. 2019, 8, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Xie, B.; Khan, R.; Shen, G. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresour. Technol. 2019, 271, 228–235. [Google Scholar] [CrossRef]
- Bu, X.; Wang, L.; Ma, W.; Yu, X.; McDowell, W.H.; Ruan, H. Spectroscopic characterization of hot-water extractable organic matter from soils under different vegetation types along an elevation gradient in the Wuyi Mountains. Geoderma 2010, 159, 139–146. [Google Scholar] [CrossRef]
- Li, S.; Li, D.; Li, J.; Li, G.; Zhang, B. Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates. Bioresour. Technol. 2017, 245, 1299–1302. [Google Scholar] [CrossRef] [PubMed]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Alami, T. Composting parameters and compost quality. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Chen, L.; de Haro, M.M.; Moore, A.; Falen, C. The Composting Process. Dairy Compost Production and Use in Idaho; University of Idaho. CIS 1179, 2011. Available online: https://www.extension.uidaho.edu/publishing/pdf/cis/cis1179.pdf (accessed on 15 December 2021).
- Gomez-Brandon, M.; Lazcano, C.; Dominguez, J. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 2008, 70, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.K.; Kalamdhad, A.S.; Ali, M.; Kazmi, A.A. Maturation of primary stabilized compost from rotary drum composter. Resour. Conserv. Recycl. 2009, 53, 386–392. [Google Scholar] [CrossRef]
- Antil, R.S.; Raj, D.; Abdalla, N.; Inbushi, K. Physical, chemical and biological parameters for compost maturity assessment: A review. In Composting for Sustainable Agriculture; Maheshwari, D., Ed.; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014; pp. 83–101. [Google Scholar] [CrossRef]
- Asquer, C.; Cappai, G.; Gioannis, G.; Muntoni, A.; Piredda, M.; Spiga, D. Biomass ash reutilization as an additive in the composting process of organic fraction of municipal solid waste. Waste Manag. 2017, 69, 127–135. [Google Scholar] [CrossRef]
- Balachandar, R.; Biruntha, M.; Yuvaraj, A.; Thangaraj, R.; Subbaiya, R.; Govarthanan, M.; Kumar, P.; Karmegam, N. Earthworm intervened nutrient recovery and greener production of vermicompost from Ipomoea staphylina—An invasive weed with emerging environmental challenges. Chemosphere 2020, 263, 128080. [Google Scholar] [CrossRef]
- Raj, D.; Antil, R.S. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 2011, 102, 2868–2873. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Alburquerque, J.A.; Restrepo, A.P.; de la Fuente, C.; Paredes, C.; Moral, R.; Bernal, M.P. Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenergy 2012, 43, 26–35. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.M.C.; Morais, M.C.; Cunha-Queda, C. Quality assessment of a battery of organic wastes and composts using maturity, stability and enzymatic parameters. Waste Biomass Valoris 2016, 7, 455–465. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta. Physiol. Plant. 2015, 37, 139. [Google Scholar] [CrossRef]
- Rodrigues, L.C.; Puig-Ventosa, I.; López, M.; Martínez, F.X.; Ruiz, A.G.; Bertrán, T.G. The impact of improper materials in biowaste on the quality of compost. J. Clean Prod. 2020, 251, 119601. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 889/2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN (accessed on 15 December 2021).
Parameter | VC1 | VC2 | VC3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
pH | 7.9 | 8.4 | 8.3 | 7.2 | 6.8 | 6.5 |
EC (mS·cm−1) | 3.5 | 3.6 | 3.7 | 3.3 | 3.7 | 3.1 |
Compost | HI (%) | HR (%) | DP (CHA:CFA Ratio) | Q4/6 | C:N |
---|---|---|---|---|---|
VC1 | 8.3 | 15.2 | 1.2 | 8.1 | 17:1 |
VC2 | 10.0 | 20.1 | 1.0 | 8.1 | 9:1 |
VC3 | 9.6 | 19.7 | 1.0 | 7.7 | 8:1 |
C4 | 16.8 | 33.0 | 1.0 | 6.6 | 9:1 |
C5 | 12.2 | 24.3 | 1.0 | 7.2 | 12:1 |
C6 | 15.5 | 31.8 | 1.0 | 7.1 | 9:1 |
Macronutrient | VC1 | VC2 | VC3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
N | 16.1 c | 21.5 a | 18.4 b | 10.0 d | 7.00 e | 17.6 bc |
P | 4.1 c | 6.0 a | 5.8 a | 1.2 d | 5.9 b | 4.8 b |
K | 18.0 b | 24.4 a | 17.2 b | 4.5 c | 3.7 c | 5.5 c |
S | 4.60 a | 4.6 a | 3.5 b | 2.7 c | 1.4 d | 2.9 c |
Ca | 20.6 c | 34.1 b | 44.0 a | 13.4 d | 12.2 d | 12.3 d |
Mg | 4.1 c | 8.7 b | 13.5 a | 1.7 d | 1.4 d | 1.6 d |
Na | 1.6 b | 2.1 a | 1.5 b | 0.9 c | 1.4 b | 0.9 c |
Micronutrient | VC1 | VC2 | VC3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
Cu | 13.3 bc | 18.4 a | 16.4 ab | 9.4 cd | 9.6 cd | 8.1 d |
Zn | 3.0 d | 5.4 b | 4.3 c | 8.8 a | 6.1 b | 4.3 c |
Mn | 71.5 c | 102.5 ab | 85.1 bc | 93.1 b | 113.8 a | 99.5 ab |
Ni | 4.0 bc | 6.4 a | 5.3 ab | 5.8 ab | 3.0 c | 2.9 c |
Fe | 188.5 c | 333.8 a | 273.8 b | 214.3 c | 198.6 c | 133.1 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubus, M.; Michalak-Oparowska, W. Valorization of Quality of Vermicomposts and Composts Using Various Parameters. Agriculture 2022, 12, 293. https://doi.org/10.3390/agriculture12020293
Jakubus M, Michalak-Oparowska W. Valorization of Quality of Vermicomposts and Composts Using Various Parameters. Agriculture. 2022; 12(2):293. https://doi.org/10.3390/agriculture12020293
Chicago/Turabian StyleJakubus, Monika, and Weronika Michalak-Oparowska. 2022. "Valorization of Quality of Vermicomposts and Composts Using Various Parameters" Agriculture 12, no. 2: 293. https://doi.org/10.3390/agriculture12020293
APA StyleJakubus, M., & Michalak-Oparowska, W. (2022). Valorization of Quality of Vermicomposts and Composts Using Various Parameters. Agriculture, 12(2), 293. https://doi.org/10.3390/agriculture12020293