Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Sample Description
2.3. Production of Briquettes
2.4. Chemical Characterization of Briquetted Obtained from Vineyard Waste
2.4.1. Carbohydrate and Lignin Analysis
2.4.2. Elemental Analysis and Ash of Briquettes
2.4.3. Metals Determination
2.4.4. Mercury and Chlorine Determination
2.4.5. Determination of the Energy Consumption for Vineyard Waste Briquetting
2.5. Structural Characterization of Briquettes
2.5.1. TGA/DTG Analysis
2.5.2. X-ray Diffraction (XRD)
2.6. Fuel Indexes Estimation
2.7. Combustion Experiments
2.8. Statistics
3. Results and Discussion
3.1. Energy Consumption for Briquetting of Vineyard Waste
3.2. Analysis of the Briquettes Obtained from Vineyard Waste
3.3. Estimation of Fuel Indexes of Briquettes
3.4. Structural Characterization of Briquettes
3.4.1. X-ray Diffraction Analyses of the Briquettes
3.4.2. TGA of Briquettes
3.5. Analysis of Gaseous Emissions from the Combustion of Briquettes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avcioğlu, A.O.; Dayioğlu, M.A.; Tütker, U. Assessment of the energy potential of agricultural biomass residues in Turkey. Renew. Energy 2019, 138, 610–619. [Google Scholar] [CrossRef]
- Nour, M.; Amer, M.; Elwardany, A.; Attia, A.; Li, X.; Nada, S. Pyrolysis, kinetics, and structural analyses of agricultural residues in Egypt: For future assessment of their energy potential. Clean. Eng. Technol. 2021, 2, 100080. [Google Scholar] [CrossRef]
- Asamoah, B.; Josiane, N.; Gebrezgabher, S.; Odonkor, E.; Njenga, M. Fuel briquettes: Making business sense. Urban Agric. Mag. 2017, 32, 42–43. [Google Scholar]
- Manandhar, A.; Mousavi-Avval, S.H.; Tatum, J.; Shrestha, E.; Nazemi, P.; Shah, A. Chapter Eighteen—Solid biofuels. In Biomass, Biofuels, Biochemicals, Green-Economy, Systems Analysis for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 343–370. [Google Scholar]
- Kpalo, S.Y.; Zainuddin, M.F.; Manaf, L.A.; Roslan, A.M. A review of technical and economic aspects of biomass briquetting. Sustainability 2020, 12, 4609. [Google Scholar] [CrossRef]
- Brunerova, A.; Roubik, H.; Brozek, M.; Dung, D.V.; Phung, L.D.; Hasanudin, U.; Iryani, D.A.; Herak, D. Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam. Waste Manag. Res. 2020, 38, 1239–1250. [Google Scholar] [CrossRef]
- Velusamy, S.; Subbaiyan, A.; Kandasamy, S.; Shanmugamoorthi, M.; Thirumoorthy, P. Combustion characteristics of biomass fuel briquettes from onion peels and tamarind shells. Arch. Environ. Occup. Health 2021, 1–12. [Google Scholar] [CrossRef]
- Bot, B.V.; Tamba, J.G.; Sosso, O.T. Assessment of biomass briquette energy potential from agricultural residues in Cameroon. Biomass Convers. Biorefin. 2022, 1–13. [Google Scholar] [CrossRef]
- Kizito, S.; Jjagwe, J.; Ssewaya, B.; Nekesa, L.; Tumutegyereize, P.; Zziwa, A.; Komakech, A.J. Biofuel characteristics of non-charred briquettes from dried fecal sludge blended with food market waste: Suggesting a waste-to-biofuel enterprise as a win-win strategy to solve energy and sanitation problems in slums settlements. Waste Manag. 2021, 140, 173–182. [Google Scholar] [CrossRef]
- Fehse, F.; Kummich, J.; Schröder, H.-W. Influence of pre-treatment and variation of briquetting parameters on the mechanical refinement of spent coffee grounds. Biomass Bioenergy 2021, 152, 106201. [Google Scholar] [CrossRef]
- Magnago, R.F.; Costa, S.C.; Ezirio, M.J.A.; Saciloto, V.G.; Parma, G.O.C.; Gasporotto, E.S.; Goncalves, A.C., Jr.; Tutida, A.Y.; Barcelos, R.L. Briquettes of citrus peel and rice husk. J. Clean. Prod. 2020, 276, 123820. [Google Scholar] [CrossRef]
- Setter, C.; Costa, K.L.S.; Oliveira, T.J.P.; Mendes, R.F. The effect of kraft lignin on the physicochemical quality of briquettes produced with sugarcane bagasse and on the characteristics of the bio-oil obtained via slow pyrolysis. Fuel Process. Technol. 2020, 210, 106561. [Google Scholar] [CrossRef]
- Petkovic, D. Technology for producing briquettes from wet biomass. In Encyclopedia of Renewable and Sustainable Materials; Hashmi, S., Choudhury, I.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 901–907. [Google Scholar]
- Ifa, L.; Yani, S.; Nurjannah, N.; Darnengsih, D.; Rusnaenah, A.; Mel, M.; Mahfud, M.; Kusuma, H.S. Techno-economic analysis of bio-briquette from cashew nut shell waste. Heliyon 2020, 6, e05009. [Google Scholar] [CrossRef] [PubMed]
- Chungcharoen, T.; Srisang, N. Preparation and characterization of fuel briquettes made from dual agricultural waste: Cashew nut shells and areca nuts. J. Clean. Prod. 2020, 256, 120434. [Google Scholar] [CrossRef]
- Bello, R.S.; Onilude, M.A. Effects of critical extrusion factors on quality of high density briquettes produced from sawdust admixture. Mater. Today Proc. 2021, 38, 949–957. [Google Scholar] [CrossRef]
- Akolgo, G.A.; Awafo, E.A.; Essandoh, E.O.; Owusu, P.A.; Uba, F.; Adu-Poku, K.A. Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: Using water boiling and user acceptability tests. Sci. Afr. 2021, 12, e00789. [Google Scholar] [CrossRef]
- Granado, M.P.P.; Suhogusoff, Y.V.M.; Santos, L.R.O.; Yamaji, F.M.; Conti, A.C.D. Effects of pressure densification on strength and properties of cassava waste briquettes. Renew. Energy 2021, 167, 306–312. [Google Scholar] [CrossRef]
- Kapen, P.T.; Tenkeu, M.N.; Yadjie, E.; Tchuen, G. Production and characterization of environmentally friendly charcoal briquettes obtained from agriculture waste: Case of Cameroon. Int. J. Environ. Sci. Technol. 2021, 1–8. [Google Scholar] [CrossRef]
- Sunardi, S.; Djuanda, D.; Mandra, M.A.S. Characteristics of charcoal briquettes from agricultural waste with compaction pressure and particle size variation as alternative fuel. Int. Energy J. 2019, 19, 139–148. [Google Scholar]
- Oliy, G.B.; Muleta, D.T. Characterization and determination of briquette fuel prepared from five variety of corn cob. Int. J. Sustain. Energy 2020, 3, 59–64. [Google Scholar]
- Bot, B.V.; Sosso, O.T.; Tamba, J.G.; Lekane, E.; Bikai, J.; Ndame, M.K. Preparation and characterization of biomass briquettes made from banana peels, sugarcane bagasse, coconut shells and rattan waste. Biomass Convers. Biorefin. 2021, 1–10. [Google Scholar] [CrossRef]
- Lubwama, M.; Yiga, V.A.; Muhairwe, F.; Kihedu, J. Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renew. Energy 2020, 148, 1002–1016. [Google Scholar] [CrossRef]
- Setter, C.; Ataide, C.H.; Mendes, R.F.; de Oliveira, T.J.P. Influence of particle size on the physico-mechanical and energy properties of briquettes produced with coffee husks. Environ. Sci. Pollut. Res. 2021, 28, 8215–8223. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, A.; Workie, F.; Kumar, V.S. Production and characterization of coffee husk fuel briquettes as an alternative energy source. Adv. Mater. Sci. Eng. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Tenu, I.; Roman, C.; Senila, L.; Rosca, R.; Carlescu, I.; Baetu, M.; Arsenoaia, V.; Dumitrachi, E.P.; Corduneanu, O.R. Valorization of vine tendrils resulted from pruning as densified solid biomass fuel (Briquettes). Processes 2021, 9, 1409. [Google Scholar] [CrossRef]
- Nagarajan, J.; Prakash, L. Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk. Mater. Today Proc. 2021, 47, 4194–4198. [Google Scholar] [CrossRef]
- Senila, L.; Kovacs, E.; Scurtu, D.A.; Cadar, O.; Becze, A.; Senila, M.; Levei, E.A.; Dumitras, D.E.; Tenu, I.; Roman, C. Bioethanol production from vineyard waste by autohydrolysis pretreatment and chlorite delignification via simultaneous saccharification and fermentation. Molecules 2020, 25, 2606. [Google Scholar] [CrossRef]
- Senila, L.; Tenu, I.; Carlescu, I.; Corduneanu, O.R.; Dumitrachi, E.P.; Kovacs, E.; Scurtu, D.A.; Cadar, O.; Becze, A.; Senila, M.; et al. Sustainable biomass pellets production using vineyard wastes. Agriculture 2020, 10, 501. [Google Scholar] [CrossRef]
- ISO 16968:2015; Solid Biofuels. Determination of Minor Elements. ISO: Geneva, Switzerland, 2015.
- ISO 16994:2016; Solid Biofuel. Determination of Total Content of Sulphur and Chlorine. ISO: Geneva, Switzerland, 2016.
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. Am empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Azizan, A.; Azmi, I.S.; Darim, R.A.; Jusri, N.A.A.; Jalil, R.; Rahman, M.F.A.; Salleh, R.M.; Ibrahim, N.; Salihon, J. Lignocellulosic ionic liquid pretreated biomaterials/biomass. Mater. Today Proc. 2021, 46, 1688–1692. [Google Scholar] [CrossRef]
- Sommersacher, P.; Brunner, T.; Obernberger, I. Fuel indexes: A novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuels 2012, 26, 380–390. [Google Scholar] [CrossRef]
- EN 15259:2007; Air Quality. Measurement of Stationary Source Emissions. Requirements for Measurement Sections and Site and for the Measurement Objective, Plan and Report. BSi: London, UK, 2007.
- Srivastava, N.S.L.; Narnaware, S.L.; Makwana, J.P.; Singh, S.N.; Vahora, S. Investigating the energy use of vegetable market waste by briquetting. Renew. Energy 2014, 68, 270–275. [Google Scholar] [CrossRef]
- Cesprini, E.; Greco, R.; Causin, V.; Urso, T.; Cavalli, R.; Cavalli, R.; Zanetti, M. Quality assessment of pellets and briquettes made from glue wood waste. Eur. J. Wood Wood Prod. 2021, 79, 1153–1162. [Google Scholar] [CrossRef]
- Afra, E.; Abyaz, A.; Saraeyan, A. The production of bagasse biofuel briquettes and the evaluation of natural binders (LNFC, NFC, and lignin) effects on their technical parameters. J. Clean. Prod. 2021, 278, 123543. [Google Scholar] [CrossRef]
- Gani, A.; Naruse, I. Effect of cellulose and lignin content on pyrolysis and combustion characteristic for several types of biomass. Renew. Energy 2007, 32, 649–661. [Google Scholar] [CrossRef]
- ISO 17225-7; Solid Biofuels. Fuel Specifications and Classes—Part 7: Graded Non-Woody Briquettes. ISO: Geneva, Switzerland, 2014.
- ISO 17225-3; Solid Biofuels. Fuel Specifications and Classes—Part 3: Graded Wood Briquettes. ISO: Geneva, Switzerland, 2021.
- Bisen, K.S.; Sharma, P.; Gupta, B.; Baredar, P. Development and experimental characterization of energy efficient poultry litter & plant weeds based briquettes (PLPWBB) by comparing with rice husk briquettes. Mater. Today Proc. 2021, 4, 5428–5432. [Google Scholar]
- Nyakuma, B.B.; Johari, A.; Ahmad, A.; Abdullah, T.A.T. Thermogravimetric analysis of the fuel properties of empty fruit bunch briquettes. J. Teknol. 2014, 67, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Viczek, S.A.; Aldrian, A.; Pomberger, R.; Sarc, R. Origins of major and minor ash constituents of solid recovery fuel for co-processing in the cement industry. Waste Manag. 2021, 126, 423–432. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Physical and chemical evaluation of furniture waste briquettes. Waste Manag. 2016, 49, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Taherzadeh, M.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [Green Version]
- Dlangamandla, N.; Ntwampe, S.K.O.; Angadam, J.O.; Itoba-Tombo, E.F.; Chidi, B.S.; Mekuto, L. Integrated hydrolysis of mixed agro-waste for a second generation biorefinery using Nepenthes mirabilis pod digestive fluids. Processes 2019, 72, 64. [Google Scholar] [CrossRef] [Green Version]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Volli, V.; Gollakota, A.R.K.; Shu, C.-M. Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS. Sci. Total Environ. 2021, 792, 148392. [Google Scholar] [CrossRef] [PubMed]
- Kskela, A.; Heikkilä, A.; Bergna, D.; Salminen, J.; Fabritius, T. Effects of briquetting and high pyrolysis temperature and hydrolysis lignin char properties and reactivity in CO-CO2-N2 conditions. Minerals 2021, 11, 187. [Google Scholar] [CrossRef]
- Law No. 462/1993 on Technical Requirements for Air Protection and Limits on Polluting Emissions from Stationary Sources. Available online: http://legislatie.just.ro/Public/DetaliiDocument/3538 (accessed on 10 January 2022).
- Cong, H.; Yao, Z.; Mašek, O.; Meng, H.; Sheng, C.; Wu, Y.; Zhao, L. Co-combustion, co-densification, and pollutant emission characteristics of charcoal-based briquettes prepared using bio-tar as a binder. Fuel 2021, 287, 119512. [Google Scholar] [CrossRef]
- Roy, M.M.; Corscadden, K.W. An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Appl. Energy 2012, 99, 206–212. [Google Scholar] [CrossRef]
Biomass Variety | Amount of Briquettes (kg) | Energy Consumption (kWh) | Briquetting Time (min) | Specific Energy Consumption | Capacity of Briquetting Machine (kg h−1) | |
---|---|---|---|---|---|---|
(kWh kg−1) | (MJ kg−1) | |||||
PN | 39.03 ± 4.78 a | 3.695 ± 0.45 a | 10.0 ± 1.22 a | 0.0946 ± 0.01 a | 0.340 ± 0.04 a | 232.14 ± 28.4 a |
MO | 36.42 ± 4.46 ab | 3.190 ± 0.39 ab | 9.2 ± 1.11 ab | 0.0876 ± 0.01 a | 0.315 ± 0.04 a | 237.52 ± 29.0 a |
FN | 24.05 ± 2.95 c | 2.119 ± 0.26 c | 6.0 ± 0.73 c | 0.0881 ± 0.01 a | 0.317 ± 0.03 a | 239.70 ± 24.0 a |
FA | 37.54 ± 4.59 ab | 3.262 ± 0.40 ab | 9.5 ± 1.16 ab | 0.0869 ± 0.01 a | 0.313 ± 0.04 a | 235.10 ± 28.1 a |
FR | 29.36 ± 4.59 abc | 2.633 ± 0.32 bc | 7.3 ± 0.89 bc | 0.0897 ± 0.01 a | 0.323 ± 0.03 a | 239.44 ± 29.3 a |
CS | 27.39 ± 3.35 bc | 2.552 ± 0.31 bc | 7.0 ± 0.75 bc | 0.0932 ± 0.01 a | 0.335 ± 0.04 a | 231.98 ± 28.4 a |
SB | 29.74 ± 3.63 abc | 2.700 ± 0.33 abc | 7.5 ± 0.91 abc | 0.0908 ± 0.01 a | 0.327 ± 0.04 a | 235.12 ± 28.7 a |
BB | 32.67 ± 3.99 abc | 2.898 ± 0.35 abc | 8.0 ± 0.98 abc | 0.0887 ± 0.01 a | 0.319 ± 0.04 a | 244.12 ± 21.3 a |
Variety | Quantity Used for Briquettes, (kg ha−1) | Quantity of Briquettes Produced, (kg ha−1) | Energy Potential [MJ (kg−1ha−1)] | |
---|---|---|---|---|
Higher | Lower | |||
PN | 821.70 ± 100.6 | 739.53 ± 90.5 | 13.975 ± 1.71 | 12.908 ± 1.58 |
MO | 876.64 ± 107.4 | 788.97 ± 96.6 | 14.474 ± 1.77 | 13.351 ± 1.64 |
FN | 737.18 ± 90.3 | 663.46 ± 81.2 | 12.649 ± 1.55 | 11.694 ± 1.43 |
FA | 672.43 ± 82.4 | 605.19 ± 74.1 | 11.505 ± 1.41 | 10.665 ± 1.30 |
FR | 683.67 ± 83.7 | 615.30 ± 75.3 | 11.765 ± 1.44 | 10.935 ± 1.34 |
CS | 674.06 ± 82.6 | 606.65 ± 74.3 | 11.522 ± 1.41 | 10.686 ± 1.31 |
SB | 689.93 ± 84.5 | 620.94 ± 76.0 | 11.964 ± 1.46 | 11.144 ± 1.36 |
BB | 664.45 ± 81.4 | 598.00 ± 72.2 | 11.386 ± 1.39 | 10.592 ± 1.35 |
Variety | C | H | O * | N | S | Cl | Ash | DS ** (%) |
---|---|---|---|---|---|---|---|---|
PN | 46.9 ± 1.2 a | 5.75 ± 0.1 a | 46.38 ± 1.3 a | 0.94 ± 0.05 b | 0.033 ± 0.01 a | 0.06 ± 0.01 a | 3.18 ± 0.02 a | 92.92 ± 1.8 a |
MO | 46.4 ± 1.6 a | 5.69 ± 0.2 a | 47.01 ± 1.2 a | 0.86 ± 0.02 bc | 0.036 ± 0.01 a | 0.04 ± 0.01 a | 2.09 ± 0.04 d | 93.07 ± 2.0 a |
FN | 48.2 ± 1.8 a | 5.84 ± 0.1 a | 44.77 ± 1.6 a | 1.15 ± 0.04 a | 0.042 ± 0.01 a | 0.07 ± 0.01 a | 3.27 ± 0.03 a | 93.48 ± 2.2 a |
FA | 47.1 ± 1.2 a | 5.70 ± 0.4 a | 46.40 ± 1.4 a | 0.76 ± 0.03 c | 0.038 ± 0.01 a | 0.05 ± 0.02 a | 3.08 ± 0.02 b | 94.42 ± 1.8 a |
FR | 47.2 ± 1.4 a | 5.66 ± 0.3 a | 46.19 ± 1.3 a | 0.91 ± 0.02 bc | 0.037 ± 0.01 a | 0.06 ± 0.01 a | 2.99 ± 0.05 b | 95.48 ± 2.3 a |
CS | 47.0 ± 1.2 a | 5.67 ± 0.2 a | 46.36 ± 1.5 a | 0.93 ± 0.08 b | 0.037 ± 0.01 a | 0.06 ± 0.01 a | 3.05 ± 0.04 b | 94.57 ± 2.4 a |
SB | 47.7 ± 1.6 a | 5.66 ± 0.1 a | 45.61 ± 1.3 a | 0.99 ± 0.07 b | 0.044 ± 0.01 a | 0.07 ± 0.01 a | 3.05 ± 0.03 b | 96.66 ± 2.3 a |
BB | 47.3 ± 1.8 a | 5.67 ± 0.2 a | 46.04 ± 1.2 a | 0.95 ± 0.06 b | 0.041 ± 0.01 a | 0.07 ± 0.01 a | 2.68 ± 0.02 c | 96.35 ± 2.1 a |
[29] | - | - | - | ≤1.5 | ≤0.2 | ≤0.10 | ≤6 | - |
[28] | - | - | - | ≤2.0 | ≤0.3 | ≤0.30 | ≤10 | - |
Metals | PN | MO | FN | FA | FR | CS | SB | BB |
---|---|---|---|---|---|---|---|---|
Fe | 58.0 ± 0.3 f | 62.2 ± 0.2 e | 78.5 ± 0.8 c | 279.0 ± 1.5 b | 66.2 ± 1.2 d | 56.8 ± 0.8 f | 412.5 ± 1.2 a | 41.4 ± 0.6 g |
Ni | 10.0 ± 0.6 a | 9.7 ± 0.5 a | 10.0 ± 0.6 a | 9.99 ± 0.5 a | 9.86 ± 0.3 a | 9.81 ± 0.7 a | 9.73 ± 0.4 a | 9.74 ± 0.3 a |
Cr | 11.4 ± 1.2 a | 11.3 ± 1.0 a | 11.5 ± 1.0 a | 12.3 ± 1.3 a | 11.5 ± 0.9 a | 11.5 ± 1.0 a | 11.9 ± 1.1 a | 11.6 ± 1.2 |
Co | 10.7 ± 0.9 a | 10.6 ± 0.8 a | 10.7 ± 0.7 a | 10.6 ± 0.9 a | 10.7 ± 1.0 a | 10.6 ± 1.2 a | 10.7 ± 1.1 a | 10.6 ± 1.0 a |
Cu | 25.2 ± 1.2 a | 22.3 ± 1.5 a | 25.1 ± 1.3 a | 22.7 ± 1.1 a | 23.9 ± 1.0 a | 23.4 ± 1.6 a | 23.1 ± 1.5 a | 23.8 ± 1.4 a |
Zn | 18.0 ± 0.9 bc | 9.6 ± 0.5 e | 22.3 ± 1.2 ab | 23.6 ± 1.8 a | 12.8 ± 1.9 de | 11.0 ± 0.8 e | 13.3 ± 1.5 cde | 16.2 ± 1.8 cd |
Cd | 2.85 ± 0.2 a | 2.78 ± 0.3 a | 2.89 ± 0.4 a | 2.78 ± 0.1 a | 2.84 ± 0.4 a | 2.89 ± 0.5 a | 2.80 ± 0.4 a | 2.78 ± 0.3 a |
Pb | 9.80 ± 0.9 a | 9.83 ± 0.6 a | 10.2 ± 0.9 a | 11.0 ± 0.3 a | 10.0 ± 0.2 a | 10.0 ± 0.8 a | 9.98 ± 0.7 a | 11.8 ± 0.6 a |
Na | 46.1 ± 1.2 bc | 44.5 ± 2.0 bcd | 39.8 ± 2.1 d | 59.1 ± 0.8 a | 46.9 ± 1.6 b | 44.4 ± 1.2 bcd | 43.7 ± 1.7 bcd | 40.8 ± 1.8 cd |
Mg | 986.7 ± 5.2 a | 704.4 ± 4.8 h | 838.3 ± 5.6 d | 732.4 ± 2.8 g | 813.0 ± 3.6 e | 856.7 ± 5.2 c | 941.4 ± 4.0 b | 779.2 ± 2.9 f |
K | 1789.5 ± 1.8 h | 1833.1 ± 2.6 f | 2147.9 ± 3.1 d | 2225.0 ± 4.1 c | 2019.5 ± 5.6 e | 2401.9 ± 4.9 a | 2331.0 ± 4.6 b | 1810.0 ± 1.8 g |
Ca | 3734.9 ± 4.8 e | 2306.2 ± 3.1 h | 4514.3 ± 6.0 b | 4670.0 ± 4.2 a | 3706.8 ± 4.7 f | 3750.5 ± 2.8 d | 3793.6 ± 2.6 c | 3249.2 ± 3.4 g |
Mn | 32.5 ± 1.5 bc | 19.0 ± 1.2 d | 30.7 ± 1.8 bc | 30.1 ± 2.0 bc | 28.4 ± 1.6 c | 20.0 ± 1.4 d | 41.8 ± 1.6 a | 35.1 ± 1.4 b |
Ba | 15.8 ± 0.8 bc | 12.1 ± 0.6 d | 13.8 ± 0.5 bcd | 27.0 ± 1.2 a | 17.3 ± 1.4 b | 12.0 ± 1.3 d | 14.8 ± 1.2 bcd | 12.8 ± 1.0 cd |
Al | 52.7 ± 1.8 a | 40.6 ± 1.6 b | 54.8 ± 1.9 a | 45.4 ± 1.2 b | 54.6 ± 1.4 a | 51.9 ± 1.3 a | 43.6 ± 1.0 b | 41.9 ± 1.2 b |
B | 27.5 ± 1.2 a | 24.4 ± 1.0 a | 26.8 ± 1.3 a | 26.2 ± 1.5 a | 27.1 ± 1.0 a | 26.4 ± 0.9 a | 25.9 ± 1.2 a | 25.2 ± 1.3 a |
As | 0.15 ± 0.1 a | 0.12 ± 0.1 a | 0.15 ± 0.1 a | 0.14 ± 0.1 a | 0.16 ± 0.1 a | 0.13 ± 0.1 a | 0.16 ± 0.1 a | 0.09 ± 0.1 a |
Si | 68.2 ± 0.5 c | 72.3 ± 0.7 b | 61.3 ± 0.8 d | 67.3 ± 0.6 c | 86.2 ± 0.8 a | 62.0 ± 0.9 d | 62.0 ± 0.8 d | 66.5 ± 1.0 c |
Hg | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Component | PN | MO | FB | FA | FR | CS | SB | BB |
---|---|---|---|---|---|---|---|---|
K + Na + Zn + Pb (mg kg−1) | 1863 ± 228.2 a | 1897 ± 232.33 a | 2220 ± 271.9 a | 2319 ± 284.0 a | 2089 ± 255.8 a | 2467 ± 302.14 a | 2398 ± 293.7 a | 1879 ± 230.1 a |
2S Cl−1 (mol mol−1) | 1.22 ± 0.14 b | 2.00 ± 0.23 a | 1.33 ± 0.16 b | 1.69 ± 0.2 ab | 1.37 ± 0.16 b | 1.37 ± 0.16 b | 1.39 ± 0.16 b | 1.30 ± 0.15 b |
Si (Ca + Mg)−1 (mol mol−1) | 0.067 ± 0.008 ab | 0.074 ± 0.009 b | 0.054 ±0.006 ab | 0.051 ± 0.005 b | 0.067 ± 0.008 ab | 0.059 ± 0.007 ab | 0.063 ± 0.008 ab | 0.062 ± 0.007 ab |
(K + Na) (2S + Cl)−1 (mol mol−1) | 3.23 ± 0.39 ab | 3.13 ± 0.37 ab | 3.04 ± 0.36 ab | 3.57 ± 0.44 ab | 3.27 ± 0.40 ab | 3.87 ± 0.47 a | 3.17 ± 0.38 ab | 2.63 ± 0.33 b |
Si K−1 (mol mol−1) | 0.053 ± 0.006 abc | 0.055 ± 0.007 ab | 0.040 ± 0.004 bcd | 0.042 ± 0.004 bcd | 0.059 ± 0.007 a | 0.036 ± 0.004 d | 0.037 ± 0.004 cd | 0.051 ± 0.007 abcd |
Exp. | O2(%) | Tgas (°C) | CO (mg N−1m−3) | COref | NO (mg N−1m−3) | NOref | NOX (mg N−1m−3) | NOXref (mg N−1m−3) | SO2 (mg N−1m−3) | SO2ref (mg N−1m−3) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 16.8 | 160.5 | 150 | 704 | 67 | 158 | 76.4 | 359.3 | 45.2 | 199.2 |
2 | 16.4 | 160.0 | 346 | 1211 | 65 | 228 | 135.2 | 472.6 | 39.2 | 114.2 |
3 | 16.9 | 159.8 | 632 | 2585 | 50 | 203 | 104.1 | 425.4 | 42.0 | 154.2 |
4 | 17.2 | 160.3 | 134 | 241 | 147 | 264 | 307.0 | 552.1 | 16.0 | 0 |
5 | 17.7 | 160.2 | 266 | 302 | 189 | 215 | 401.5 | 455.6 | 16.0 | 0 |
6 | 12.2 | 158.5 | 802 | 1832 | 215 | 490 | 443.2 | 1011.8 | 16.0 | 0 |
7 | 14.3 | 157.0 | 302 | 3812 | 11 | 142 | 27.0 | 340.4 | 67.1 | 155.3 |
8 | 17.7 | 158.2 | 261 | 1938 | 23 | 168 | 49.6 | 368.6 | 16.0 | 33.2 |
9 | 13.2 | 157.7 | 673 | 6046 | 20 | 183 | 45.2 | 405.9 | 42.0 | 354.2 |
10 | 13.9 | 160.1 | 327 | 3182 | 18 | 177 | 40.8 | 397.6 | 46.0 | 458.2 |
11 | 16.3 | 157.1 | 372 | 1708 | 13 | 62 | 31.4 | 144.2 | 14.0 | 20.6 |
12 | 15.8 | 158.7 | 800 | 3571 | 34 | 151 | 72.0 | 321.6 | 39.0 | 200.6 |
13 | 17.1 | 146.4 | 200 | 1011 | 50 | 252 | 103.8 | 526.0 | 31.7 | 350.1 |
Mean | 15.8 | 158.0 | 405 | 2165 | 69 | 207 | 141.3 | 444.7 | 33.0 | 157.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senila, L.; Tenu, I.; Carlescu, P.; Scurtu, D.A.; Kovacs, E.; Senila, M.; Cadar, O.; Roman, M.; Dumitras, D.E.; Roman, C. Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource. Agriculture 2022, 12, 341. https://doi.org/10.3390/agriculture12030341
Senila L, Tenu I, Carlescu P, Scurtu DA, Kovacs E, Senila M, Cadar O, Roman M, Dumitras DE, Roman C. Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource. Agriculture. 2022; 12(3):341. https://doi.org/10.3390/agriculture12030341
Chicago/Turabian StyleSenila, Lacrimioara, Ioan Tenu, Petru Carlescu, Daniela Alexandra Scurtu, Eniko Kovacs, Marin Senila, Oana Cadar, Marius Roman, Diana Elena Dumitras, and Cecilia Roman. 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource" Agriculture 12, no. 3: 341. https://doi.org/10.3390/agriculture12030341
APA StyleSenila, L., Tenu, I., Carlescu, P., Scurtu, D. A., Kovacs, E., Senila, M., Cadar, O., Roman, M., Dumitras, D. E., & Roman, C. (2022). Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource. Agriculture, 12(3), 341. https://doi.org/10.3390/agriculture12030341