Parameter Optimization of Newly Developed Self-Propelled Variable Height Crop Sprayer Using Response Surface Methodology (RSM) Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spraying Machine
2.2. Field Experiments
2.3. Weather Conditions
2.4. Response Surface Methodology Approach
2.5. Data Analysis
3. Results and Discussion
3.1. Regression Model
3.2. Analysis of Variance (ANOVA)
3.3. Effect of Independent Variables on Dependent Variables
3.3.1. Effect of Independent Variables on Droplet Density
3.3.2. Effect of Independent Variables on Coverage Percentage
3.3.3. Effect of Independent Variables on VMD
3.4. Optimization Using RSM Approach
3.5. Validation of RSM Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cotes, B.; González, M.; Benítez, E.; De Mas, E.; Clemente-Orta, G.; Campos, M.; Rodríguez, E. Spider communities and biological control in native habitats surrounding greenhouses. Insects 2018, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, E.; González, M.; Paredes, D.; Campos, M.; Benítez, E. Selecting native perennial plants for ecological intensification in Mediterranean greenhouse horticulture. Bull. Entomol. Res. 2018, 108, 694–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dáder, B.; Colomer, I.; Adán, Á.; Medina, P.; Viñuela, E. Compatibility of early natural enemy introductions in commercial pepper and tomato greenhouses with repeated pesticide applications. Insect Sci. 2020, 27, 1111–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco, L.; Ruiz, L.; Galipienso, L.; Rubio, L.; Janssen, D. A Historical Account of Viruses in Intensive Horticultural Crops in the Spanish Mediterranean Arc: New Challenges for a Sustainable Agriculture. Agronomy 2020, 10, 860. [Google Scholar] [CrossRef]
- Padilla-Sánchez, J.A.; Romero-González, R.; Plaza-Bolaños, P.; Garrido Frenich, A.; Martínez Vidal, J.L. Residues and Organic Contaminants in Agricultural Soils in Intensive Agricultural Areas of Spain: A Three Year Survey. Clean Soil Air Water 2015, 43, 746–753. [Google Scholar] [CrossRef]
- Plaza-Bolaños, P.; Padilla-Sánchez, J.A.; Garrido-Frenich, A.; Romero-González, R.; Martínez-Vidal, J.L. Evaluation of soil contamination in intensive agricultural areas by pesticides and organic pollutants: South-eastern Spain as a case study. J. Environ. Monit. 2012, 14, 1182–1189. [Google Scholar] [CrossRef]
- Braekman, P.; Foque, D.; Messens, W.; van Labeke, M.C.; Pieters, J.G.; Nuyttens, D. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes. Pest Manag. Sci. 2010, 66, 203–212. [Google Scholar] [CrossRef]
- Failla, S.; Romano, E. Effect of Spray Application Technique on Spray Deposition and Losses in a Greenhouse Vegetable Nursery. Sustainability 2020, 12, 7052. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.C.; Párez-Alonso, J.; Callejon- Ferre, A. Evaluation of the Effect of Different Hand-Held Sprayer Types on a Greenhouse Pepper Crop. Agriculture 2021, 11, 532. [Google Scholar] [CrossRef]
- Rincón, V.J.; Grella, M.; Marucco, P.; Alcatrão, L.E.; Sanchez-Hermosilla, J.; Balsari, P. Spray performance assessment of a remote-controlled vehicle prototype for pesticide application in greenhouse tomato crops. Sci. Total Environ. 2020, 726, 138509. [Google Scholar] [CrossRef]
- Rincón, V.J.; Páez, F.C.; Sánchez-Hermosilla, J. Potential dermal exposure to operators applying pesticide on greenhouse crops using low-cost equipment. Sci. Total Environ. 2018, 630, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Braekman, P.; Foqué, D.; van Labeke, M.-C.; Pieters, J.G.; Nuyttens, D. Influence of spray application technique on spray deposition in Greenhouse Ivy pot plants grown on hanging shelves. Hort. Sci. 2009, 44, 1921–1927. [Google Scholar] [CrossRef] [Green Version]
- Rincón, V.J.; Sanchez-Hermosilla, J.; Páez, F.; Pérez-Alonso, J.; Callejón, A.J. Assessment of the influence of working pressure and application rate on pesticide spray application with a hand-held spray gun on greenhouse pepper crops. Crop Prot. 2017, 96, 7–13. [Google Scholar] [CrossRef]
- Teejet®. A User’s Guide to Spray Nozzles; Teejet Technol: Glendale Heights, IL, USA, 2013; p. 58. [Google Scholar]
- Womac, A.; Etheridge, R.; Seibert, A.; Hogan, D.; Ray, S. Sprayer speed and venture-nozzle effects on broadcast application uniformity. Trans. ASABE 2001, 44, 1437–1444. [Google Scholar] [CrossRef]
- Teejet®. Spray Nozzles. Teejet Technologies. Available online: https://www.teejet.com/ (accessed on 30 December 2018).
- Sayinci, B.; Demir, B.; Acik, N. Comparison of spray nozzles in terms of spray coverage and drop distribution at low volume. Turk. Agric. For. 2020, 44, 262–270. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, N.; Slocombe, J.W.; Thierstein, G.E.; Kuhlman, D.K. Experimental analysis of spray distribution pattern uniformity for agricultural nozzles. Appl. Eng. Agric. 1995, 11, 51–55. [Google Scholar] [CrossRef]
- Albuz®. Spray Nozzles, Albuz Catalog 2016. Available online: http://albuz-spray.com (accessed on 30 December 2016).
- Sanchez-Hermosilla, J.; Paez, F.; Rincon, V.J.; Carvajal, F. Evaluation of the effect of spray pressure in hand-held sprayers in a greenhouse tomato crop. Crop Prot. 2013, 54, 121–125. [Google Scholar] [CrossRef]
- Ranta, O.; Marian, O.; Muntean, M.V.; Molnar, A.; Ghet, E.A.B.; Crisan, V.; Stănilă, S.; Rittner, T. Quality Analysis of Some Spray Parameters When Performing Treatments in Vineyards in Order to Reduce Environment Pollution. Sustainability 2021, 13, 7780. [Google Scholar] [CrossRef]
- Water-Sensitive Paper Check Your Spray Coverage. Available online: https://www.syngenta.com.au/awri (accessed on 19 April 2021).
- Zhu, H.; Salyani, M.; Fox, R.D. A Portable Scanning System for Evaluation of Spray Deposit Distribution. Comput. Electron. Agric. 2011, 76, 38–43. [Google Scholar] [CrossRef]
- Wang, G.; Lan, Y.; Yuan, H.; Qi, H.; Chen, P.; Ouyang, F.; Han, Y. Comparison of Spray Deposition, Control Efficacy on Wheat Aphids and Working Efficiency in the Wheat Field of the Unmanned Aerial Vehicle with Boom Sprayer and Two Conventional Knapsack Sprayers. Appl. Sci. 2019, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Standard 572.1; Spray Nozzle Classification by Droplet Spectra. ASABE American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2009.
- Askari, M.; Abbaspour-Gilandeh, Y.; Taghinezhad, E.; El Shal, A.M.; Hegazy, R.; Okasha, M. Applying the Response Surface Methodology (RSM) Approach to Predict the Tractive Performance of an Agricultural Tractor during Semi-Deep Tillage. Agriculture 2021, 11, 1043. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, H.; Zhang, J.; Chen, L.; Li, M.; Zhang, L.; Wang, X. Performance test and parameter optimization of variable spraying liquid fertilizer machine. IFAC Paper Online 2018, 51, 118–123. [Google Scholar] [CrossRef]
- Hou, P.; Li, J.; Wang, P.; Bian, Y.; Xue, C. CFD and test of single gantry boom sprayer for apple orchard. Eng. Agric. Jaboticabal. 2021, 41, 536–550. [Google Scholar]
- Weicai, Q.; Xinyu, X.; Longfei, C.; Qingqing, Z.; Zhufeng, X.; Feilong, C. Optimization and test for spraying parameters of cotton defoliant sprayer. Int. J. Agric. Biol. Eng. 2016, 9, 63–72. [Google Scholar]
- Rehman, T.; Khan, M.U.; Tayyab, M.; Akram, M.W.; Faheem, M. Current status and overview of farm mechanization in Pakistan- A review. Agric. Eng. Int. 2016, 18, 83–93. [Google Scholar]
- Sanchez-Hermosilla, J.; Rincon, V.J.; Paez, F.; Fernandez, M. Comparative spray deposits by manually pulled trolley sprayer and spray gun in greenhouse tomato crops. Crop Prot. 2012, 31, 119–124. [Google Scholar] [CrossRef]
- Nuyttens, D.; Braekman, P.; Windey, S.; Sonck, B. Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manag. Sci. 2009, 65, 781–790. [Google Scholar] [CrossRef]
- Lou, Z.X.; Xin, F.; Han, X.Q.; Lan, Y.B.; Duan, T.Z.; Fu, W. Effect of Unmanned Aerial Vehicle Flight Height on Droplet Distribution, Drift and Control of Cotton Aphids and Spider Mites. Agronomy 2018, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Chen, L.; Liu, R. Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system. Chemosphere 2016, 155, 217–224. [Google Scholar] [CrossRef]
- Carroll, J. The Effects of Sprayer Speed and Droplet Size on Herbicide Burndown Efficacy. Theses Diss. 2017, 2435. Available online: https://scholarworks.uark.edu/etd/2435/ (accessed on 1 September 2021).
- Nansen, C.; Ferguson, J.C.; Moore, J.; Groves, L.; Emery, R.; Garel, N.; Hewitt, A. Optimizing pesticide spray coverage using a novel web and smartphone tool, snap card. Agron. Sustain. Dev. 2015, 35, 1075–1085. [Google Scholar] [CrossRef]
- Shirwal, S.; Veerangoud, M.; Palled, V.; Sushilendra; Hosamani, A.; Krishnamurthy, D. Studies on Operational Parameters of Different Spray Nozzles. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 1267–1281. [Google Scholar] [CrossRef]
- Qin, W.C.; Qiu, B.J.; Xue, X.Y.; Chen, C.; Xu, Z.F.; Zhou, Q.Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against planthoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Ferguson, J.C.; Chechetto, R.G.; Hewitt, A.J.; Chauhan, B.S.; Adkins, S.W.; Kruger, G.R.; O’Donnell, C.C. Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Prot. 2016, 81, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Etheridge, R.E.; Hart, W.E.; Hayes, R.M.; Mueller, I.C. Effect of venturi type nozzles and application volume on post-emergence herbicide efficacy. Weed Technol. 2001, 15, 75–80. [Google Scholar] [CrossRef]
- Ramsdale, B.K.; Messersmith, C.G. Drift-reducing nozzle effects on herbicide performance. Weed Technol. 2001, 15, 453–460. [Google Scholar] [CrossRef]
Items | Specifications | |
---|---|---|
Structure | Self-propelled | |
Overall dimensions | 2845 mm × 1017 mm × 2440 mm | |
Weight | 1090 kg | |
Wheelbase | 1753 mm | |
Ground clearance | 762–915 mm | |
Nozzle height from the ground | 458–1220 mm | |
Engine power | 20 hp | |
Driving mode | Automatic gear shift | |
Wheel | Four wheels | |
Solution tank capacity | 300 L | |
Nozzle type | Hollow cone | |
Spray boom | Lifting mode | Hydraulic drive |
Folding mode | Manual drive | |
Spray boom | 6096 mm | |
Spray pump | Type | Diaphragm pump |
Pressure | 24 bar | |
Flow rate | 22 L/min |
Independent Variables | Code | Actual | Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
Forward speed (km/h) | x1 | X1 | 4 | 6 | 8 |
Spray height (cm) | x2 | X2 | 40 | 55 | 70 |
Spray pressure (bar) | x3 | X3 | 3 | 5 | 7 |
Run No. | Independent Variables | Response Variables * | ||||
---|---|---|---|---|---|---|
X1 | X2 | X3 | Droplet Density | Coverage Percentage | VMD | |
km/h | cm | bar | Droplets/cm2 | % | µm | |
1 | 6 (0) | 40 (−1) | 7 (1) | 93 ± 3.32 | 49.2 ± 1.55 | 252.5 ± 2.27 |
2 | 8 (1) | 55 (0) | 7 (1) | 59.8 ± 3.41 | 28.1 ± 1.67 | 232.1 ± 2.05 |
3 | 6 (0) | 70 (1) | 7 (1) | 74.8 ± 3.65 | 35.1 ± 1.76 | 238.1 ± 2.13 |
4 | 6 (0) | 40 (−1) | 3 (−1) | 76.3 ± 2.97 | 36.4 ± 1.82 | 235.1 ± 2.21 |
5 | 4 (−1) | 40 (−1) | 5 (0) | 94.2 ± 3.15 | 52.9 ± 1.43 | 259.8 ± 2.48 |
6 | 4 (−1) | 55 (0) | 7 (1) | 92.6 ± 2.87 | 48.8 ± 1.62 | 255.5 ± 2.39 |
7 | 8 (1) | 55 (0) | 3 (−1) | 44.6 ± 3.46 | 20.5 ± 1.51 | 225.4 ± 2.16 |
8 | 6 (0) | 55 (0) | 5 (0) | 70.3 ± 3.09 | 32.3 ± 1.64 | 235.6 ± 1.97 |
9 | 4 (−1) | 55 (0) | 3 (−1) | 86.5 ± 2.91 | 44.7 ± 1.74 | 247.1 ± 2.27 |
10 | 6 (0) | 70 (1) | 3 (−1) | 56.9 ± 3.23 | 26.6 ± 1.38 | 230.5 ± 2.31 |
11 | 6 (0) | 55 (0) | 5 (0) | 72.9 ± 3.54 | 34 ± 1.46 | 239.2 ± 2.54 |
12 | 6 (0) | 55 (0) | 5 (0) | 72.4 ± 2.83 | 33.5 ± 1.31 | 237.3 ± 2.42 |
13 | 4 (−1) | 70 (1) | 5 (0) | 83.9 ± 3.21 | 42.6 ± 1.52 | 248.8 ± 1.99 |
14 | 6 (0) | 55 (0) | 5 (0) | 68.7 ± 3.57 | 30.9 ± 1.59 | 233.7 ± 1.95 |
15 | 6 (0) | 55 (0) | 5 (0) | 69.5 ± 2.98 | 31.7 ± 1.61 | 233.5 ± 2.43 |
16 | 8 (1) | 70 (1) | 5 (0) | 49.1 ± 3.36 | 22.8 ± 1.49 | 226.4 ± 2.22 |
17 | 8 (1) | 40 (−1) | 5 (0) | 65.6 ± 2.95 | 30.1 ± 1.35 | 231.3 ± 2.09 |
Source | SS | df | MS | F-Value | p-Value | Result |
---|---|---|---|---|---|---|
Model | 3381.44 | 9 | 375.72 | 39.87 | <0.0001 | significant |
X1-Forward speed | 2383.95 | 1 | 2383.95 | 252.98 | <0.0001 | |
X2-Spray height | 518.42 | 1 | 518.42 | 55.01 | 0.0001 | |
X3-Spray pressure | 390.60 | 1 | 390.60 | 41.45 | 0.0004 | |
X1X2 | 9.61 | 1 | 9.61 | 1.02 | 0.3462 | |
X1X3 | 20.70 | 1 | 20.70 | 2.20 | 0.1818 | |
X2X3 | 0.3600 | 1 | 0.3600 | 0.0382 | 0.8506 | |
X12 | 3.94 | 1 | 3.94 | 0.4182 | 0.5384 | |
X22 | 48.89 | 1 | 48.89 | 5.19 | 0.0568 | |
X32 | 4.93 | 1 | 4.93 | 0.5236 | 0.4928 | |
Residual | 65.96 | 7 | 9.42 | |||
Lack of Fit | 52.65 | 3 | 17.55 | 5.27 | 0.0710 | not significant |
Pure Error | 13.31 | 4 | 3.33 | |||
Cor Total | 3447.40 | 16 | ||||
Std. Dev | 3.07 | R2 | 0.9809 | |||
Mean | 72.42 | Adj. R2 | 0.9563 | |||
C.V% | 4.24 | Pre. R2 | 0.7569 | |||
Adeq Precision | 22.346 |
Source | SS | df | MS | F-Value | p-Value | Result |
---|---|---|---|---|---|---|
Model | 1380.60 | 9 | 153.40 | 45.44 | <0.0001 | significant |
X1-Forward speed | 957.03 | 1 | 957.03 | 283.50 | <0.0001 | |
X2-Spray height | 215.28 | 1 | 215.28 | 63.77 | <0.0001 | |
X3-Spray pressure | 136.12 | 1 | 136.12 | 40.32 | 0.0004 | |
X1X2 | 2.25 | 1 | 2.25 | 0.6665 | 0.4412 | |
X1X3 | 3.06 | 1 | 3.06 | 0.9072 | 0.3726 | |
X2X3 | 4.62 | 1 | 4.62 | 1.37 | 0.2802 | |
X12 | 11.60 | 1 | 11.60 | 3.44 | 0.1062 | |
X22 | 36.89 | 1 | 36.89 | 10.93 | 0.0130 | significant |
X32 | 8.08 | 1 | 8.08 | 2.39 | 0.1658 | |
Residual | 23.63 | 7 | 3.38 | |||
Lack of Fit | 17.14 | 3 | 5.71 | 3.52 | 0.1277 | not significant |
Pure Error | 6.49 | 4 | 1.62 | |||
Cor Total | 1404.23 | 16 | ||||
Std. Dev | 1.84 | R2 | 0.9832 | |||
Mean | 35.31 | Adj. R2 | 0.9615 | |||
C.V% | 5.20 | Pre. R2 | 0.7975 | |||
Adeq Precision | 24.402 |
Source | SS | df | MS | F-Value | p-Value | Result |
---|---|---|---|---|---|---|
Model | 1619.25 | 9 | 179.92 | 30.58 | <0.0001 | significant |
X1-Forward speed | 1152.00 | 1 | 1152.00 | 195.78 | <0.0001 | |
X2-Spray height | 152.25 | 1 | 152.25 | 25.87 | 0.0014 | |
X3-Spray pressure | 201.00 | 1 | 201.00 | 34.16 | 0.0006 | |
X1X2 | 9.30 | 1 | 9.30 | 1.58 | 0.2490 | |
X1X3 | 0.7225 | 1 | 0.7225 | 0.1228 | 0.7363 | |
X2X3 | 24.01 | 1 | 24.01 | 4.08 | 0.0831 | |
X12 | 47.11 | 1 | 47.11 | 8.01 | 0.0254 | significant |
X22 | 23.65 | 1 | 23.65 | 4.02 | 0.0850 | |
X32 | 2.83 | 1 | 2.83 | 0.4811 | 0.5103 | |
Residual | 41.19 | 7 | 5.88 | |||
Lack of Fit | 17.66 | 3 | 5.89 | 1.00 | 0.4788 | not significant |
Pure Error | 23.53 | 4 | 5.88 | |||
Cor Total | 1660.44 | 16 | ||||
Std. Dev | 2.43 | R2 | 0.9752 | |||
Mean | 238.94 | Adj. R2 | 0.9433 | |||
C.V% | 1.02 | Pre. R2 | 0.8077 | |||
Adeq Precision | 19.363 |
Response Variable | Actual Value | Predicted Value | Prediction Error (%) |
---|---|---|---|
Droplet density (droplets/cm2) | 41.35 ± 3.67 | 37.85 | 8.46 |
Coverage percentage | 21.10 ± 1.72 | 19.15 | 9.2 |
VMD (µm) | 227.43 ± 1.22 | 225.41 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, F.A.; Ghafoor, A.; Khan, M.A.; Umer Chattha, M.; Kouhanestani, F.K. Parameter Optimization of Newly Developed Self-Propelled Variable Height Crop Sprayer Using Response Surface Methodology (RSM) Approach. Agriculture 2022, 12, 408. https://doi.org/10.3390/agriculture12030408
Khan FA, Ghafoor A, Khan MA, Umer Chattha M, Kouhanestani FK. Parameter Optimization of Newly Developed Self-Propelled Variable Height Crop Sprayer Using Response Surface Methodology (RSM) Approach. Agriculture. 2022; 12(3):408. https://doi.org/10.3390/agriculture12030408
Chicago/Turabian StyleKhan, Fraz Ahmad, Abdul Ghafoor, Muhammad Azam Khan, Muhammad Umer Chattha, and Farzaneh Khorsandi Kouhanestani. 2022. "Parameter Optimization of Newly Developed Self-Propelled Variable Height Crop Sprayer Using Response Surface Methodology (RSM) Approach" Agriculture 12, no. 3: 408. https://doi.org/10.3390/agriculture12030408
APA StyleKhan, F. A., Ghafoor, A., Khan, M. A., Umer Chattha, M., & Kouhanestani, F. K. (2022). Parameter Optimization of Newly Developed Self-Propelled Variable Height Crop Sprayer Using Response Surface Methodology (RSM) Approach. Agriculture, 12(3), 408. https://doi.org/10.3390/agriculture12030408