The Usefulness of Ozone-Stabilized Municipal Sewage Sludge for Fertilization of Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Municipal Sewage Sludge Preparation
2.2. Pot Experiment Design
2.3. Plant Sample Analysis
2.3.1. Relative Chlorophyll Content (CCl)
2.3.2. Chlorophyll Fluorescence
2.3.3. Gas Exchange
2.3.4. Mineral Composition of Plant Materials
2.4. Statistical Analysis
3. Results
3.1. Selected Properties of Sewage Sludge Used in the Pot Experiment
3.2. Relative Chlorophyll Content (CCl)
3.3. Chlorophyll Fluorescence
3.4. Gas Exchange
3.5. Dry Matter in Aboveground Plant Parts
3.6. Chemical Composition of the Aboveground Biomass of Maize Plants
4. Discussion
5. Conclusions
- Due to the high content of organic matter and macro- and microelements, the sewage sludge used in the experiment had a significant effect on maize growth and development in early stages of development.
- Substantially better results were achieved by the application of ozone-stabilized sewage sludge. The better absorption of nutrients resulted in higher CCl content and parameters of chlorophyll fluorescence and gas exchange in plants fertilized with ozonated sewage sludge.
- The present study showed higher contents of Pb and Cd in plants fertilized with ozonated sewage sludge; however, these metals did not exert a harmful effect, as evidenced by the yield and physiological parameters.
- The analyses carried out in the experimental conditions confirmed the effectiveness of the use of ozone-stabilized sewage sludge for fertilization of maize. Nevertheless, these results should also be supported by studies of other plants to confirm the effectiveness of this type of sewage sludge in the fertilization of crops.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Chen, T.; Ge, Y.; Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 2008, 160, 554–558. [Google Scholar] [CrossRef]
- Usman, K.; Khan, S.; Ghulam, S.; Khan, M.U.; Khan, N.; Khan, M.A.; Khalil, S.K. Sewage Sludge: An Important Biological Resource for Sustainable Agriculture and Its Environmental Implications. Am. J. Plant Sci. 2012, 3, 1708–1721. [Google Scholar] [CrossRef] [Green Version]
- da Silva, W.R.; do Nascimento, C.W.A.; da Silva, F.B.V.; de Souza, A.A.B.; Fracetto, G.G.M.; de Sá Veloso Ximenes, D.H. Effects of Sewage Sludge Stabilization Processes on Soil Fertility, Mineral Composition, and Grain Yield of Maize in Successive Cropping. J. Soil Sci. Plant Nutr. 2021, 21, 1076–1088. [Google Scholar] [CrossRef]
- Statistical Year Book of the Republic of Poland; Statistics Poland: Warsaw, Poland, 2021.
- He, H.; Xin, X.; Qiu, W.; Li, D.; Liu, Z.; Ma, J. Waste sludge disintegration, methanogenesis and final disposal via various pretreatments: Comparison of performance and effectiveness. Environ. Sci. Ecotechnol. 2021, 8, 100132. [Google Scholar] [CrossRef]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef]
- Kampas, P.; Parsons, S.; Pearce, P.; Le Doux, S.; Vale, P.; Churchley, J.; Cartmell, E. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal. Water Res. 2007, 41, 1734–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.-Q.; Ding, J.; Cao, G.-L.; Ren, N.-Q.; Cui, F.-Y. Treatability study of using low frequency ultrasonic pretreatment to augment continuous biohydrogen production. Int. J. Hydrogen Energy 2011, 36, 14180–14185. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Chen, J.; Dua, G.; Chen, J. Enhancement of solubilization and acidification of waste-activated sludge by pre-treatment. Waste Manag. 2008, 28, 2614–2622. [Google Scholar] [CrossRef]
- Park, W.-J.; Ahn, J.-H.; Hwang, S.; Lee, C.-K. Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Bioresour. Technol. 2010, 101, S13–S16. [Google Scholar] [CrossRef]
- Cai, M.; Liu, J.; Wei, Y. Enhanced Biohydrogen Production from Sewage Sludge with Alkaline Pretreatment. Environ. Sci. Technol. 2004, 38, 3195–3202. [Google Scholar] [CrossRef]
- Braguglia, C.; Gianico, A.; Mininni, G. Comparison between ozone and ultrasound disintegration on sludge anaerobic di-gestion. J. Env. Manag. 2012, 95, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Kosowski, P.; Szostek, M.; Pieniążek, R.; Antos, P.; Skrobacz, K.; Piechowiak, T.; Żaczek, A.; Józefczyk, R.; Balawejder, M. New Approach for Sewage Sludge Stabilization with Ozone. Sustainability 2020, 12, 886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tian, Y.; Zhang, J.; Li, N.; Kong, L.; Yu, M.; Zuo, W. Distribution and risk assessment of heavy metals in sewage sludge after ozonation. Environ. Sci. Pollut. Res. 2017, 24, 5118–5125. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Bi, Y.; Zheng, J.; Wang, D.; Wang, C.; Liu, N.; Wang, S.; Sun, L. Effect of ozonation treatment on the chemical speciation distributions of heavy metals in sewage sludge and subsequent bioleaching process. Environ. Sci. Pollut. Res. 2020, 27, 19946–19954. [Google Scholar] [CrossRef] [PubMed]
- Foladori, P.; Andreottola, G.; Ziglio, G. Reduction Technologies in Westewater Treatment Plants; IWA Publishing Alliance House: London, UK, 2010. [Google Scholar]
- Singh, R.P.; Singh, P.; Ibrahim, M.H.; Hashim, R. Land Application of Sewage Sludge: Physicochemical and Microbial Re-sponse. In Reviews of Environmental Contamination and Toxicology; Whitacre, D., Ed.; Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews); Springer: New York, NY, USA, 2012. [Google Scholar]
- Zhang, J.; Zhang, J.; Tian, Y.; Li, N.; Kong, L.; Sun, L.; Yu, M.; Zuo, W. Changes of physicochemical properties of sewage sludge during ozonation treatment: Correlation to sludge dewaterability. Chem. Eng. J. 2016, 301, 238–248. [Google Scholar] [CrossRef]
- Peiman, K.; Wayne, P.; Peter, S. An evaluation of protocols for characterization of ozone impacts on WAS properties and digestibility. Bioresour. Technol. 2010, 101, 8565–8572. [Google Scholar]
- Park, K.Y.; Ahn, K.-H.; Maeng, S.K.; Hwang, J.H.; Kwon, J.H. Feasibility of Sludge Ozonation for Stabilization and Conditioning. Ozone Sci. Eng. 2003, 25, 73–80. [Google Scholar] [CrossRef]
- Colón, J.; Alarcón, M.; Healy, M.G.; Namli, A.; Sanin, F.D.; Tayà, C.; Ponsà, S. Producing sludge for agricultural applications. In Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment; Lema, J.M., Suarez, S., Eds.; IWA Publishing: London, UK, 2017; pp. 296–322. [Google Scholar]
- Adediran, J.A.; De Baets, N.; Mnkeni, P.N.; Kiekens, L.; Muyima, N.Y.; Thys, A. Organic Waste Materials for Soil Fertility Improvement in the Border Region of the Eastern Cape, South Africa. Biol. Agric. Hortic. 2003, 20, 283–300. [Google Scholar] [CrossRef]
- Keskin, B.; Bozkurt, M.A.; Akdeniz, H. The Effects of Sewage Sludge and Nitrogen Fertilizer Application on Nutrient and (Bromus inermis Leyss.). J. Anim. Veter. Adv. 2010, 9, 896–902. [Google Scholar] [CrossRef]
- Yang, P.; Guo, Y.-Z.; Qiu, L. Effects of ozone-treated domestic sludge on hydroponic lettuce growth and nutrition. J. Integr. Agric. 2018, 17, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Angin, I.; Aslantas, R.; Gunes, A.; Kose, M.; Ozkan, G. Effects of Sewage Sludge Amendment on Some Soil Properties, Growth, Yield and Nutrient Content of Raspberry (Rubus idaeus L.). Erwerbs Obstbau 2017, 59, 93–99. [Google Scholar] [CrossRef]
- Szostek, M.; Kaniuczak, J.; Hajduk, E.; Stanek-Tarkowska, J.; Jasiński, T.; Niemiec, W.; Smusz, R. Effect of sewage sludge on the yield and energy value of the aboveground biomass of Jerusalem artichoke (Helianthus tuberosus L.). Arch. Environ. Prot. 2018, 44, 42–50. [Google Scholar]
- Podleśna, A.; Podleśny, J.; Klikocka, H. Effect of ferilization with sulfur and nitrogen on nitrogen-phosphorus management of maize. Przemysł Chem. 2017, 96, 1374–1377. (In Polish) [Google Scholar]
- Regulation of the Minister of Economy of 6 February 2015 on the Criteria and Procedures for the Acceptance of Waste for Disposal at a Landfill of a Particular Type. J. Laws Repub. Pol. 2015, 257, 1–9. (In Polish)
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef]
- Gondek, K.; Filipek-Mazur, B. Effectiveness of sewage sludge fertilization as assessed on basic of plant yielding and nutrient utilization. Acta Sci. Pol. Form. Circumiectus 2006, 5, 39–50. (In Polish) [Google Scholar]
- Matlok, N.; Szostek, M.; Antos, P.; Gajdek, G.; Gorzelany, J.; Bobrecka-Jamro, D.; Balawejder, M. Effect of Foliar and Soil Fertilization with New Products Based on Calcinated Bones on Selected Physiological Parameters of Maize Plants. Appl. Sci. 2020, 10, 2579. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, U.M.; Gonçalves, J.F.D.C.; Feldpausch, T.R. Growth, leaf nutrient concentration and photosynthetic nutrient use efficiency in tropical tree species planted in degraded areas in central Amazonia. For. Ecol. Manag. 2006, 226, 299–309. [Google Scholar] [CrossRef]
- Pikuła, D. Fertilization of grain-grown corn. Studia I Rap. IUNG-PIB 2014, 37, 99–109. (In Polish) [Google Scholar]
- Correia, C.M.; Pereira, J.M.; Coutinho, J.F.; Björn, L.O.; Torres-Pereira, J.M.G. Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: A Mediterranean field study. Eur. J. Agron. 2005, 22, 337–347. [Google Scholar] [CrossRef]
- Huang, Z.A.; Jiang, D.A.; Yang, Y.; Sun, J.W.; Jin, S.H. Effects of Nitrogen Deficiency on Gas Exchange, Chlorophyll Fluorescence, and Antioxidant Enzymes in Leaves of Rice Plants. Photosynthetica 2004, 42, 357–364. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Gao, D.; Qiao, L.; Liu, N.; Li, M.; Zhang, Y. Detection of Canopy Chlorophyll Content of Corn Based on Continuous Wavelet Transform Analysis. Remote Sens. 2020, 12, 2741. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimila-tion and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaliq, S.J.A.; Al-Wardy, M.; Agrama, H.; Choudri, B.S.; Al-Busaidi, A.; Ahmed, M. The effect of municipal sewage sludge on the quality of soil and crops. Int. J. Recycl. Org. Waste Agric. 2017, 6, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Živčák, M.; Olšovská, K.; Slamka, P.; Galambošová, J.; Rataj, V.; Shao, H.B.; Kalaji, H.M.; Brestič, M. Measurements of chlo-rophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zemdirbyste 2014, 101, 437–444. [Google Scholar] [CrossRef]
- Lakhdar, A.; Slatni, T.; Iannelli, M.A.; Debez, A.; Pietrini, F.; Jedidi, N.; Massacci, A.; Abdelly, C. Risk of municipal solid waste compost and sewage sludge use on photosynthetic performance in common crop (Triticum durum). Acta Physiol. Plant. 2012, 34, 1017–1026. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Shangguan, Z. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply. PLoS ONE 2016, 11, e0165733. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Bai, Y.; Zhang, L.; Han, X. Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ. Exp. Bot. 2005, 53, 65–75. [Google Scholar] [CrossRef]
- Lakhdar, A.; Hafsi, C.; Rabhi, M.; Debez, A.; Montemurro, F.; Abdelly, C.; Jedidi, N.; Ouerghi, Z. Application of municipal solid waste compost reduces the negative effects of saline water in Hordeum maritimum L. Bioresour. Technol. 2008, 99, 7160–7167. [Google Scholar] [CrossRef]
- Whitney, S.M.; Houtz, R.L.; Alonso, H. Advancing Our Understanding and Capacity to Engineer Nature’s CO2-Sequestering Enzyme, Rubisco. Plant Physiol. 2011, 155, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Trace Elements in Soil and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Saruhan, V.; Gul, I.; Aydin, I. The effects of sewage sludge used as fertilizer on agronomic and chemical features of bird’s foot trefoil (Lotus corniculatus L.) and soil pollution. Sci. Res. Essays 2010, 5, 2567–2573. [Google Scholar]
- Yu, Q.; Zhang, Y.; Liu, Y.; Shi, P. Simulation of the Stomatal Conductance of Winter Wheat in Response to Light, Temperature and CO2 Changes. Ann. Bot. 2004, 93, 435–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdecantos, A.; Cortina, J.; Vallejo, V.R. Differential field response of two Mediterranean tree species to inputs of sewage sludge at the seedling stage. Ecol. Eng. 2011, 37, 1350–1359. [Google Scholar] [CrossRef]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, S.; Wu, D.; Liang, L.; Zhong, F.; Hu, Y.; Hu, X.; Lai, C.; Zeng, S. Municipal sewage sludge compost promotes Mangifera persiciforma tree growth with no risk of heavy metal contamination of soil. Sci. Rep. 2017, 7, 13408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.W.; Zheng, S.J.; He, Y.F.; Di Zhou, G.; Zhou, Z.X. Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere 2005, 59, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Gong, X.; Liu, Y.; Zeng, G.; Lai, C.; Bashir, H.; Zhou, L.; Wang, D.; Xu, P.; Cheng, M.; et al. Effects of calcium at toxic concentrations of cadmium in plants. Planta 2017, 245, 863–873. [Google Scholar] [CrossRef] [PubMed]
pH | SOC | Nt | Available Forms of Nutrients | Total Concentrations of Elements | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P | K | Mg | Zn | Cu | Ni | Cr | Pb | Cd | |||
H2O | % | mg kg−1 | |||||||||
6.67 ± 0.07 | 0.06 ± 0.01 | 0.01 ± 0.0 | 45.8 ± 8.7 | 11.5 ± 0.2 | 17.4 ± 1.1 | 28.9 ± 0.6 | 4.89 ± 0.3 | 0.23 ± 0.04 | 0.15 ± 0.01 | 1.45 ± 0.2 | 0.06 ± 0.00 |
Sewage Sludge Dose (g pot−1) | Experiment Series | |||||
---|---|---|---|---|---|---|
SS_N | SS_O | |||||
I | II | III | I | II | III | |
D1 | 11.58 | 11.54 | 11.56 | 11.49 | 11.44 | 11.45 |
D2 | 23.16 | 23.08 | 23.12 | 22.98 | 22.88 | 22.90 |
D3 | 37.74 | 34.62 | 34.68 | 34.48 | 34.32 | 34.36 |
Parameters | Units | Experiment Series | |||||
---|---|---|---|---|---|---|---|
SS_N | SS_O | ||||||
I | II | III | I | II | III | ||
dry matter | % | 6.92 a ± 0.26 | 7.52 ab ± 0.18 | 7.39 ab ± 026 | 8.54 c ± 0.11 | 9.44 d ± 0.19 | 9.11 d ± 0.15 |
pH | - | 6.89 a ± 0.07 | 6.82 a ± 0.11 | 6.92 a ± 0.09 | 6.83 a ± 0.10 | 6.75 a ± 0.06 | 6.80 a ± 0.08 |
TOC | % d.m. | 42.3 ab ± 0.12 | 40.7 a ± 0.25 | 44.2 b ± 0.69 | 42.0 ab ± 0.18 | 40.6 a ± 0.21 | 43.9 b ± 0.19 |
Nt | 7.36 b ± 0.03 | 7.06 ab ± 0.04 | 7.02 ab ± 0.05 | 7.13 ab ± 0.03 | 6.93 a ± 0.01 | 6.85 a ± 0.06 | |
P | g kg−1 d.m. | 12.31 a ± 1.49 | 17.23 c ± 2.04 | 13.73 b ± 1.76 | 13.33 ab ± 1.65 | 17.87 c ± 2.03 | 13.07 ab ± 1.21 |
Ca | 29.72 a ± 2.56 | 48.38 c ± 11.2 | 27.25 a ± 5.21 | 29.61 a ± 3.43 | 57.55 cd ± 8.23 | 31.49 ab ± 5.24 | |
Mg | 1.70 a ± 0.98 | 2.48 ab ± 0.78 | 2.23 b ± 0.85 | 1.94 ab ± 0.67 | 2.33 ab ± 0.43 | 2.12 ab ± 0.33 | |
K | 5.62 a ± 1.06 | 8.12 d ± 1.23 | 7.49 c ± 1.24 | 5.21 a ± 0.78 | 5.90 ab ± 0.96 | 5.54 a ± 0.42 | |
Fe | 6.20 b ± 0.57 | 8.39 cd ± 0.87 | 3.94 a ± 0.46 | 7.61 c ± 0.69 | 9.65 d ± 0.83 | 4.51 a ± 0.54 | |
Mn | mg kg−1 d.m. | 82.3 a ± 9.9 | 97.4 ab ± 11.7 | 87.8 a ± 10.5 | 97.3 ab ± 11.7 | 111.7 b ± 13.4 | 84.8 a ± 11.4 |
Zn | 467 a ± 33 | 648 b ± 55 | 565 ab ± 48 | 512 a ± 46 | 667 b ± 59 | 634 b ± 51 | |
Cu | 155 a ± 20 | 163 a ± 13 | 163 a ± 12 | 168 a ± 11 | 178 a ± 14 | 175 a ± 17 | |
Ni | 6.81 a ± 0.61 | 8.13 b ± 0.89 | 7.89 ab ± 0.73 | 7.96 ab ± 0.93 | 8.70 b ± 0.88 | 7.85 ab ± 0.75 | |
Cr | 9.86 a ± 0.92 | 13.13 b ± 1.52 | 14.16 c ± 1.23 | 10.79 ab ± 1.21 | 13.72 b ± 1.43 | 13.56 b ± 1.30 | |
Pb | 11.37 a ± 1.11 | 13.36 b ± 1.71 | 11.80 a ± 1.29 | 12.77 ab ± 1.32 | 14.91 c ± 1.24 | 13.29 b ± 1.19 | |
Cd | 0.52 a ± 0.10 | 0.58 ab ± 0.12 | 0.53 a ± 0.11 | 0.57 ab ± 0.10 | 0.64 bc ± 0.15 | 0.61 b ± 0.18 |
Parameters | Parameters | Control | D1 | D2 | D3 | |||
---|---|---|---|---|---|---|---|---|
SS_N | SS_O | SS_N | SS_O | SS_N | SS_O | |||
Fv/Fm | Mean | 0.74 a | 0.76 ab | 0.77 ab | 0.76 ab | 0.77 ab | 0.75 ab | 0.78 b |
SE | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
Min | 0.70 | 0.69 | 0.73 | 0.73 | 0.70 | 0.70 | 0.77 | |
Max | 0.77 | 0.78 | 0.79 | 0.78 | 0.79 | 0.78 | 0.80 | |
Fv/F0 | Mean | 2.89 a | 3.17 ab | 3.40 ab | 3.20 ab | 3.45 b | 3.15 ab | 3.60 b |
SE | 0.16 | 0.14 | 0.12 | 0.10 | 0.07 | 0.14 | 0.09 | |
Min | 2.18 | 2.47 | 2.73 | 2.73 | 3.15 | 2.40 | 3.02 | |
Max | 3.37 | 3.47 | 3.70 | 3.51 | 3.67 | 3.45 | 3.88 | |
PI | Mean | 1.37 a | 1.92 b | 2.67 c | 2.06 bc | 2.77 d | 2.07 bc | 3.07 d |
SE | 0.09 | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.19 | |
Min | 1.03 | 1.29 | 1.93 | 1.50 | 2.16 | 2.40 | 2.39 | |
Max | 1.91 | 2.51 | 3.36 | 2.51 | 3.53 | 3.45 | 4.43 |
Parameters | Units | Parameters | Control | D1 | D2 | D3 | |||
---|---|---|---|---|---|---|---|---|---|
SS_N | SS_O | SS_N | SS_O | SS_N | SS_O | ||||
Pn | μmol(CO2)m−2s−1 | Mean | 8.54 a | 10.68 ab | 14.79 b | 11.85 ab | 15.71 b | 9.31 a | 15.46 b |
Min | 5.26 | 6.34 | 9.02 | 6.21 | 9.35 | 6.59 | 9.86 | ||
Max | 13.75 | 17.80 | 16.83 | 17.49 | 21.35 | 10.64 | 20.78 | ||
SE | 1.04 | 1.18 | 0.78 | 1.47 | 1.45 | 0.58 | 1.42 | ||
E | mmol(H2O)m−2s−1 | Mean | 1.47 a | 1.88 ab | 2.10 ab | 1.80 ab | 2.41b | 1.68 a | 2.47 b |
Min | 0.96 | 1.27 | 1.49 | 1.18 | 1.68 | 1.29 | 1.76 | ||
Max | 2.21 | 2.53 | 2.33 | 2.55 | 3.03 | 2.02 | 3.92 | ||
SE | 0.16 | 0.18 | 0.11 | 0.16 | 0.17 | 0.07 | 0.22 | ||
gs | mmol m−2s−1 | Mean | 0.06 a | 0.08 ab | 0.10 bc | 0.08 ab | 0.10bc | 0.06a | 0.11c |
Min | 0.04 | 0.06 | 0.06 | 0.04 | 0.07 | 0.04 | 0.09 | ||
Max | 0.07 | 0.10 | 0.14 | 0.11 | 0.14 | 0.07 | 0.13 | ||
SE | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | ||
Ci | mmol L−1 | Mean | 188 b | 144 ab | 108 b | 152 ab | 122b | 134 ab | 115 b |
Min | 144 | 109 | 61 | 115 | 80 | 105 | 76 | ||
Max | 236 | 194 | 183 | 204 | 178 | 195 | 166 | ||
SE | 12.6 | 11.6 | 14.2 | 12.8 | 12.4 | 14.0 | 10.6 | ||
WUE | µM CO2/mM H2O | Mean | 6.46 a | 6.34 a | 6.15 a | 6.91 a | 6.12 a | 5.85 a | 5.57 a |
Min | 4.98 | 5.28 | 4.44 | 5.18 | 4.72 | 4.60 | 3.09 | ||
Max | 7.72 | 8.31 | 7.48 | 9.03 | 7.21 | 6.35 | 6.83 | ||
SE | 0.35 | 0.32 | 0.36 | 0.46 | 0.32 | 0.23 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szostek, M.; Kosowski, P.; Szpunar-Krok, E.; Jańczak-Pieniążek, M.; Matłok, N.; Skrobacz, K.; Pieniążek, R.; Balawejder, M. The Usefulness of Ozone-Stabilized Municipal Sewage Sludge for Fertilization of Maize (Zea mays L.). Agriculture 2022, 12, 387. https://doi.org/10.3390/agriculture12030387
Szostek M, Kosowski P, Szpunar-Krok E, Jańczak-Pieniążek M, Matłok N, Skrobacz K, Pieniążek R, Balawejder M. The Usefulness of Ozone-Stabilized Municipal Sewage Sludge for Fertilization of Maize (Zea mays L.). Agriculture. 2022; 12(3):387. https://doi.org/10.3390/agriculture12030387
Chicago/Turabian StyleSzostek, Małgorzata, Patryk Kosowski, Ewa Szpunar-Krok, Marta Jańczak-Pieniążek, Natalia Matłok, Karol Skrobacz, Rafał Pieniążek, and Maciej Balawejder. 2022. "The Usefulness of Ozone-Stabilized Municipal Sewage Sludge for Fertilization of Maize (Zea mays L.)" Agriculture 12, no. 3: 387. https://doi.org/10.3390/agriculture12030387
APA StyleSzostek, M., Kosowski, P., Szpunar-Krok, E., Jańczak-Pieniążek, M., Matłok, N., Skrobacz, K., Pieniążek, R., & Balawejder, M. (2022). The Usefulness of Ozone-Stabilized Municipal Sewage Sludge for Fertilization of Maize (Zea mays L.). Agriculture, 12(3), 387. https://doi.org/10.3390/agriculture12030387