Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.2.1. Testing Apparatus
2.2.2. Pre-Treatment of Experimental Soil
2.2.3. Description of Experiment
2.2.4. Monitoring Items and Analytical Methods
Plant Height and Green Leaf Area
- (1)
- Plant height: Before the booting stage, a ruler was used to measure the distance between the base of the wheat and the highest point of leaf growth as the plant height, and the distance between the base of winter wheat and the top of the spike (excluding awn length) was used as plant height in the booting stage and later. The measured growth stages were the re-greening, jointing, booting, anthesis, filling, mid-filling, and maturity stages.
- (2)
- The leaf area index: The maximum leaf-length and maximum leaf-width of the winter wheat were measured with a ruler. The leaf area index (LAI) was calculated by using the ruler method and the length-width coefficient method, and the conversion coefficient was 0.8. The measured growth stages were the jointing, anthesis, filling, and middle of filling stages.
Soil Plant Analysis Development (SPAD)
Yield and Its Components
Soil Moisture of 0–60 cm Soil Layer
Nitrate-N Content of 0–60 cm Soil Layer
2.3. Statistical Analysis
3. Results
3.1. Winter Wheat Plant Height
3.2. Winter Wheat Leaf Area Index
3.3. Winter Wheat Soil Plant Analysis Development before and after Topdressing
3.4. Water and Nitrate-N Storage in 0–60 cm Soil at Maturity
3.5. Winter Wheat Yield and Its Components
4. Discussion
4.1. Growth Attributes of Winter Wheat
4.2. Winter Wheat Yield and Its Components
4.3. Soil Water and Nitrogen Storage
4.4. Response of Yield to Growth Attributes and Nitrate-N to N Application Rate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Wang, Z.; Yu, R.; Li, F.; Li, K.; Cao, H.; Yang, N.; Li, M.; Dai, J.; Zan, Y.; et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric. Ecosyst. Environ. 2016, 224, 1–11. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Cui, Z.; Hu, Y.; Schmidhalter, U.; Chen, X. Environmental, human health, and ecosystem economic performance of long-term optimizing nitrogen management for wheat production. J. Clean. Prod. 2021, 311, 127620. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, Z.; Fan, M.; Zhang, W.; Chen, X.; Jiang, R. Integrated Soil-Crop System Management: Reducing Environmental Risk while Increasing Crop Productivity and Improving Nutrient Use Efficiency in China. J. Environ. Qual. 2011, 40, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Lei, Q.; Zhang, J.; Zhai, L.; Ren, T.; Liu, H. Recommended methods for optimal nitrogen application rate. Sci. Agric. Sin. 2018, 51, 2937–2947, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Ghobadi, M.E.; Ghobadi, M.; Zebarjadi, A. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. Int. J. Biometeorol. 2017, 61, 635–645. [Google Scholar] [CrossRef]
- Deng, X.; Ma, W.; Ren, Z.; Zhang, M.; Grieneisen, M.L.; Chen, X.; Fei, X.; Qin, F.; Zhan, Y.; Lv, X. Spatial and temporal trends of soil total nitrogen and C/N ratio for croplands of East China. Geoderma 2020, 361, 114035. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, S.; Yang, X.; Zhou, Y.; Yang, R.; Zhang, K.; He, D.; Yin, J. Effects of Nitrogen-Reducing and Suitable Soil Moisture on Nitrate Nitrogen Distribution in Soil, Nitrogen Absorption and Utilization of Winter Wheat. Sci. Agric. Sin. 2017, 50, 3885–3897, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Li, S.; Yu, S. Effects of soil fertility and nitrogen application rate on nitrogen absorption and translocation, grain yield, and grain protein content of wheat. Chin. J. Appl. Ecol. 2003, 14, 1868–1872, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Ren, F.; Sun, N.; Xu, M.; Zhang, X.; Wu, L.; Xu, M. Changes in soil microbial biomass with manure application in cropping systems: A meta-analysis. Soil Tillage Res. 2019, 194, 104291. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Gao, H.; Zhu, P.; Hou, Y.; Zhao, S.; Rong, X.; Zhang, Y.; He, P.; Christie, P.; Zhou, W. Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil Tillage Res. 2016, 163, 255–265. [Google Scholar] [CrossRef]
- Wu, X.; Cai, X.; Li, Q.; Ren, B.; Bi, Y.; Zhang, J.; Wang, D. Effects of nitrogen application rate on summer maize (Zea mays L.) yield and water–nitrogen use efficiency under micro–sprinkling irrigation in the Huang–Huai–Hai Plain of China. Arch. Agron. Soil Sci. 2021, 1–15. [Google Scholar] [CrossRef]
- Treseder, K.K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol. Lett. 2008, 11, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lu, Y.; Ding, Y.; Yin, X.; Raza, S.; Tong, Y.A. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crop. Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Yan, M.; Luo, T.; Bian, R.; Cheng, K.; Pan, G.; Rees, R. A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China. Environ. Monit. Assess. 2015, 187, 332. [Google Scholar] [CrossRef]
- Li, G.; Zhao, B.; Dong, S.; Zhang, J.; Liu, P.; Lu, W. Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize. Agric. Water Manag. 2020, 227, 105834. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, Y.; Wu, M.; Peng, Z.; Wang, Y.; Li, H.; Wang, Y.; Sheng, L. Water and Nitrogen Utilization and Biological Effects of Winter Wheat under Different Water and Fertilizer Measures. J. Irrig. Drain. 2019, 38, 36–41, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Si, Z.; Zain, M.; Mehmood, F.; Wang, G.; Gao, Y.; Duan, A. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Ji, Y.; Feng, W.; Hao, X.; Peng, Y.; Han, P.; Ma, Z.; Zhang, L. Effects of Different Fertilization Pattern on the Yield of the Rotation System of Wheat and Maize and Soil Nitrate Accumulation in North China Plain. Ecol. Environ. Sci. 2014, 11, 1725–1731, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Huang, B.; Zhang, Y.; Sun, J.; Chen, X.; Zhang, L.; Zhu, Y.; Liu, H.; Wei, F.; Song, Y.; Li, J. Effect of Nitrogen and Density Interaction on Canopy Photosynthetic Characteristics and Yield of Winter Wheat in Huaibei Lime Concretion Black Soil Region. J. Triticeae Crop. 2019, 39, 994–1002, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Q.; Chen, W.; Sui, W.; Jiang, X.; Meng, W. Effects of groundwater depth on growth and yield of maize under mulched drip irrigation in the middle area of Liaoning Province. J. Soil Water Conserve 2018, 32, 170–175 + 182, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Kang, L.; Qi, X.; Ma, Y.; Qiao, D.; Li, P.; Huang, Z.; Fan, X. Effects of reclaimed water irrigation on winter wheat growth under different groundwater tables. Trans. Chin. Soc. Agric. 2007, 23, 95–100, (In Chinese with English abstract). [Google Scholar]
- Zhang, H.; Li, Y.; Meng, Y.; Cao, N.; Li, D.; Zhou, Z.; Chen, B.; Dou, F. The effects of soil moisture and salinity as functions of groundwater depth on wheat growth and yield in coastal saline soils. J. Integr. Agric. 2019, 18, 2472–2482. [Google Scholar] [CrossRef]
- Kahlown, M.A.; Ashraf, M.; Ziaul, H. Effect of shallow groundwater table on crop water requirements and crop yields. Agric. Water Manag. 2005, 76, 24–35. [Google Scholar] [CrossRef]
- Liu, T.; Liu, L.; Luo, Y.; Lai, J. Simulation of groundwater evaporation and groundwater depth using SWAT in the irrigation district with shallow water table. Environ. Earth Sci. 2015, 74, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Huo, Z.; Feng, S.; Huang, G.; Zheng, Y.; Wang, Y.; Guo, P. Effect of Groundwater Level Depth and Irrigation Amount on Water Fluxes at the Groundwater Table and Water Use of Wheat. Irrig. Drain. 2012, 61, 348–356. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Yu, J.; Nan, J.; Qin, A.; Xiao, J. Effects of groundwater depth on maize growth and water use efficiency. J. Drain. Irrig. Mach. Eng. 2014, 32, 617–624. [Google Scholar] [CrossRef]
- Cui, Z.-L.; Chen, X.-P.; Li, J.-L.; Xu, J.-F.; Shi, L.-W.; Zhang, F.-S. Effect of N fertilization on grain yield of winter wheat and apparent N losses. Pedosphere 2006, 16, 806–812. [Google Scholar] [CrossRef]
- Morari, F.; Lugato, E.; Polese, R.; Berti, A.; Giardini, L. Nitrate concentrations in groundwater under contrasting agricultural management practices in the low plains of Italy. Agric. Ecosyst. Environ. 2012, 147, 47–56. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, L.; Gu, S.; Shi, Y.; Liang, L.; Meng, F.; Guo, Y.; Ju, X.; Wu, W. Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems. Plant Soil Environ. 2018, 64, 156–163. [Google Scholar] [CrossRef]
- Lyu, X.; Wang, T.; Song, X.; Zhao, C.; Rees, R.M.; Liu, Z.; Xiaotang, J.; Siddique, K.H.M. Reducing N2O emissions with enhanced efficiency nitrogen fertilizers (EENFs) in a high-yielding spring maize system. Environ. Pollut. 2021, 273, 116422. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, J.; Zhou, X.; Li, F. Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield. Agric. Water Manag. 2018, 208, 307–317. [Google Scholar] [CrossRef]
- Wang, A.; Gallardo, M.; Zhao, W.; Zhang, Z.; Miao, M. Yield, nitrogen uptake and nitrogen leaching of tunnel greenhouse grown cucumber in a shallow groundwater region. Agric. Water Manag. 2019, 217, 73–80. [Google Scholar] [CrossRef]
- Shen, W.; Lin, X.; Shi, W.; Min, J.; Gao, N.; Zhang, H.; Yin, R.; He, X. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant Soil 2010, 337, 137–150. [Google Scholar] [CrossRef]
- Xin, J.; Liu, Y.; Chen, F.; Duan, Y.; Wei, G.; Zheng, X.; Li, M. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. Water Res. 2019, 165, 114977. [Google Scholar] [CrossRef]
- Zhou, J.; Gu, B.; Schlesinger, W.H.; Ju, X. Significant accumulation of nitrate in Chinese semi-humid croplands. Sci. Rep. 2016, 6, 25088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbeta, A.; Penuelas, J. Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Sci. Rep. 2017, 7, 10580. [Google Scholar] [CrossRef] [Green Version]
- Dadgar, M.A.; Nakhaei, M.; Porhemmat, J.; Eliasi, B.; Biswas, A. Potential groundwater recharge from deep drainage of irrigation water. Sci. Total Environ. 2020, 716, 137105. [Google Scholar] [CrossRef] [PubMed]
- Kadioglu, H.; Hatterman-Valenti, H.; Jia, X.; Chu, X.; Aslan, H.; Simsek, H. Groundwater Table Effects on the Yield, Growth, and Water Use of Canola (Brassica napus L.) Plant. Water 2019, 11, 1730. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Qu, Z.; Liu, Y.; Ma, Y. Experimental Research on the Effect of Different Kinds of Groundwater Buried Depth on Soil Water, Salinity and Crop Growth. China Rural Water Hydropower 2009, 5, 44–48, (In Chinese with English abstract). [Google Scholar]
- Li, Z.; Zhang, Q.; Qiao, Y.; Leng, P.; Zhang, Q.; Du, K.; Tian, C.; Li, X.; Chen, G.; Li, F. Influence of the shallow groundwater table on the groundwater N2O and direct N2O emissions in summer maize field in the North China Plain. Sci. Total Environ. 2021, 799, 149495. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Y.; Huang, Z.; Han, X.; Zhang, W.; Fan, Y.; Ma, Y. Research Progress of Effects of Waterlogging on Wheat Growth and Cultivation Technique for Waterlogging Resistance. J. Triticeae Crop. 2019, 39, 835–843, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Marti, J.; Savin, R.; Slafer, G.A. Wheat Yield as Affected by Length of Exposure to Waterlogging During Stem Elongation. J. Agron. Crop Sci. 2015, 201, 473–486. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, J.; Yu, J.; Nan, J.; Liu, Z. Effects of Different Groundwater Depths on Root and Shoot growth and Water Consumption of Summer Maize. J. Irrig. Drain. 2011, 30, 44–47, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Xia, J.; Zhang, S.; Zhao, X.; Liu, J.; Chen, Y. Effects of different groundwater depths on the distribution characteristics of soil-Tamarix water contents and salinity under saline mineralization conditions. Catena 2016, 142, 166–176. [Google Scholar] [CrossRef]
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat—A review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Karanlik, S.; Arslan, M. Response of bread-wheat seedlings to waterlogging stress. Turk. J. Agric. For. 2015, 39, 807–816. [Google Scholar] [CrossRef]
- Wu, J.-D.; Li, J.-C.; Wei, F.-Z.; Wang, C.-Y.; Zhang, Y.; Sun, G. Effects of nitrogen spraying on the post-anthesis stage of winter wheat under waterlogging stress. Acta Physiol. Plant. 2013, 36, 207–216. [Google Scholar] [CrossRef]
- Yue, X.; Hu, Y.; Zhang, H.; Schmidhalter, U. Optimizing the Nitrogen Management Strategy for Winter Wheat in the North China Plain Using Rapid Soil and Plant Nitrogen Measurements. Commun. Soil Sci. Plant Anal. 2019, 50, 1310–1320. [Google Scholar] [CrossRef]
- Gao, X.; Huo, Z.; Qu, Z.; Xu, X.; Huang, G.; Steenhuis, T.S. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area. Sci. Rep. 2017, 7, 43122. [Google Scholar] [CrossRef] [Green Version]
- Mueller, L.; Behrendt, A.; Schalitz, G.; Schindler, U. Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agric. Water Manag. 2005, 75, 117–136. [Google Scholar] [CrossRef]
- Ba, B.; Zheng, D.; Jia, Y.; Wu, C.; Ren, G. Influence of Water Table on the Soil Water Variation and Crop Yield of WinterWheat Field. Water Sav. Irrig. 2004, 5, 5–9, (In Chinese with English abstract). [Google Scholar]
- Yang, H.; Cao, W.; Zhi, C.; Li, Z.; Bao, X.; Ren, Y.; Liu, F.; Fan, C.; Wang, S.; Yabin, W. Evolution of groundwater level in the North China Plain in the past 40 years and suggestions on its overexploitation treatment. Geol. China 2021, 48, 1142–1155, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Liang, H.; Shen, P.; Kong, X.; Liao, Y.; Liu, Y.; Wen, X. Optimal Nitrogen Practice in Winter Wheat-Summer Maize Rotation Affecting the Fates of 15N-Labeled Fertilizer. Agronomy 2020, 10, 521. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Yue, S.; Hou, P.; Cui, Z.; Chen, X. Improving Yield and Nitrogen Use Efficiency Simultaneously for Maize and Wheat in China: A Review. Pedosphere 2016, 26, 137–147. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, X.; Zhang, F. Development of Regional Nitrogen Rate Guidelines for Intensive Cropping Systems in China. Agron. J. 2013, 105, 1411–1416. [Google Scholar] [CrossRef]
- Kroes, J.; Supit, I.; van Dam, J.; van Walsum, P.; Mulder, M. Impact of capillary rise and recirculation on simulated crop yields. Hydrol. Earth Syst. Sci. 2018, 22, 2937–2952. [Google Scholar] [CrossRef] [Green Version]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Efficiency of Mineral Nitrogen Fertilization in Winter Wheat under Pannonian Climate Conditions. Agriculture 2020, 10, 541. [Google Scholar] [CrossRef]
- Chen, C.; Xu, Z.; Hughes, J. Effects of nitrogen fertilization on soil nitrogen pools and microbial properties in a hoop pine (Araucaria cunninghamii) plantation in southeast Queensland, Australia. Biol. Fertil. Soils 2002, 36, 276–283. [Google Scholar] [CrossRef]
- Xiao, J.; Nan, J.; Liu, Z.; Yu, J. Study on yield and yield components of summer maize under different groundwater levels. Agric. Res. Arid. Areas 2010, 28, 36–39, (In Chinese with English abstract). [Google Scholar]
- Liu, X.; Zuo, R.; Meng, L.; Li, P.; Li, Z.; He, Z.; Li, J.; Wang, J. Study on the variation of nitrate pollution during the rise of groundwater level. China Environ. Sci. 2021, 41, 232–238, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Ascott, M.J.; Gooddy, D.C.; Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Binley, A.M. Global patterns of nitrate storage in the vadose zone. Nat. Commun. 2017, 8, 1416. [Google Scholar] [CrossRef]
- Ruiz, A.; Salvagiotti, F.; Gambin, B.L.; Borrás, L. Maize nitrogen management in soils with influencing water tables within optimum depth. Crop Sci. 2021, 61, 1386–1399. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, Z.; Li, H.; Wang, R.; Tan, J.; Li, S. Dynamics and Availability to Crops of Residual Fertilizer Nitrogen in Upland Soil. Acta Pedol. Sin. 2016, 53, 1202–1212, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, L.; He, X.; Liang, Z.; Zhang, W.; Zou, C.; Chen, X. Tiller development affected by nitrogen fertilization in a high-yielding wheat production system. Crop Sci. 2020, 60, 1034–1047. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, Y.; Well, R.; Wang, H.; Yan, X. Denitrification in Shallow Groundwater Below Different Arable Land Systems in a High Nitrogen-Loading Region. J. Geophys. Res. Biogeosci. 2018, 123, 991–1004. [Google Scholar] [CrossRef]
- Man, J.; Yu, Z.; Shi, Y. Radiation Interception, Chlorophyll Fluorescence and Senescence of Flag leaves in Winter Wheat under Supplemental Irrigation. Sci. Rep. 2017, 7, 7767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Zhang, M.; Li, J.; Liu, Z.; Zhao, Z.; Zhang, Y.; Zhou, S.; Wang, Z. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crop. Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F.; Römheld, V.; Horlacher, D.; Schulz, R.; Böning-Zilkens, M.; Wang, P.; Claupein, W. Synchronizing N Supply from Soil and Fertilizer and N Demand of Winter Wheat by an Improved Nmin Method. Nutr. Cycl. Agroecosyst. 2006, 74, 91–98. [Google Scholar] [CrossRef]
- Mengel, K.; Hütsch, B.; Kane, Y. Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen. Eur. J. Agron. 2006, 24, 343–348. [Google Scholar] [CrossRef]
- Chaney, K. Effect of nitrogen fertilizer rate on soil nitrate nitrogen content after harvesting winter wheat. J. Agric. Sci. 1990, 114, 171–176. [Google Scholar] [CrossRef]
Soil Layer (cm) | pH | EC (μs/cm) | OM (g·kg−1) | AN (mg·kg−1) | AK (mg·kg−1) | TN (g·kg−1) | TP (g·kg–1) | Mechanical Composition | ||
---|---|---|---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | ||||||||
0–20 | 9.34 | 270.00 | 12.29 | 17.27 | 128.33 | 0.85 | 0.63 | 18.26 | 47.43 | 34.31 |
20–40 | 9.62 | 313.33 | 9.87 | 13.30 | 81.33 | 1.25 | 0.59 | 18.09 | 45.93 | 35.97 |
40–60 | 9.58 | 364.00 | 8.78 | 7.93 | 81.67 | 1.52 | 0.53 | 17.84 | 44.04 | 38.78 |
>60 | 9.39 | 421.67 | 8.77 | 6.18 | 76.33 | 1.47 | 0.48 | 15.88 | 43.87 | 40.00 |
Irrigating Date (yy/mm/dd) | Irrigating Amount (m3/ha) | Irrigating Date (yy/mm/dd) | Irrigating Amount (m3/ha) |
---|---|---|---|
2021/1/13 | 176.44 | 2021/4/21 | 176.44 |
2021/3/17 | 308.77 | 2021/5/2 | 88.22 |
2021/3/31 | 176.44 | 2021/5/8 | 176.44 |
2021/4/11 | 176.44 |
NF-L | WTD (cm) | Ear Length (cm) | GN per Ear (No ear−1) | NS per Spi (No spike−1) | NIS per Spi (No spike−1) | SD (cm) | 1000-Grain Weight (g) | Spi per Area (No m−2) | Grain Yield) (kg·ha−1) | Ra of G (%) |
---|---|---|---|---|---|---|---|---|---|---|
NF 0 | G1 | 5.50 ± 0.03 d | 14.77 ± 0.78 d | 11.33 ± 0.71 c | 8.43 ± 0.15 a | 3.16 ± 0.04 c | 39.98 ± 0.89 b | 382.28 ± 48.59 a | 1971.41 ± 106.82 d | - |
G2 | 6.07 ± 0.15 c | 23.00 ± 0.95 c | 14.60 ± 0.17 b | 5.93 ± 0.41 b | 3.73 ± 0.10 b | 40.44 ± 0.20 b | 379.34 ± 26.47 a | 3316.00 ± 105.22 c | - | |
G3 | 6.71 ± 0.17 b | 32.57 ± 0.87 b | 17.63 ± 0.22 a | 3.40 ± 0.06 c | 3.94 ± 0.08 ab | 43.42 ± 0.21 a | 344.05 ± 8.83 a | 5149.04 ± 353.99 b | - | |
G4 | 7.16 ± 0.10 a | 37.60 ± 1.89 a | 18.17 ± 0.44 a | 3.30 ± 0.29 c | 4.10 ± 0.09 a | 43.84 ± 0.24 a | 420.51 ± 22.20 a | 6547.04 ± 352.21 a | - | |
Ave. | 6.36 C | 26.98 C | 15.43 C | 5.27 A | 3.73 C | 41.92 B | 381.55 B | 4245.87 C | - | |
NF150 | G1 | 7.33 ± 0.13 b | 43.28 ± 0.81 ab | 19.63 ± 0.45 a | 2.47 ± 0.29 a | 4.32 ± 0.14 a | 39.70 ± 0.58 c | 438.16 ± 12.82 c | 7461.66 ± 142.67 b | 278.49 |
G2 | 7.60 ± 0.10 b | 46.31 ± 0.56 a | 20.40 ± 0.12 a | 2.17 ± 0.22 a | 4.42 ± 0.03 a | 40.99 ± 0.21 c | 467.56 ± 5.09 b | 8519.82 ± 420.44 a | 156.93 | |
G3 | 7.59 ± 0.07 b | 39.43 ± 1.91 c | 18.78 ± 0.39 a | 3.33 ± 0.44 a | 4.21 ± 0.07 a | 43.41 ± 0.69 b | 541.08 ± 18.36 a | 9013.39 ± 315.94 a | 75.05 | |
G4 | 8.01 ± 0.13 a | 40.73 ± 0.32 bc | 19.23 ± 0.35 a | 3.37 ± 0.33 a | 4.32 ± 0.03 a | 45.98 ± 0.21 a | 526.37 ± 7.78 a | 8713.42 ± 239.35 a | 30.09 | |
Ave. | 7.63 A | 42.44 A | 19.51 A | 2.83 BC | 4.32 A | 42.52 AB | 493.29 A | 8400.44 B | 135.60 | |
NF240 | G1 | 7.45 ± 0.12 a | 45.77 ± 2.09 a | 19.73 ± 0.15 a | 2.00 ± 0.12 b | 4.40 ± 0.13 a | 39.38 ± 0.63 b | 479.32 ± 7.78 b | 8156.61 ± 182.47 b | 314.07 |
G2 | 7.43 ± 0.29 a | 45.35 ± 0.61 a | 19.85 ± 0.66 a | 1.90 ± 0.17 b | 4.22 ± 0.19 a | 39.69 ± 0.57 b | 476.38 ± 5.09 b | 8538.36 ± 199.17 b | 154.89 | |
G3 | 7.63 ± 0.07 a | 39.47 ± 0.82 b | 18.63 ± 0.26 a | 3.43 ± 0.44 a | 4.18 ± 0.03 a | 43.77 ± 1.64 a | 544.02 ± 24.07 a | 9202.64 ± 84.83 a | 78.73 | |
G4 | 7.63 ± 0.12 a | 38.97 ± 2.41 b | 18.73 ± 0.62 a | 3.27 ± 0.42 a | 4.22 ± 0.05 a | 43.70 ± 0.43 a | 505.79 ± 11.76 ab | 8686.33 ± 158.46 ab | 32.68 | |
Ave. | 7.54 AB | 42.39 A | 19.24 AB | 2.65 C | 4.25 AB | 41.63 B | 501.38 A | 8645.98 AB | 145.10 | |
NF300 | G1 | 7.47 ± 0.13 a | 45.37 ± 1.85 a | 20.03 ± 0.20 a | 2.10 ± 0.10 b | 4.25 ± 0.11 a | 39.48 ± 0.27 c | 499.91 ± 5.88 a | 9472.77 ± 233.39 a | 380.46 |
G2 | 7.62 ± 0.07 a | 44.33 ± 2.07 a | 19.77 ± 0.48 a | 2.53 ± 0.48 b | 4.30 ± 0.06 a | 39.54 ± 1.12 c | 526.37 ± 20.58 a | 9382.65 ± 52.21 a | 182.95 | |
G3 | 7.30 ± 0.15 a | 34.83 ± 1.67 b | 17.60 ± 0.21 b | 4.13 ± 0.43 a | 3.99 ± 0.10 a | 48.20 ± 0.60 a | 505.79 ± 19.28 a | 8857.31 ± 42.90 a | 72.03 | |
G4 | 7.12 ± 0.09 a | 34.48 ± 1.54 b | 17.40 ± 0.45 b | 4.31 ± 0.21 a | 3.95 ± 0.10 a | 45.05 ± 0.76 b | 488.15 ± 26.14 a | 7818.95 ± 296.87 b | 19.43 | |
Ave. | 7.38 B | 39.75 B | 18.7 B | 3.27 B | 4.12 B | 43.07 A | 505.05 A | 8882.92 A | 163.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, Y.; Li, P.; Qi, X.; Guo, W.; Rahman, S.U.; Lu, H.; Ma, C.; Du, Z.; Cui, J.; Liang, Z. Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat. Agriculture 2022, 12, 311. https://doi.org/10.3390/agriculture12020311
She Y, Li P, Qi X, Guo W, Rahman SU, Lu H, Ma C, Du Z, Cui J, Liang Z. Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat. Agriculture. 2022; 12(2):311. https://doi.org/10.3390/agriculture12020311
Chicago/Turabian StyleShe, Yingjun, Ping Li, Xuebin Qi, Wei Guo, Shafeeq Ur Rahman, Hongfei Lu, Cancan Ma, Zhenjie Du, Jiaxin Cui, and Zhijie Liang. 2022. "Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat" Agriculture 12, no. 2: 311. https://doi.org/10.3390/agriculture12020311
APA StyleShe, Y., Li, P., Qi, X., Guo, W., Rahman, S. U., Lu, H., Ma, C., Du, Z., Cui, J., & Liang, Z. (2022). Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat. Agriculture, 12(2), 311. https://doi.org/10.3390/agriculture12020311