The Influence of Country Risks on the International Agricultural Trade Patterns Based on Network Analysis and Panel Data Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Method
2.2.1. The IATN Model
2.2.2. Structural Parameters of the IATN
- 1.
- Number of trading partners in agricultural products:
- 2.
- Trade volumes of agricultural products:
- 3.
- Herfindahl–Hirschman Index (HHI):
- 4.
- The intermediary capacity of countries in the IATN:
- 5.
- The closeness centrality of countries in the IATN:
- 6.
- The eigenvector centrality of countries in the IATN:
2.3. The Establishment of the Regression Model
3. Results and Discussion
3.1. International Agricultural Trade Pattern
3.1.1. The Number of Trade Partners and Trade Relationships
3.1.2. The Diversity of Import Source
3.1.3. The Trade Volumes among Countries
3.1.4. The Role of Countries in IATN
3.2. The Impacts of Country Risks on the Agricultural Trade Pattern
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Rank | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1996 | USA | France | Germany | UK | Netherlands |
1997 | USA | France | Germany | Russia | UK |
1998 | USA | France | Italy | UK | Germany |
1999 | USA | France | Germany | Thailand | UK |
2000 | USA | France | Canada | South Africa | UK |
2001 | USA | France | Canada | South Africa | Italy |
2002 | USA | France | Canada | Germany | Thailand |
2003 | USA | France | Canada | Germany | Italy |
2004 | USA | Canada | France | South Africa | UK |
2005 | USA | Canada | France | South Africa | Spain |
2006 | USA | Canada | France | Pakistan | Philippines |
2007 | USA | Canada | France | Italy | UK |
2008 | USA | Canada | France | South Africa | Italy |
2009 | USA | Canada | Germany | Thailand | France |
2010 | USA | France | Thailand | Canada | China |
2011 | USA | France | Canada | China | UK |
2012 | USA | Netherlands | France | UK | Canada |
2013 | USA | UK | Germany | France | India |
2014 | USA | France | Canada | Netherlands | Germany |
2015 | USA | Netherlands | France | Canada | UK |
2016 | USA | France | Canada | Netherlands | Italy |
2017 | USA | France | Canada | Thailand | UK |
2018 | USA | France | Canada | UK | Italy |
2019 | USA | France | Canada | Germany | Netherlands |
Year | Rank | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1996 | USA | India | France | Italy | Canada |
1997 | USA | Canada | India | France | Argentina |
1998 | USA | India | Italy | Canada | France |
1999 | USA | Thailand | Italy | India | France |
2000 | USA | Thailand | France | Italy | China |
2001 | USA | Thailand | India | Italy | France |
2002 | USA | Thailand | India | Italy | France |
2003 | USA | Thailand | China | Italy | India |
2004 | USA | Thailand | India | Italy | China |
2005 | USA | Thailand | India | Pakistan | China |
2006 | USA | Thailand | India | China | Pakistan |
2007 | USA | Thailand | China | India | Italy |
2008 | USA | Thailand | China | India | Italy |
2009 | USA | Thailand | China | PNG | Italy |
2010 | USA | Thailand | China | India | Pakistan |
2011 | USA | Thailand | India | China | Italy |
2012 | USA | Thailand | India | China | Italy |
2013 | USA | Thailand | India | China | Italy |
2014 | USA | Thailand | India | China | Italy |
2015 | USA | Thailand | India | Italy | Pakistan |
2016 | USA | Thailand | India | France | China |
2017 | USA | Thailand | India | China | France |
2018 | USA | Thailand | India | China | Italy |
2019 | USA | India | Thailand | China | France |
Year | Rank | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1996 | Germany | Netherlands | UK | France | USA |
1997 | Germany | Netherlands | France | Russia | USA |
1998 | Germany | Netherlands | France | USA | Italy |
1999 | Germany | France | Netherlands | UK | USA |
2000 | USA | France | Germany | UK | Netherlands |
2001 | USA | France | Germany | UK | Italy |
2002 | USA | Germany | Canada | France | UK |
2003 | USA | Germany | Netherlands | France | UK |
2004 | USA | Germany | UK | Netherlands | France |
2005 | USA | France | Germany | Canada | UK |
2006 | USA | Canada | France | UK | Germany |
2007 | USA | UK | France | Germany | Canada |
2008 | UK | Germany | France | USA | Canada |
2009 | Germany | Netherlands | UK | USA | France |
2010 | UK | USA | Germany | France | Canada |
2011 | France | Germany | UK | USA | Netherlands |
2012 | Netherlands | UK | USA | France | Germany |
2013 | USA | Germany | UK | Netherlands | France |
2014 | Germany | USA | UK | Netherlands | France |
2015 | Netherlands | Germany | USA | France | UK |
2016 | USA | Netherlands | France | UK | Germany |
2017 | France | UK | USA | Netherlands | Germany |
2018 | France | Netherlands | Germany | Canada | UK |
2019 | France | Netherlands | Germany | USA | UK |
References
- Sun, Q.R.; Gao, X.Y.; Zhong, W.Q.; Liu, N.R. The stability of the international oil trade network from short-term and long-term perspectives. Physica A 2017, 482, 345–356. [Google Scholar] [CrossRef]
- Vidya, C.T.; Prabheesh, K.P. Implications of COVID-19 Pandemic on the Global Trade Networks. Emerg. Mark. Financ. Trade 2020, 56, 2408–2421. [Google Scholar] [CrossRef]
- Burkholz, R.; Schweitzer, F. International crop trade networks: The impact of shocks and cascades. Environ. Res. Lett. 2019, 14, 28. [Google Scholar] [CrossRef] [Green Version]
- Qiang, W.L.; Niu, S.W.; Wang, X.; Zhang, C.L.; Liu, A.M.; Cheng, S.K. Evolution of the Global Agricultural Trade Network and Policy Implications for China. Sustainability 2020, 12, 192. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.L. The economic significance of national border effects. Am. Econ. Rev. 2003, 93, 1291–1312. [Google Scholar] [CrossRef] [Green Version]
- Sohn, C.H. Does the gravity model explain South Korea’s trade flows? Jpn. Econ. Rev. 2005, 56, 417–430. [Google Scholar] [CrossRef]
- Zolin, M.B.; Uprasen, U. Trade creation and diversion: Effects of EU enlargement on agricultural and food products and selected Asian countries. Asia Eur. J. 2018, 16, 351–373. [Google Scholar] [CrossRef]
- Krivko, M.; Smutka, L. Agricultural and Foodstuff Trade between EU28 and Russia: (Non)Uniformity of the Russian Import Ban Impact Distribution. Agriculture 2021, 11, 1259. [Google Scholar] [CrossRef]
- Park, J.K. Intraindustry Trade(IIT) of Agricultural Products and Agricultural Development. Korean J. Food Mark. Econ. 2005, 22, 1–17. [Google Scholar]
- Singh, S.; Kingra, H.S.; Bhogal, S.; Bhardwaj, S. India’s Foreign Trade of Agricultural Products in Free Market Economy. Indian J. Econ. Dev. 2018, 14, 219–222. [Google Scholar] [CrossRef]
- Pawlak, K. Competitiveness of the EU Agri-Food Sector on the US Market: Worth Reviving Transatlantic Trade? Agriculture 2022, 12, 23. [Google Scholar] [CrossRef]
- Veeck, G. China’s Exports and Imports of Agricultural Products under the WTO. Eurasian Geogr. Econ. 2008, 49, 569–585. [Google Scholar] [CrossRef]
- Ji, S.; Yoo, J. A study on the changes of agricultural import structure according to implementation of FTAs in South Korea. J. Korea Trade 2018, 22, 2–16. [Google Scholar] [CrossRef]
- Fernandez-Alvarez, A. Turkish Agricultural Trade in the European Union: Opportunities and Challenges. South Eur. Soc. Polit. 2008, 13, 477–493. [Google Scholar] [CrossRef]
- Fleming, D.A.; Abler, D.G.; Goetz, S.J. Agricultural trade and poverty in Chile: A spatial analysis of product tradability. Agric. Econ. 2010, 41, 545–553. [Google Scholar] [CrossRef]
- Baek, J.; Koo, W.W. How sensitive is US agricultural trade to the bilateral exchange rate? Evidence from bulk, intermediate, and consumer-oriented products. Agric. Econ. 2011, 42, 387–403. [Google Scholar] [CrossRef]
- Huang, Y.R.; Fang, H.; Li, X.M. Evaluation of the promoting effect of trade facilitation of importing countries to agricultural product export of China. Int. J. Elec. Eng. Educ. 2020, 468, 1–21. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, X.Y.; Hu, A.J.; Ma, P. Econometric Analysis of the Israeli Trade Protectionism and the Export Comparative Advantage of the Primary Agricultural Products. Basic Clin. Pharmacol. Toxicol. 2020, 126, 305–306. [Google Scholar]
- Liu, H.G.; Tada, M.; Sun, D.S. Changing patterns in comparative advantage for agricultural trade in East Asian countries. China Agric. Econ. Rev. 2009, 1, 227–238. [Google Scholar] [CrossRef]
- Kuzmenko, E.; Rumankova, L.; Benesova, I.; Smutka, L. Czech Comparative Advantage in Agricultural Trade with Regard to EU-27: Main Developmental Trends and Peculiarities. Agriculture 2022, 12, 217. [Google Scholar] [CrossRef]
- Liu, Y.K.; Bi, R.Q.; Yang, H.X. Sino-Japanese agricultural trade friction and dynamic state. Information 2008, 11, 473–482. [Google Scholar]
- Kim, M.; Cho, G.D.; Koo, W.W. Does the exchange rate matter to agricultural bilateral trade between Canada and the US? Can. J. Agric. Econ. Rev. Can. Agroecon. 2004, 52, 127–145. [Google Scholar] [CrossRef]
- Hyun, N.k.; Li, T. The Competitiveness of Korea-China-Japan agricultural products and Korea-China FTA Agricultural Trade impacts. J. Agric. Ext. Community Dev. 2018, 25, 71–83. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Qi, J.H. Empirical analysis of the structure of Sino-US agricultural trade. China World Econ. 2007, 15, 35–51. [Google Scholar] [CrossRef]
- Marin, S.D.A. Determinants of Trade Flows between Colombia and South Korea. Apunt. Cenes 2020, 39, 75–105. [Google Scholar] [CrossRef]
- Zhang, F.H. Analysis of the current situation of agricultural trade development between china and ukraine. Agric. Resour. Econ. Int. Sci. E J. 2020, 6, 23–36. [Google Scholar]
- Ali, T.; Huang, J.; Xie, W. Bilateral Economic Impacts of China–Pakistan Economic Corridor. Agriculture 2022, 12, 143. [Google Scholar] [CrossRef]
- Leem, B.-H.; Won, E.S. Analyzing Core-Periphery Structure among Trade Countries of Agricultural Products. J. Int. Trade Commer. 2020, 16, 121–131. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Zhang, H. Competitiveness or Complementarity? A Dynamic Network Analysis of International Agri-Trade along the Belt and Road. Appl. Spat. Anal. Policy 2019, 13, 349–374. [Google Scholar] [CrossRef]
- Gutierrez-Moya, E.; Adenso-Diaz, B.; Lozano, S. Analysis and vulnerability of the international wheat trade network. Food Secur. 2021, 13, 113–128. [Google Scholar] [CrossRef]
- Esteban, A.L.G. The determinants of world wheat trade, 1963–2010: A gravity equation approach. Hist. Agrar. 2021, 83, 165–190. [Google Scholar] [CrossRef]
- Cai, H.B.; Song, Y.Y. The state’s position in international agricultural commodity trade A complex network. China Agric. Econ. Rev. 2016, 8, 430–442. [Google Scholar] [CrossRef]
- Hyun, H.B.; Ahn, B.-i. An Analysis of the Change in the Agricultural Trade Network. J. Rural Dev. 2016, 39, 93–128. [Google Scholar]
- Jayasinghe, S.; Sarker, R. Effects of regional trade agreements on trade in agrifood products: Evidence from gravity modeling using disaggregated data. Rev. Agric. Econ. 2008, 30, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.J.; Cui, C.; Wu, L.H. Analysis of potential affecting factors of China′s agricultural trade. J. Food Agric. Environ. 2011, 9, 923–925. [Google Scholar]
- Eum, J.Y.; Sheldon, I.; Thompson, S.R. Product Quality in Food and Agricultural Trade: Firm Heterogeneity and the Impact of Trade Costs. J. Agric. Resour. Econ. 2021, 46, 1–19. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Yang, C.; Guo, Y. The impact of country risk on energy trade patterns based on complex network and panel regression analyses. Energy 2021, 222, 11. [Google Scholar] [CrossRef]
- Vivoda, V. LNG import diversification and energy security in Asia. Energy Policy 2019, 129, 967–974. [Google Scholar] [CrossRef]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. Rev. Sec. Phys. Lett. 2006, 424, 175–308. [Google Scholar] [CrossRef]
ID | OD | Degree | WI | WO | WD | HHI | BC | CC | EC | |
---|---|---|---|---|---|---|---|---|---|---|
c | −163.95 *** | −98.68 *** | −262.63 *** | −11.66 *** | −7.03 * | −13.34 *** | 1.72 *** | 0.02 | −0.56 *** | −1.06 *** |
(15.69719) | (25.601) | (34.36325) | (1.337049) | (3.603038) | (1.175835) | (0.268166) | (0.010562) | (0.174122) | (0.173021) | |
Polrisk | 0.2780 *** | 0.4222 *** | 0.7002 *** | 0.0117 *** | 0.0140 | 0.0113 *** | −0.0033 *** | 2.46 × 10−5 | 0.0015 *** | 0.0017 *** |
(0.038231) | (0.061248) | (0.082212) | (0.003199) | (0.00861) | (0.002813) | (0.000642) | (0.0000253) | (0.000417) | (0.000414) | |
Ecorisk | −0.2462 *** | −0.3455 *** | −0.5916 *** | −0.0021 | −0.0101 | −0.0060 ** | 0.0029 *** | −5.88 × 10−5 * | −0.0023 *** | −0.0032 *** |
(0.038231) | (0.062352) | (0.083692) | (0.003256) | (0.008941) | (0.002864) | (0.000653) | (0.0000257) | (0.000424) | (0.000421) | |
GDP | 9.4043 *** | 10.3216 *** | 19.7259 *** | 1.0063 *** | 1.1075 *** | 1.0739 *** | −0.0432 *** | −0.0001 | 0.0455 *** | 0.0535 *** |
(0.27011) | (0.44053) | (0.591306) | (0.023007) | (0.061783) | (0.020233) | (0.004614) | (0.000182) | (0.002996) | (0.002977) | |
Rate | 2.02 × 10−9 * | 1.65 × 10−10 | 2.18 × 10−9 | 3.6 × 10−10 *** | −3.30 × 10−10 | 2.9 × 10−10 *** | 5.15 × 10−11 * | −1.04 × 10−13 | 1.22 × 10−13 | 2.18 × 10−11 * |
(1.06 × 10−9) | (1.74 × 10−9) | (2.33 × 10−9) | (9.07 × 10−11) | (2.39 × 10−10) | (7.98 × 10−11) | (1.82 × 10−11) | (7.16 × 10−13) | (1.18 × 10−11) | (1.17 × 10−11) | |
Field | −2.8903 *** | −8.9822 *** | −11.873 *** | 0.3859 *** | −0.3046 | 0.4326 *** | −0.0174 | −0.0005 | −0.0055 | 0.0094 |
(1.077623) | (1.757526) | (2.359061) | (0.091789) | (0.246673) | (0.080722) | (0.01841) | (0.000725) | (0.011954) | (0.011878) | |
R-squared | 0.8278 | 0.9237 | 0.9170 | 0.8861 | 0.8328 | 0.9190 | 0.7347 | 0.9051 | 0.6818 | 0.8443 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Hou, M.; Shi, S.; Cui, L.; Xi, Z. The Influence of Country Risks on the International Agricultural Trade Patterns Based on Network Analysis and Panel Data Method. Agriculture 2022, 12, 361. https://doi.org/10.3390/agriculture12030361
Sun Q, Hou M, Shi S, Cui L, Xi Z. The Influence of Country Risks on the International Agricultural Trade Patterns Based on Network Analysis and Panel Data Method. Agriculture. 2022; 12(3):361. https://doi.org/10.3390/agriculture12030361
Chicago/Turabian StyleSun, Qingru, Meiyi Hou, Shuaiwei Shi, Liwei Cui, and Zenglei Xi. 2022. "The Influence of Country Risks on the International Agricultural Trade Patterns Based on Network Analysis and Panel Data Method" Agriculture 12, no. 3: 361. https://doi.org/10.3390/agriculture12030361
APA StyleSun, Q., Hou, M., Shi, S., Cui, L., & Xi, Z. (2022). The Influence of Country Risks on the International Agricultural Trade Patterns Based on Network Analysis and Panel Data Method. Agriculture, 12(3), 361. https://doi.org/10.3390/agriculture12030361