Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Measurements
2.3.1. Physiological and Growth Indexes of Tomato
2.3.2. Yield and Irrigation Water Utilization Efficiency
2.3.3. Fruit Quality Parameters
2.4. Model Application and Methods
2.5. Statistical Analysis
3. Results
3.1. Photosynthetic Characteristics of Tomato
3.2. Aboveground Biomass Accumulation and Allocation
3.3. Yield and Water-Use Efficiency
3.4. Fruit Quality
3.5. Fuzzy Borda Combination Evaluation
3.5.1. Evaluation Results of a Single Evaluation Method
3.5.2. Evaluation Results of Fuzzy Borda Combination Evaluation
4. Discussion
4.1. Effects of RDI on Photosynthesis and Its Relationship with Yield
4.2. Effects of RDI on the Yield, Quality, and Water Use of Tomato
4.3. Relationship between Tomato Yield, Growth, and Physiology Indexes
4.4. Comprehensive Evaluation of Yield, Quality, and Water Use of Tomato
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khapte, P.S.; Kumar, P.; Burman, U.; Kumar, P. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Sci. Hortic. 2019, 248, 256–264. [Google Scholar] [CrossRef]
- Guichard, S.; Bertin, N.; Leonardi, C.; Gary, C. Tomato fruit quality in relation to water and carbon fluxes. Agronomie 2001, 21, 385–392. [Google Scholar] [CrossRef]
- Chen, J.L.; Kang, S.Z.; Du, T.S.; Guo, P.; Qiu, R.J.; Chen, R.Q.; Gu, F. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agric. Water Manag. 2014, 146, 131–148. [Google Scholar] [CrossRef]
- Buttaro, D.; Santamaria, P.; Signore, A.; Cantore, V.; Boari, F.; Montesano, F.F.; Parente, A. Irrigation management of greenhouse tomato and cucumber using tensiometer: Effects on yield, quality and water use. Agric. Agric. Sci. Procedia 2015, 4, 440–444. [Google Scholar] [CrossRef] [Green Version]
- FAO. Water for Sustainable Food and Agriculture a Report Produced for the G20 Presidency of Germany; FAO: Rome, Italy, 2017. [Google Scholar]
- Hooshmanda, M.; Albajia, M.; Boroomand, S.; Ansarib, N.A. The effect of deficit irrigation on yield and yield components of greenhouse tomato (Solanum lycopersicum) in hydroponic culture in Ahvaz region. Iran. Sci. Hortic. 2019, 254, 84–90. [Google Scholar] [CrossRef]
- Zhong, Y.; Fei, L.; Zeng, J.; Fu, Y.; Dai, Z. Effects of root-zone water deficit on yield, quality and water use efficiency of young apple trees under surge-root irrigation. Trans. Chin. Soc. Agric. Mach. 2019, 35, 78–87. [Google Scholar]
- Ruiz-Sánchez, M.C.; Domingo, R.; Castel, J.R. Review.Deficit irrigation in fruit trees and vines in Spain. Span. J. Agric. Res. 2010, 8, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Chen, J.; Wang, F.; Li, X.; Génard, M.; Kang, S. An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China. Agric. Water Manag. 2020, 241, 106331. [Google Scholar] [CrossRef]
- Erba, D.; Casiraghi, M.C.; Ribas-Agustí, A.; Caceres, R.; Marfa, O.; Castellari, M. Nutritional value of tomatoes (Solanum lycope rsicum L.) grown in greenhouse by different agronomic techniques. J. Food Compos. Anal. 2013, 31, 245–251. [Google Scholar] [CrossRef]
- Chand, J.B.; Hewa, G.; Hassanli, A.; Myers, B. Deficit Irrigation on Tomato Production in a Greenhouse Environment: A Review. J. Irrig. Drain. Eng. 2021, 147, 04020041. [Google Scholar] [CrossRef]
- Wang, C.; Gu, F.; Chen, J.; Yang, H.; Jiang, J.; Du, T.; Zhang, J. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies. Agric. Water Manag. 2015, 161, 9–19. [Google Scholar] [CrossRef]
- Wen, A.; Zhang, H. Plant growth of processing tomato (Solanum lycopersicum) subjected to water deficit regulated with mulched drip irrigation. Adv. Mater. Res. 2014, 838–841, 2366–2369. [Google Scholar] [CrossRef]
- Yang, H.; Du, T.; Qiu, R.; Chen, J.; Wang, F.; Li, Y.; Wang, C.; Gao, L.; Kang, S. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 2017, 179, 193–204. [Google Scholar] [CrossRef]
- Du, Y.-D.; Cao, H.-X.; Liu, S.-Q.; Gu, X.; Cao, Y.-X. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Reddya, A.R.; Chaitanyaa, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant. Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Y.; Jia, Y.; Cui, N.; Zhao, L.; Hu, X.; Gong, D. Effect of water deficit on photosynthetic characteristics, yield and water use efficiency in Shiranui citrus under drip irrigation. Trans. CSAE 2018, 34, 143–150. [Google Scholar]
- Agbna, G.H.D.; She, D.; Liu, Z.; Nazar, A.E.; Shao, G.; Luis, C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Hao, S.; Cao, H.; Wang, H.; Pan, X. Effects of water stress at different growth stages on comprehensive fruit quality and yield in different bunches of tomatoes in greenhouses. Int. J. Agric. Biol. Eng. 2019, 12, 67–76. [Google Scholar] [CrossRef]
- Lovelli, S.; Potenza, G.; Castronuovo, D.; Perniola, M.; Candido, V. Yield, quality and water use efficiency of processing tomatoes produced under different irrigation regimes in Mediterranean environment. Ital. J. Agron. 2017, 12, 795. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Shao, G.; Cui, J.; Wang, X.; Keabetswe, L. Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis. Agric. Water Manag. 2019, 222, 301–312. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; Sun, X.; Shi, X.; Guo, X.; Lei, T. Effects of water saving and nitrogen reduction on tomato growth and utilization rate ofwater and nitrogen in greenhouse. J. Drain. Irrig. Mach. Eng. 2021, 39, 1056–1061. [Google Scholar]
- Zhu, Y.; Cai, H.; Song, L.; Wang, X.; Shang, Z.; Sun, Y. Aerated irrigation of different irrigation levels and subsurface dripper depths affects fruit yield, quality and water use efficiency of greenhouse tomato. Sustainability 2020, 12, 2703. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Li, F. Tomato yield, quality and water use efficiency under different drip fertigation strategies. Sci. Hortic. 2018, 235, 181–188. [Google Scholar] [CrossRef]
- Gugerell, C.; Sato, T.; Hvitsand, C.; Toriyama, D.; Suzuki, N.; Penker, M. Know the farmer that feeds you: A cross-country analysis of spatial-relational proximities and the attractiveness of community supported agriculture. Agriculture 2021, 11, 1006. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, Y.; Tong, L.; Wang, R.; Zhao, S. Quantitative analysis of tomato yield and comprehensive fruit quality in response to deficit irrigation at different growth stages. Hortscience 2019, 54, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- Keabetswe, L.; Shao, G.; Cui, J.; Lu, J.; Stimela, T. A combination of biochar and regulated deficit irrigation improves tomato fruit quality: A comprehensive quality analysis. Foli Hortic. 2019, 31, 181–193. [Google Scholar] [CrossRef] [Green Version]
- An, X.; Liang, Y.; Gao, D.; Zhu, S.; Kong, F. Response of health-promoting bioactive compounds and related enzyme activities of table grape (Vitis vinifera L.) to deficit irrigation in greenhouse. J. Hortic. Sci. Bio. 2018, 93, 573–584. [Google Scholar] [CrossRef]
- Ma, T.; Zeng, W.; Li, Q.; Wu, J.; Huang, J. Effects of water, salt and nitrogen stress on sunflower (Helianthus annuus L.) at different growth stages. J. Soil. Sci. Plant. Nutr. 2016, 16, 1024–1037. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Wang, Y.; Zhou, C. Integrated evaluation of the water deficit irrigation scheme of indigowoad root under mulched drip irrigation in arid regions of northwest china based on the improved TOPSIS method. Water 2021, 13, 1532. [Google Scholar] [CrossRef]
- Shan, B.; Guo, P.; Guo, S.; Li, Z. A Price-Forecast-Based irrigation scheduling optimization model under the response of fruit quality and price to water. Sustainability 2019, 11, 2124. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, H.; Gong, X.; Li, S.; Pang, J.; Chen, Z.; Sun, J. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agric. Water Manag. 2021, 245, 106570. [Google Scholar] [CrossRef]
- Chen, G.; Li, M. The research on the comprehensive evaluation method integration based on method set. China J. Manag. Sci. 2004, 12, 101–105. [Google Scholar]
- Hu, T.; He, Q.; Hong, X.; Liu, J.; Li, H.; Feng, P.; Yang, S.H. Response of tomato yield-quality evaluated by fuzzy Borda combined model to irrigation and fertilization supply. Trans. CSAE 2019, 35, 142–151. [Google Scholar]
- Li, H. The Principle and Technology of Plant Physiology and Biochemistry Experiment; Higher education Press: Beijing, China, 2000. [Google Scholar]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Li, J.; Yang, Q.; Shi, Z.; Zang, Z.; Liu, X. Effects of deficit irrigation and organic fertilizer on yield, saponin and disease incidence in Panax notoginseng under shaded conditions. Agric. Water Manag. 2021, 256, 107056. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z.; Li, J.; Zhang, M.; Li, R.; He, D. Water and fertilizer irrigation decision of muskmelon based on grey correlation and TOPSIS coupling model. Transactions. China Soc. Agric. Mach. 2021, 52, 302–311. [Google Scholar]
- Rasoola, G.; Guo, X.; Wang, Z.; Alib, M.U.; Chen, S.; Zhang, S.; Wu, Q.; Ullahd, M.S. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato. Agric. Water Manag. 2020, 239, 106239. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, M.; Zhang, S.; Fan, J.; Feng, H.; Zhang, F.; Wang, X.; Sun, L.; Xiang, Y. Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods. Agric. Water Manag. 2021, 256, 107130. [Google Scholar] [CrossRef]
- Guo, X.; Li, S.; Wang, D.; Huang, Z.; Sarwar, N.; Mubeen, K.; Shakeel, M.; Hussain, M. Effects of water and fertilizer coupling on the physiological characteristics and growth of rabbiteye blueberry. PLoS ONE 2021, 16, e0254013. [Google Scholar] [CrossRef]
- Zeng, X. On the pre-test and post-test of combination evaluation method. Stat. Res. 1997, 6, 56–58. [Google Scholar]
- Wen, Y.; Wang, Z.; Guo, L.; Li, W. Establishing a physiology-yield-quality evaluation model for grape optimizing drip irrigation on grape fields in extremely arid regions. Appl. Eng. Agric. 2021, 37, 267–278. [Google Scholar] [CrossRef]
- Krivokapić, M. Study on the evaluation of (heavy) metals in water and sediment of Skadar Lake (Montenegro), with BCF assessment and translocation ability (TA) by Trapa natans and a review of SDGs. Water 2021, 13, 876. [Google Scholar] [CrossRef]
- Yu, S.; Tang, Z. Plant Physiological and Molecular Biology, 2nd ed.; Science Press: Beijing, China, 1998. [Google Scholar]
- Xu, D. Some note worthy problems in measurement and investigation of photosynthesis. J. Plant Physiol. 2006, 42, 1163–1167. [Google Scholar]
- Yu, W.; Ji, R.; Feng, R.; Zhao, X.; Zhang, Y. Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage. Acta Ecol. Sin. 2015, 35, 2902–2909. [Google Scholar]
- Galme, J.; Medrano, H.; Flexas, J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 2007, 175, 81–93. [Google Scholar] [CrossRef]
- Zhang, J.; Davies, W. Sequential response of w hole plant water relations tow ards prolonged soil drying and the mediation by xylem sap ABA concentration in the regulation of stomata behavior of sunflower plants. New Phytol. 1989, 113, 167–174. [Google Scholar] [CrossRef]
- Davies, W.; Zhang, J. Root signal and the regulation of growth and development of plants in drying soil. Annu. Rev. Biol. Plant Physi. Plant Mol. 1991, 42, 55–76. [Google Scholar] [CrossRef]
- Liu, J.; Hu, T.; Feng, P.; Wang, L.; Yang, S. Tomato yield and water use efficiency change with various soil moisture and potassium levels during different growth stages. PLoS ONE 2019, 14, e0213643. [Google Scholar] [CrossRef]
- Liu, J.; Hu, T.; Feng, P.; Yao, D.; Gao, F.; Hong, X. Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime. Agric. Water Manag. 2021, 250, 106831. [Google Scholar] [CrossRef]
- Ehret, D.L.; Ho, L.C. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hortic. Sci. 1986, 61, 36–367. [Google Scholar] [CrossRef]
- Rasool, G.; Guo, X.; Wang, Z.; Chen, S.; Ullah, I. The interactive responses of fertigation levels under buried straw layer on growth, physiological traits and fruit yield in tomato plant. J. Plant Interact. 2019, 14, 552–563. [Google Scholar] [CrossRef]
- Yang, H.; Shukla, M.K.; Mao, X.; Kang, S.; Du, T. Interactive regimes of reduced irrigation and salt stress depressed tomato water use efficiency at leaf and plant scales by affecting leaf physiology and stem sap flow. Front. Plant Sci. 2019, 10, 160. [Google Scholar] [CrossRef]
- Guo, L.; Yu, H.; Kharbach, M.; Zhang, W.; Wang, J.; Niu, W. Biochar improves soil-tomato plant, tomato production, and economic benefits under reduced nitrogen application in northwestern China. Plants 2021, 10, 759. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Niu, W. Deficit alternate drip irrigation increased Root-Soil-Plant interaction, tomato yield, and quality. Int. J. Environ. Res. Public Health 2020, 17, 781. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Lakhiar, I.A. Effects of drip irrigation emitter density with various irrigation levels on physiological parameters, root, yield and quality of cherry tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Güneri, Ö.; Göktaş, A.; Kayalı, U. Path analysis and determining the distribution of indirect effects via simulation. J. Appl. Stat. 2017, 44, 1181–1210. [Google Scholar] [CrossRef]
- Cai, J.; Liu, Y.; Xu, D.; Shi, B. Sensitivity analysis on water deficit indicator of winter wheat based on path analysis theory. J. Hydra. Eng. 2008, 39, 83–90. [Google Scholar]
- Lu, Y.; Yan, Z.; Li, L.; Gao, C.; Shao, L. Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply. Agric. Water Manag. 2020, 242, 106410. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Objective combination evaluation model based on dimension reduction. Opera. Resear. Manag. Sci. 2009, 18, 38–43. [Google Scholar]
- Xing, M.; Luo, F. Comparative study on the optimization path of industrial value chain in China,s Resource-Based cities. Sustainability 2018, 10, 1338. [Google Scholar] [CrossRef] [Green Version]
Soil Depth (cm) | Bulk Density (g/cm3) | Field Capacity (cm3/cm3) | pH | Organic Matter (g/kg) | Total N (g/kg) | Total P (g/kg) | Total K (g/kg) |
---|---|---|---|---|---|---|---|
0–20 | 1.19 | 0.40 | 8.34 | 35.30 | 1.83 | 0.67 | 44.37 |
20–40 | 1.59 | 0.38 | 8.28 | 28.61 | 1.43 | 0.77 | 43.61 |
40–60 | 1.58 | 0.37 | 8.51 | 16.67 | 1.07 | 0.56 | 42.95 |
Year | Treatment | Irrigation Amount and Time per Growth Stage | ||||
---|---|---|---|---|---|---|
Stage I | Stage II | Stage I | Stage II | Irrigation Quota (mm) | ||
2020 | T1 | 70–90% θf | 60–80% θf | 27.6 (7) | 27.6 (3) | 296.0 (11) |
T2 | 70–90% θf | 50–70% θf | 27.6 (7) | 27.6 (2) | 268.4 (10) | |
T3 | 70–90% θf | 40–60% θf | 27.6 (7) | 27.6 (1) | 240.8 (9) | |
T4 | 60–80% θf | 60–80% θf | 27.6 (5) | 27.6 (4) | 268.4 (10) | |
T5 | 60–80% θf | 50–70% θf | 27.6 (5) | 27.6 (3) | 240.8 (9) | |
T6 | 60–80% θf | 40–60% θf | 27.6 (5) | 27.6 (2) | 213.2 (8) | |
T7 | 50–70% θf | 60–80% θf | 27.6 (3) | 27.6 (4) | 213.2 (8) | |
T8 | 50–70% θf | 50–70% θf | 27.6 (3) | 27.6 (3) | 185.6 (7) | |
T9 | 50–70% θf | 40–60% θf | 27.6 (3) | 27.6 (2) | 158.0 (6) | |
2021 | T1 | 70–90% θf | 60–80% θf | 27.6 (8) | 27.6 (3) | 328.6 (12) |
T2 | 70–90% θf | 50–70% θf | 27.6 (8) | 27.6 (2) | 301.0 (11) | |
T3 | 70–90% θf | 40–60% θf | 27.6 (8) | 27.6 (1) | 273.4 (10) | |
T4 | 60–80% θf | 60–80% θf | 27.6 (6) | 27.6 (3) | 273.4 (10) | |
T5 | 60–80% θf | 50–70% θf | 27.6 (6) | 27.6 (2) | 245.8 (9) | |
T6 | 60–80% θf | 40–60% θf | 27.6 (6) | 27.6 (1) | 218.2 (8) | |
T7 | 50–70% θf | 60–80% θf | 27.6 (4) | 27.6 (4) | 245.8 (9) | |
T8 | 50–70% θf | 50–70% θf | 27.6 (4) | 27.6 (3) | 218.2 (8) | |
T9 | 50–70% θf | 40–60% θf | 27.6 (4) | 27.6 (2) | 190.6 (7) |
Year | Treatment | Yield (kg/hm2) | WUEY (kg/m3) | WUEL (μmol/mmol) |
---|---|---|---|---|
2020 | T1 | 83.3 ± 4.4 a | 28.2 ± 1.5 bc | 3.3 ± 0.5 a |
T2 | 82.2 ± 3.9 a | 30.6 ± 1.5 abc | 3.5 ± 0.5 a | |
T3 | 81.7 ± 4.2 a | 33.9 ± 1.7 a | 3.6 ± 0.2 a | |
T4 | 69.4 ± 2.4 b | 25.9 ± 0.9 c | 2.9 ± 0.2 ab | |
T5 | 68.9 ± 2.4 b | 28.6 ± 1.0 bc | 3.2 ± 0.5 ab | |
T6 | 64.4 ± 2.9 bc | 30.22 ± 1.4 abc | 2.7 ± 0.2 abc | |
T7 | 58.3 ± 2.6 cd | 27.4 ± 1.2 bc | 2.4 ± 0.6 abc | |
T8 | 51.7 ± 2.6 d | 27.8 ± 1.4 bc | 2.0 ± 0.4 bc | |
T9 | 48.9 ± 4.8 d | 30.7 ± 3.0 ab | 1.8 ± 0.4 c | |
2021 | T1 | 93.5 ± 0.8 a | 28.5 ± 0.3 c | 2.6 ± 0.2 ab |
T2 | 91.2 ± 0.4 a | 30.1 ± 0.2 b | 3.1 ± 0.2 ab | |
T3 | 90.3 ± 0.5 a | 32.8 ± 0.2 a | 3.2 ± 0.1 a | |
T4 | 71.9 ± 0.9 b | 26.1 ± 0.3 d | 3.1 ± 0.1 a | |
T5 | 69.9 ± 1.3 b | 28.4 ± 0.5 c | 2.9 ± 0.4 ab | |
T6 | 69.1 ± 0.6 b | 31.7 ± 0.3 a | 2.7 ± 0.3 ab | |
T7 | 57.0 ± 1.6 c | 23.2 ± 0.6 e | 3.0 ± 0.2 ab | |
T8 | 55.5 ± 1.7 c | 25.4 ± 0.8 d | 2.5 ± 0.1 bc | |
T9 | 56.0 ± 1.3 c | 29.4 ± 0.7 bc | 2.0 ± 0.1 c |
Year | Treatment | FSI | VC (mg/100g) | Fn (kg/cm2) | SS (%) | OA (/%) | SAR |
---|---|---|---|---|---|---|---|
2020 | T1 | 0.82 ± 0.01 e | 14.41 ± 0.52 c | 1.77 ± 0.21 d | 4.61 ± 0.37 d | 0.66 ± 0.01 c | 6.98 ± 0.51 b |
T2 | 0.86 ± 0.02 cde | 18.29 ± 0.70 b | 2.56 ± 0.15 c | 5.65 ± 0.07 c | 0.78 ± 0.06 abc | 7.33 ± 0.65 b | |
T3 | 0.94 ± 0.01 a | 22.17 ± 0.21 a | 4.22 ± 0.13 a | 7.31 ± 0.05 a | 0.83 ± 0.02 ab | 8.86 ± 0.25 a | |
T4 | 0.84 ± 0.02 de | 15.03 ± 0.98 c | 2.35 ± 0.11 c | 4.83 ± 0.07 d | 0.71 ± 0.07 bc | 6.90 ± 0.60 b | |
T5 | 0.87 ± 0.01 bcd | 18.98 ± 0.19 b | 2.68 ± 0.12 c | 5.92 ± 0.07 bc | 0.78 ± 0.06 abc | 7.65 ± 0.51 ab | |
T6 | 0.91 ± 0.02 ab | 21.96 ± 0.48 a | 4.16 ± 0.08 a | 7.42 ± 0.07 a | 0.84 ± 0.01 ab | 8.86 ± 0.08 a | |
T7 | 0.86 ± 0.01 cde | 17.78 ± 0.62 b | 2.56 ± 0.04 c | 5.10 ± 0.12 d | 0.75 ± 0.02 abc | 6.85 ± 0.37 b | |
T8 | 0.88 ± 0.01 bc | 19.30 ± 0.62 b | 3.43 ± 0.17 b | 6.40 ± 0.17 b | 0.80 ± 0.07 ab | 8.06 ± 0.53 ab | |
T9 | 0.91 ± 0.01 ab | 23.04 ± 0.24 a | 4.13 ± 0.25 a | 7.53 ± 0.25 a | 0.85 ± 0.01 a | 8.84 ± 0.20 a | |
2021 | T1 | 0.81 ± 0.01 c | 8.18 ± 0.11 e | 2.66 ± 0.09 c | 2.37 ± 0.07 d | 0.46 ± 0.03 c | 5.20 ± 0.22 d |
T2 | 0.83 ± 0.01 c | 12.59 ± 0.12 c | 2.95 ± 0.16 bc | 4.33 ± 0.36 b | 0.62 ± 0.01 b | 6.98 ± 0.33 abc | |
T3 | 0.90 ± 0.01 b | 21.53 ± 0.31 b | 3.53 ± 0.01 a | 6.53 ± 0.04 a | 0.82 ± 0.03 a | 7.99 ± 0.34 a | |
T4 | 0.81 ± 0.01 c | 9.06 ± 0.79 de | 2.68 ± 0.15 c | 2.75 ± 0.06 cd | 0.49 ± 0.08 c | 6.03 ± 0.23 cd | |
T5 | 0.84 ± 0.01 c | 12.37 ± 0.21 c | 3.21 ± 0.25 ab | 4.43 ± 0.11 b | 0.69 ± 0.01 b | 6.38 ± 0.26 bcd | |
T6 | 0.91 ± 0.01 ab | 21.90 ± 0.57 ab | 3.40 ± 0.24 a | 6.50 ± 0.22 a | 0.83 ± 0.02 a | 7.80 ± 0.21 ab | |
T7 | 0.82 ± 0.02 c | 9.63 ± 0.29 d | 2.85 ± 0.09 bc | 3.15 ± 0.07 c | 0.49 ± 0.03 c | 6.41 ± 0.30 bcd | |
T8 | 0.84 ± 0.01 c | 13.03 ± 0.13 c | 3.23 ± 0.24 ab | 4.52 ± 0.04 b | 0.71 ± 0.04 b | 6.43 ± 0.45 bcd | |
T9 | 0.94 ± 0.02 a | 22.88 ± 0.63 a | 3.51 ± 0.31 a | 6.83 ± 0.08 a | 0.86 ± 0.01 a | 7.93 ± 0.29 a |
Year | Treatment | PCA | GRA | MFA | TOPSIS-AHP | Standard Deviation of Ranking | ||||
---|---|---|---|---|---|---|---|---|---|---|
Ev | R | Ev | R | Ev | R | Ev | R | |||
2020 | T1 | −2.56 | 9 | 0.50 | 7 | 2.19 | 8 | 0.34 | 6 | 1.29 |
T2 | −0.34 | 6 | 0.60 | 4 | 4.83 | 4 | 0.60 | 2 | 1.63 | |
T3 | 2.84 | 1 | 0.94 | 1 | 8.67 | 1 | 0.97 | 1 | 0.00 | |
T4 | −2.30 | 8 | 0.45 | 9 | 2.04 | 9 | 0.15 | 9 | 0.50 | |
T5 | −0.30 | 5 | 0.55 | 5 | 4.49 | 5 | 0.38 | 5 | 0.00 | |
T6 | 1.94 | 3 | 0.76 | 3 | 6.95 | 2 | 0.57 | 4 | 0.82 | |
T7 | −1.48 | 7 | 0.46 | 8 | 2.53 | 7 | 0.21 | 8 | 0.58 | |
T8 | 0.15 | 4 | 0.55 | 6 | 4.21 | 6 | 0.28 | 7 | 1.26 | |
T9 | 2.06 | 2 | 0.76 | 2 | 6.29 | 3 | 0.58 | 3 | 0.58 | |
2021 | T1 | −2.14 | 9 | 0.48 | 8 | 2.11 | 8 | 0.51 | 6 | 1.26 |
T2 | −0.21 | 4 | 0.60 | 4 | 4.82 | 4 | 0.70 | 3 | 0.50 | |
T3 | 2.54 | 1 | 0.91 | 1 | 8.32 | 1 | 0.97 | 1 | 0.00 | |
T4 | −2.09 | 7 | 0.48 | 7 | 2.28 | 7 | 0.34 | 7 | 0.00 | |
T5 | −0.27 | 5 | 0.54 | 5 | 4.27 | 5 | 0.54 | 5 | 0.00 | |
T6 | 2.27 | 3 | 0.77 | 3 | 7.18 | 2 | 0.82 | 2 | 0.58 | |
T7 | −2.10 | 8 | 0.46 | 9 | 1.98 | 9 | 0.18 | 9 | 0.50 | |
T8 | −0.50 | 6 | 0.50 | 6 | 3.47 | 6 | 0.27 | 8 | 1.00 | |
T9 | 2.50 | 2 | 0.80 | 2 | 6.61 | 3 | 0.60 | 4 | 0.96 |
Year | Method | PCA | GRA | MFA | TOPSIS-AHP | Mean Value |
---|---|---|---|---|---|---|
2020 | PCA | 0.72 | 0.72 | 0.56 | 0.67 | |
GRA | 0.72 | 0.89 | 0.83 | 0.81 | ||
MFA | 0.72 | 0.89 | 0.72 | 0.78 | ||
TOPSIS-AHP | 0.56 | 0.83 | 0.72 | 0.70 | ||
2021 | PCA | 0.94 | 0.89 | 0.67 | 0.83 | |
GRA | 0.94 | 0.94 | 0.72 | 0.87 | ||
MFA | 0.89 | 0.94 | 0.78 | 0.87 | ||
TOPSIS-AHP | 0.67 | 0.72 | 0.78 | 0.72 |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | ||
---|---|---|---|---|---|---|---|---|---|---|
2020 | Evaluation value | 0.66 | 8.12 | 35.40 | 0.03 | 3.73 | 14.91 | 0.37 | 2.96 | 16.80 |
Ranking | 7 | 4 | 1 | 9 | 5 | 3 | 8 | 6 | 2 | |
2021 | Evaluation value | 0.68 | 8.00 | 33.78 | 0.47 | 3.80 | 19.03 | 0.02 | 1.32 | 17.67 |
Ranking | 7 | 4 | 1 | 8 | 5 | 2 | 9 | 6 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, J.; Zheng, L.; Chen, J.; Sun, X.; Guo, X. Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model. Agriculture 2022, 12, 324. https://doi.org/10.3390/agriculture12030324
Li X, Ma J, Zheng L, Chen J, Sun X, Guo X. Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model. Agriculture. 2022; 12(3):324. https://doi.org/10.3390/agriculture12030324
Chicago/Turabian StyleLi, Xufeng, Juanjuan Ma, Lijian Zheng, Jinping Chen, Xihuan Sun, and Xianghong Guo. 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model" Agriculture 12, no. 3: 324. https://doi.org/10.3390/agriculture12030324
APA StyleLi, X., Ma, J., Zheng, L., Chen, J., Sun, X., & Guo, X. (2022). Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model. Agriculture, 12(3), 324. https://doi.org/10.3390/agriculture12030324