The Role of FAIR Data towards Sustainable Agricultural Performance: A Systematic Literature Review
Abstract
:1. Introduction
2. Methodology
2.1. Scoping
2.2. Planning
(“FAIR data” OR “FAIR data principles” OR “FAIR data guidelines” OR “ FAIR principles” OR “FAIR guidelines” OR “findability” OR “accessibility” OR “interoperability” OR “reusability” OR “findable” OR “accessible” OR “interoperable” OR “reusable” OR “datasets” OR “data sources”) AND (“metadata standards” OR “metadata schema” OR “metadata schenes” OR “big date” OR “data management” OR “database”)
2.3. Identification/Search
2.4. Screening
2.5. Eligibility/Assessment
2.6. Presentation/Interpretation
3. Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- FAO, Food and Agriculture Organization of the United Nations. The State of Food Security and Nutrition in the World 2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Baligar, V.; Fageria, N.; He, Z. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Capmourteres, V.; Adams, J.; Berg, A.; Fraser, E.; Swanton, C.; Anand, M. Precision conservation meets precision agriculture: A case study from southern Ontario. Agric. Syst. 2018, 167, 176–185. [Google Scholar] [CrossRef]
- Rijswijk, K.; Klerkx, L.; Turner, J.A. Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: Initial understandings and emerging organisational responses to digital agriculture. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100313. [Google Scholar] [CrossRef]
- Kusunose, Y.; Mahmood, R. Imperfect forecasts and decision making in agriculture. Agric. Syst. 2016, 146, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Acosta, M.; van Wessel, M.; van Bommel, S.; Ampaire, E.L.; Twyman, J.; Jassogne, L.; Feindt, P.H. What does it Mean to Make a ‘Joint’ Decision? Unpacking Intra-household Decision Making in Agriculture: Implications for Policy and Practice. J. Dev. Stud. 2020, 56, 1210–1229. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [Google Scholar] [CrossRef] [Green Version]
- Birner, R.; Daum, T.; Pray, C. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Appl. Econ. Perspect. Policy 2021, 43, 1260–1285. [Google Scholar] [CrossRef]
- Whitelock, V. Business analytics and firm performance: Role of structured financial statement data. J. Bus. Anal. 2018, 1, 81–92. [Google Scholar] [CrossRef]
- Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2017, 18, 701–716. [Google Scholar] [CrossRef]
- Weersink, A.; Fraser, E.; Pannell, D.; Duncan, E.; Rotz, S. Opportunities and challenges for Big Data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 2018, 10, 19–37. [Google Scholar] [CrossRef]
- Kitchen, N.; Sudduth, K.; Myers, D.; Massey, R.; Sadler, E.; Lerch, R.; Hummel, J.; Palm, H. Development of a conservation-oriented precision agriculture system: Crop production assessment and plan implementation. J. Soil Water Conserv. 2005, 60, 421–430. [Google Scholar]
- Fountas, S.; Blackmore, S.; Ess, D.; Hawkins, S.; Blumhoff, G.; Lowenberg-Deboer, J.; Sorensen, C. Farmer experience with precision agriculture in Denmark and the US Eastern Corn Belt. Precis. Agric. 2005, 6, 121–141. [Google Scholar] [CrossRef]
- Antle, J.M.; Basso, B.; Conant, R.T.; Godfray, H.C.J.; Jones, J.W.; Herrero, M.; Howitt, R.E.; Keating, B.A.; Munoz-Carpena, R.; Rosenzweig, C. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agric. Syst. 2017, 155, 255–268. [Google Scholar] [CrossRef]
- Capalbo, S.M.; Antle, J.M.; Seavert, C. Next generation data systems and knowledge products to support agricultural producers and science-based policy decision making. Agric. Syst. 2017, 155, 191–199. [Google Scholar] [CrossRef]
- Yost, M.; Kitchen, N.; Sudduth, K.; Sadler, E.; Drummond, S.; Volkmann, M. Long-term impact of a precision agriculture system on grain crop production. Precis. Agric. 2017, 18, 823–842. [Google Scholar] [CrossRef]
- Delgado, J.A.; Khosla, R.; Mueller, T. Recent advances in precision (target) conservation. J. Soil Water Conserv. 2011, 66, 167A–170A. [Google Scholar] [CrossRef] [Green Version]
- Berry, J.K.; Delgado, J.; Khosla, R.; Pierce, F. Precision conservation for environmental sustainability. J. Soil Water Conserv. 2003, 58, 332–339. [Google Scholar]
- Barry, S.; Darnell, R.; Grundy, M.; Moore, A.; Robertson, M.; Brown, J.; Gaire, R.; George, A. Precision to Decision–Current and Future State of Agricultural Data for Digital Agriculture in Australia; CSIRO: Canberra, Australia, 2018. [Google Scholar]
- Bronson, K.; Knezevic, I. Big Data in food and agriculture. Big Data Soc. 2016, 3, 2053951716648174. [Google Scholar] [CrossRef] [Green Version]
- Leite, A.E.; De Castro, R.; Jabbour, C.J.C.; Batalha, M.O.; Govindan, K. Agricultural production and sustainable development in a Brazilian region (Southwest, São Paulo State): Motivations and barriers to adopting sustainable and ecologically friendly practices. Int. J. Sustain. Dev. World Ecol. 2014, 21, 422–429. [Google Scholar] [CrossRef]
- Delgado, J.A.; Bausch, W. Potential use of precision conservation techniques to reduce nitrate leaching in irrigated crops. J. Soil Water Conserv. 2005, 60, 379–387. [Google Scholar]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeckhout, M.; Zielhuis, G.A.; Bredenoord, A.L. The FAIR guiding principles for data stewardship: Fair enough? Eur. J. Hum. Genet. 2018, 26, 931–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, M.D.; Verborgh, R.; da Silva Santos, L.O.B.; Clark, T.; Swertz, M.A.; Kelpin, F.D.; Gray, A.J.; Schultes, E.A.; van Mulligen, E.M.; Ciccarese, P. Interoperability and FAIRness through a novel combination of Web technologies. PeerJ Comput. Sci. 2017, 3, e110. [Google Scholar] [CrossRef] [Green Version]
- Foundation, G.F. GO FAIR Foundation. Available online: https://www.gofairfoundation.org/ (accessed on 1 November 2021).
- Mons, B.; Neylon, C.; Velterop, J.; Dumontier, M.; da Silva Santos, L.O.B.; Wilkinson, M.D. Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud. Inf. Serv. 2017, 37, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Commons, A.R.D. FAIR Self Assessment Tool. Available online: https://ardc.edu.au/resources/working-with-data/fair-data/fair-self-assessment-tool/ (accessed on 20 August 2021).
- Van der Knaap, L.M.; Leeuw, F.L.; Bogaerts, S.; Nijssen, L.T. Combining Campbell standards and the realist evaluation approach: The best of two worlds? Am. J. Eval. 2008, 29, 48–57. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Grp, P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An efficient framework for conducting systematic literature reviews in agricultural sciences. Sci. Total Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef]
- Clarivate. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (accessed on 16 February 2022).
- Google Scholar. Available online: https://scholar.google.com.au/ (accessed on 16 February 2022).
- Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar]
- van der Windt, D.; Thomas, E.; Pope, D.P.; de Winter, A.F.; Macfarlane, G.J.; Bouter, L.M.; Silman, A.J. Occupational risk factors for shoulder pain: A systematic review. Occup. Environ. Med. 2000, 57, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Wijk, v.M.; Hammond, J.; Gorman, L.; Adams, S.; Ayantunde, A.; Baines, D.; Bolliger, A.; Bosire, C.; Carpena, P.; Chesterman, S. The Rural Household Multiple Indicator Survey, data from 13,310 farm households in 21 countries. Sci. Data 2020, 7, 1–9. [Google Scholar]
- Harrison, P.W.; Fan, J.; Richardson, D.; Clarke, L.; Zerbino, D.; Cochrane, G.; Archibald, A.L.; Schmidt, C.J.; Flicek, P. FAANG, establishing metadata standards, validation and best practices for the farmed and companion animal community. Anim. Genet. 2018, 49, 520–526. [Google Scholar] [CrossRef]
- Dorich, C.D.; Conant, R.T.; Albanito, F.; Butterbach-Bahl, K.; Grace, P.; Scheer, C.; Snow, V.O.; Vogeler, I.; van der Weerden, T.J. Improving N2O emission estimates with the global N2O database. Curr. Opin. Environ. Sustain. 2020, 47, 13–20. [Google Scholar] [CrossRef]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Specka, X.; Gärtner, P.; Hoffmann, C.; Svoboda, N.; Stecker, M.; Einspanier, U.; Senkler, K.; Zoarder, M.A.M.; Heinrich, U. The BonaRes metadata schema for geospatial soil-agricultural research data—Merging INSPIRE and DataCite metadata schemes. Comput. Geosci. 2019, 132, 33–41. [Google Scholar] [CrossRef]
- Arnaud, E.; Laporte, M.-A.; Kim, S.; Aubert, C.; Leonelli, S.; Miro, B.; Cooper, L.; Jaiswal, P.; Kruseman, G.; Shrestha, R. The ontologies community of practice: A CGIAR initiative for big data in agrifood systems. Patterns 2020, 1, 100105. [Google Scholar] [CrossRef]
- Hackett, R.A.; Belitz, M.W.; Gilbert, E.E.; Monfils, A.K. A data management workflow of biodiversity data from the field to data users. Appl. Plant Sci. 2019, 7, e11310. [Google Scholar] [CrossRef]
- Singh, A.; Jones, S.; Ganapathysubramanian, B.; Sarkar, S.; Mueller, D.; Sandhu, K.; Nagasubramanian, K. Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping. Trends Plant Sci. 2021, 26, 56–69. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big data in smart farming–a review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Koers, H.; Bangert, D.; Hermans, E.; van Horik, R.; de Jong, M.; Mokrane, M. Recommendations for Services in a FAIR Data Ecosystem. Patterns 2020, 1, 100058. [Google Scholar] [CrossRef]
- Robinson, N.J.; Dahlhaus, P.G.; Wong, M.; MacLeod, A.; Jones, D.; Nicholson, C. Testing the public–private soil data and information sharing model for sustainable soil management outcomes. Soil Use Manag. 2019, 35, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Roitsch, T.; Cabrera-Bosquet, L.; Fournier, A.; Ghamkhar, K.; Jiménez-Berni, J.; Pinto, F.; Ober, E.S. Review: New sensors and data-driven approaches—A path to next generation phenomics. Plant Sci. 2019, 282, 2–10. [Google Scholar] [CrossRef]
- Ingram, J.; Maye, D.; Bailye, C.; Barnes, A.; Bear, C.; Bell, M.; Cutress, D.; Davies, L.; de Boon, A.; Dinnie, L. What are the priority research questions for digital agriculture? Land Use Policy 2022, 114, 105962. [Google Scholar] [CrossRef]
- Bahlo, C.; Dahlhaus, P.; Thompson, H.; Trotter, M. The role of interoperable data standards in precision livestock farming in extensive livestock systems: A review. Comput. Electron. Agric. 2019, 156, 459–466. [Google Scholar] [CrossRef]
- Elkington, J. Towards the sustainable corporation: Win-win-win business strategies for sustainable development. Calif. Manag. Rev. 1994, 36, 90–100. [Google Scholar] [CrossRef]
- Keeble, J.J.; Topiol, S.; Berkeley, S. Using indicators to measure sustainability performance at a corporate and project level. J. Bus. Ethics 2003, 44, 149–158. [Google Scholar] [CrossRef]
- Trends.Earth. Available online: https://trends.earth/docs/en/ (accessed on 16 February 2022).
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; The Free Press: New York, NY, USA, 2003. [Google Scholar]
- CCMA. North Central Victoria Regional Sustainable Agriculture Strategy; Central Catchment Management Authority: Huntly, Australia, 2016. [Google Scholar]
- Tomer, M. How do we identify opportunities to apply new knowledge and improve conservation effectiveness? J. Soil Water Conserv. 2010, 65, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Milovanović, S. The role and potential of information technology in agricultural improvement. Econ. Agric. 2014, 61, 471–485. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Duan, Y. Agricultural information dissemination using ICTs: A review and analysis of information dissemination models in China. Inf. Process. Agric. 2016, 3, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Webb, N.P.; Marshall, N.A.; Stringer, L.C.; Reed, M.S.; Chappell, A.; Herrick, J.E. Land degradation and climate change: Building climate resilience in agriculture. Front. Ecol. Environ. 2017, 15, 450–459. [Google Scholar] [CrossRef]
- Teitelbaum, J.C.; Zeiler, K. Research Handbook on Behavioral Law and Economics; Edward Elgar Publishing: Northampton, MA, USA, 2018. [Google Scholar]
- Leonard, E.; Rainbow, R.; Laurie, A.; Lamb, D.; Llewellyn, R.; Perrett, E.; Sanderson, J.; Skinner, A.; Stollery, T.; Wiseman, L. Accelerating Precision Agriculture to Decision Agriculture: Enabling Digital Agriculture in Australia; Cotton Research and Development Corporation: Narrabri, Australia, 2017. [Google Scholar]
- Keogh, M.; Henry, M. The Implications of Digital Agriculture and Big Data for Australian Agriculture; Australian Farm Institute: Sydney, Australia, 2016; pp. 1–51. ISBN 978-1-921808-38-8. [Google Scholar]
- Nolet, S. Seeds of Success: Advancing Digital Agriculture from Point Solutions to Platforms; United States Studies Centre at the University of Sydney: Sydney, Australia, 2018; pp. 20–25. [Google Scholar]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Wiseman, L.; Sanderson, J. P2D Project: Accelerating Precision Agriculture to Decision Agriculture; Griffith University: Gold coast, Australia, 2017; ISBN 978-0-6482462-1-3. [Google Scholar]
- NFF. Budget Roadmap Charts Course for $100 Billion in Farm Production by 2030, 2018.
- Allemang, D.; Teegarden, B. A global data ecosystem for agriculture and food. FResearch 2017, 6. [Google Scholar] [CrossRef]
- CRDC, Cotton Research & Development Corporation. A Big Data Reference Architecture for Digital Agriculture in Australia; Cotton Research & Development Corporation: Narrabri, Australia, 2017; ISBN 978-0-6481983-0-7. [Google Scholar]
Grade | Criteria |
---|---|
Substantiated | include a clear role of FAIR data in relation to agricultural performance |
include a comprehensive methodological approach that demonstrates FAIR data implementation processes | |
scientific, evidence based, empirical, quantitative and/or case study | |
Partially substantiated | include a clear role of FAIR data in relation to agricultural performance |
include a comprehensive methodological approach that demonstrates FAIR data implementation processes | |
scientific, evidence based, empirical, quantitative and/or case study | |
Unsubstantiated | studies discussing the role of FAIR data in other contexts and do not qualify for the eligibility criteria |
# | Citation a | Research Areas b | Methodology | Scientific | Empirical | Case Study | Descriptive | Evidence c | Strength of Evidence d | Cited by e |
---|---|---|---|---|---|---|---|---|---|---|
1 | Wijk et al. [36] | Sci. and Tech; Other topics | * | * | * | * | +++ | I | 03 | |
2 | Harrison et al. [37] | Agri.; Genetics and Heredity | * | * | * | * | +++ | I | 14 | |
3 | Dorich et al. [38] | Sci. and Tech; Env. Sci. & Ecology | * | * | * | * | +++ | I | 05 | |
4 | Giuliani et al. [39] | Remote Sensing | * | * | * | * | +++ | I | 19 | |
5 | Specka et al. [40] | Computer Science; Geology | * | * | * | * | +++ | I | 02 | |
6 | Arnaud et al. [41] | Computer Science | * | * | * | * | +++ | I | 04 | |
7 | Hackett et al. [42] | Plant Sciences | * | * | * | ++ | II | 01 | ||
8 | Singh et al. [43] | Plant Sciences | * | * | * | ++ | II | 11 |
ID | Web of Science Categories | Journal |
---|---|---|
1 | Multidisciplinary Sciences | Scientific Data |
2 | Agri., Dairy & Animal Science; Genetics & Heredity | Animal Genetics |
3 | Green & Sustainable Science & Technology; Env. Sci. | Current Opinion in Env. Sustainability |
4 | Remote Sensing | Int’l Journal of Applied Earth Observation & Geoinformation |
5 | Computer Sci., Interdisciplinary Applications; Geosciences, Multidisciplinary | Computers & Geosciences |
6 | Computer Sci., Artificial Intelligence; Computer Sci., Information Systems; Computer Sci., Interdisciplinary Applications | Patterns |
7 | Plant Sciences | Applications in Plant Sciences |
8 | Plant Sciences | Trends in Plant Science |
Author, Objective & Scope | FAIR Data Role Towards Agricultural Performance |
---|---|
Scope:
| Rural Household Multiple Indicator Survey (RHoMIS) aims to:
|
Scope:
| Functional annotation of animal genomes (FAANG) metadata helps in:
|
Scope:
| The Global N2O Database deals with farming-oriented (nearly 20% of the total global) GHG emissions and is likely to improve evaluations level by improving annual N2O estimates. The Global Nitrous oxide (N2O) Database aims to:
|
Scope:
| Monitoring of land degradation at various (national, regional, global) scales system, in accordance with the UN SDG 15.3.1 framework, is a successful milestone that effectively embed science into the decision-making process. This system enables users to use EO-based resources more effectively and efficiently. It further aims to:
|
Scope:
| In compliance with the INSPIRE and DataCite metadata schemes and FAIR data principles, a modern research data management, BonaRes metadata:
|
Scope:
| Annotation of and integrative, multifaceted, versatile, associative research data with the most suitable ontologies aims to comply with the FAIR data principles, and to strengthen the findability of data for further reuse, hence adding to the return on investment (RoI) for information collection and storage. It further aims to:
|
Scope:
| Global biodiversity information facility (GBIF) data sets:
|
Scope:
| Plant stress evaluations measure the visible signs and/or indications of stress and its progress on different plant units (e.g., leaf, stem, or roots) at the leaf, canopy, plot and field levels. A comprehensive database for annotated plant stress images, embedded with FAIR data principles, aims to:
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, B.; Dahlhaus, P. The Role of FAIR Data towards Sustainable Agricultural Performance: A Systematic Literature Review. Agriculture 2022, 12, 309. https://doi.org/10.3390/agriculture12020309
Ali B, Dahlhaus P. The Role of FAIR Data towards Sustainable Agricultural Performance: A Systematic Literature Review. Agriculture. 2022; 12(2):309. https://doi.org/10.3390/agriculture12020309
Chicago/Turabian StyleAli, Basharat, and Peter Dahlhaus. 2022. "The Role of FAIR Data towards Sustainable Agricultural Performance: A Systematic Literature Review" Agriculture 12, no. 2: 309. https://doi.org/10.3390/agriculture12020309
APA StyleAli, B., & Dahlhaus, P. (2022). The Role of FAIR Data towards Sustainable Agricultural Performance: A Systematic Literature Review. Agriculture, 12(2), 309. https://doi.org/10.3390/agriculture12020309