Self-Sufficiency Assessment: Defining the Foodshed Spatial Signature of Supply Chains for Beef in Avignon, France
Abstract
:1. Introduction
1.1. Foodshed Approaches
1.2. Foodshed Analysis Based on Landscape Ecology and Proximity Theories
2. Materials and Methods
2.1. Study Area
2.2. Materials Used to Identify Beef Production Areas
2.3. The Dilation/Erosion Methodology
2.4. Method Used to Spatially Characterize Beef Feeding Patches in the Archipelago Oriented and Not Oriented toward Short Supply Chains
2.4.1. Distance from Nearest Slaughterhouse
2.4.2. Rugosity
2.4.3. Dominance
2.4.4. Location within the Perimeters of a Regional or a National Nature Park
2.4.5. Beef Self-Sufficiency Ratio
3. Results
3.1. Short Supply Chains’ Higher Contour Rugosity Than Long Supply Chains
3.2. Short Supply Chains’ Stronger Dominance Compared to Long Supply Chains
3.3. Short Supply Chains’ Spatial Characteristics
3.4. Beef Self-Sufficiency Ratio Estimates
4. Discussion
4.1. Determinants of the Spatial Signature of Beef Feeding Areas Oriented toward Short Supply Chains
4.2. What Role and Leverage for Public Action?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- IPES-Food. COVID-19 and the Crisis in Food Systems: Symptoms, Causes, and Potential Solutions; International Panel of Experts on Sustainable Food Systems: Brussels, Belgium, 2020; p. 11. [Google Scholar]
- United Nations Organisation (UNO). World Urbanization Prospects: The 2014 Revision; UNO. Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2014; p. 517. [Google Scholar]
- Moragues-Faus, A. Distributive Food Systems to Build Just and Liveable Futures. Agric. Hum. Values 2020, 37, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Sanz, E.S. Planification Urbaine et Agriculture. Méthodologie Systémique de Caractérisation de L’agriculture Périurbaine à Partir d’une Recherche Empirique En France et En Espagne. Thèse Pour L’obtention du Titre de Docteur en Géographie (UAM) et en Etudes Urbaines (EHESS); EHESS/UAM: Paris, France, 2016. [Google Scholar]
- Sanz, E.S.; Martinetti, D.; Napoléone, C. Operational Modelling of Peri-Urban Farmland for Public Action in Mediterranean Context. Land Use Policy 2018, 75, 757–771. [Google Scholar] [CrossRef]
- Boussougou, G.B.; Sanz, E.S.; Napoléone, C.; Martinetti, D. Identifying Agricultural Areas with Potential for City Connections: A Regional-Scale Methodology for Urban Planning. Land Use Policy 2021, 103, 105321. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Sanz-Sanz, E.; Napoléone, C.; Moulery, M.; Piorr, A. Foodshed, Agricultural Diversification and Self-Sufficiency Assessment: Beyond the Isotropic Circle Foodshed—A Case Study from Avignon (France). Agriculture 2021, 11, 143. [Google Scholar] [CrossRef]
- Hedden, W.P. How Great Cities Are Fed; D. C. Heath & Cp.: Boston, MA, USA, 1929. [Google Scholar]
- Kloppenburg, J.; Hendrickson, J.; Stevenson, G.W. Coming in to the Foodshed. Agric. Hum. Values 1996, 13, 33–42. [Google Scholar] [CrossRef]
- Butler, M. Analyzing the Foodshed: Toward a More Comprehensive Foodshed Analysis; Portland State University: Portland, OR, USA, 2000. [Google Scholar]
- Feagan, R. The Place of Food: Mapping out the “local” in Local Food Systems. Prog. Hum. Geogr. 2007, 31, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Peters, C.J.; Bills, N.L.; Wilkins, J.L.; Fick, G.W. Foodshed Analysis and Its Relevance to Sustainability. Renew. Agric. Food Syst. 2009, 24, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Aubry, C.; Kebir, L. Shortening Food Supply Chains: A Means for Maintaining Agriculture Close to Urban Areas? The Case of the French Metropolitan Area of Paris. Food Policy 2013, 41, 85–93. [Google Scholar] [CrossRef]
- Griffin, T.; Conrad, Z.; Peters, C.; Ridberg, R.; Tyler, E.P. Regional Self-Reliance of the Northeast Food System. Renew. Agric. Food Syst. 2015, 30, 349–363. [Google Scholar] [CrossRef]
- Tichenor, N.E.; van Zanten, H.H.E.; de Boer, I.J.M.; Peters, C.J.; McCarthy, A.C.; Griffin, T.S. Land Use Efficiency of Beef Systems in the Northeastern USA from a Food Supply Perspective. Agric. Syst. 2017, 156, 34–42. [Google Scholar] [CrossRef]
- Li, K.; Jin, X.; Ma, D.; Jiang, P. Evaluation of Resource and Environmental Carrying Capacity of China’s Rapid-Urbanization Areas—A Case Study of Xinbei District, Changzhou. Land 2019, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Zasada, I.; Schmutz, U.; Wascher, D.; Kneafsey, M.; Corsi, S.; Mazzocchi, C.; Monaco, F.; Boyce, P.; Doernberg, A.; Sali, G.; et al. Food beyond the City—Analysing Foodsheds and Self-Sufficiency for Different Food System Scenarios in European Metropolitan Regions. City Cult. Soc. 2019, 16, 25–35. [Google Scholar] [CrossRef]
- Poggi, S.; Vinatier, F.; Hannachi, M.; Sanz Sanz, E.; Rudi, G.; Zamberletti, P.; Tixier, P.; Papaïx, J. How Can Models Foster the Transition towards Future Agricultural Landscapes? Adv. Ecol. Res. 2021, 64, 305–368. [Google Scholar] [CrossRef]
- Pulliam, H.R. Sources, Sinks, and Population Regulation. Am. Nat. 1988, 132, 652–661. [Google Scholar] [CrossRef]
- Décamps, H.; Décamps, O. Organisation de l’espace et processus écologiques. Economierurale 2007, 297, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity Is a Vital Element of Landscape Structure. Oikos 1993, 68, 571. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.D.; Fahrig, L.; With, K.A. Landscape connectivity: A return to the basics. In Connectivity Conservation; Crooks, K.R., Sanjayan, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 29–43. ISBN 978-0-511-75482-1. [Google Scholar]
- Torre, A.; Wallet, F. Introduction: The role of proximity relations in regional and territorial development processes. In Regional Development and Proximity Relations; Edward Elgar Publishing: Cheltenham, UK, 2014; pp. 1–44. ISBN 978-1-78100-289-6. [Google Scholar]
- Angeon, V.; Bertrand, N. Les Dispositifs Français de Développement Rural: Quelles Proximités Mobilisées ? Géographie Économie Société 2009, 11, 93–114. [Google Scholar] [CrossRef]
- Hinrichs, C.C. Embeddedness and Local Food Systems: Notes on Two Types of Direct Agricultural Market. J. Rural Stud. 2000, 16, 295–303. [Google Scholar] [CrossRef]
- Brinkley, C. Visualizing the Social and Geographical Embeddedness of Local Food Systems. J. Rural Stud. 2017, 54, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Chiffoleau, Y. From Politics to Co-Operation: The Dynamics of Embeddedness in Alternative Food Supply Chains. Sociol. Rural. 2009, 49, 218–235. [Google Scholar] [CrossRef]
- Guiraud, N.; Laperrière, V.; Rouchier, J. Une Géographie Des Circuits Courts En Région Provence-Alpes-Côte d’azur. L’Espace Géographique 2014, 4, 356–373. [Google Scholar] [CrossRef]
- Confédération paysanne Provence-Alpes-Côte-d’Azur. Confédération paysanne Provence-Alpes-Côte-d’Azur; Séminaire “L’abattage de Proximité”; Confédération paysanne Provence-Alpes-Côte-d’Azur: Buoux, France, 2019; p. 23. [Google Scholar]
- Agence Nationale de la Cohesion des Territoires, Massif des Alpes. Compte Rendu Du Séminaire “Valoriser Les Viades de Montagne Massif Des Alpes”; Chanmbre d’Argiruclure à Grenoble: Grenoble, France, 2020. [Google Scholar]
- Confédération paysanne Provence-Alpes-Côte-d’Azur. Région PACA en région Provence-Alpes-Côte-d’Azur Contexte de l’abattage En Région Provence-Alpes-Côte-d’Azur; Presented at the Séminaire “L’abattage de proximité”; Confédération paysanne Provence-Alpes-Côte-d’Azur: Buoux, France, 2019. [Google Scholar]
- Confédération paysanne Provence-Alpes-Côte-d’Azur. Région Auvergne Rhône-Alpes, Région SUD Présentation Du Projet “Enjeux de Structuration et de Développement Des Filières Viande Du Massif Alliant Valorisation Du Produit Pour l’éleveur et Apport d’un Produit Local de Qualité Au Consommateur”; Presented at the Séminaire “Valoriser les viandes de montagne”; Confédération paysanne Provence-Alpes-Côte-d’Azur: Grenoble, France, 2020. [Google Scholar]
- Girardet, X.; Foltête, J.-C.; Clauzel, C.; Vuidel, G. Restauration de la connectivité écologique: Proposition méthodologique pour une localisation optimisée des passages à faune. Vertigo 2016, 24, 17337. [Google Scholar] [CrossRef]
- Guérois, M. Les Formes Des Villes Européennes Vues Du Ciel. Une Contribution de l’image CORINE Land Cover à La Comparaison Morphologique Des Grandes Villes d’Europe Occidentale; Université Panthéon-Sorbonne-Paris I: Paris, France, 2003. [Google Scholar]
- Amsallem, J.; Deshayes, M.; Bonnevialle, M. Analyse comparative de méthodes d’élaboration de trames vertes et bleues nationales et régionales. Sci. Eaux Territ. 2010, 3, 40. [Google Scholar] [CrossRef]
- Geniaux, G.; Leroux, B.; Samaké, A.D.; Cezanne-Bert, P.; Moulery, M.; Code Informatique Du Projet Urbansimul 2016. 2016, hal-01604422. Available online: https://hal.archives-ouvertes.fr/hal-01604422 (accessed on 14 March 2022).
- Du Gerny, S.; Les Abattoirs de Proximité de plus En plus Sollicités Par Les Petits Producteurs. Les Echos 2015. Available online: https://www.lesechos.fr/2015/09/les-abattoirs-de-proximite-de-plus-en-plus-sollicites-par-les-petits-producteurs-253395 (accessed on 10 March 2022).
- Dustan, P.; Doherty, O.; Pardede, S. Digital Reef Rugosity Estimates Coral Reef Habitat Complexity. PLoS ONE 2013, 8, e57386. [Google Scholar] [CrossRef]
- Brinkley, C. High Rugosity Cities: The Geographic, Economic and Regulatory Pathology of America’s Most Non-Concentric Urban Areas. Land Use Policy 2018, 73, 215–224. [Google Scholar] [CrossRef]
- Barké, M.K.; Oussein, I.; Bielders, C.; Ambouta, K.J.M.; Tychon, B. Caractérisation morphologique des cuvettes oasiennes du Centre-Est du Niger. Physio-Geo 2017, 11, 255–276. [Google Scholar] [CrossRef]
- Angeon, V.; Boisvert, V.; Caron, A. La marque « Parc naturel régional »: Un outil au service d’un développement local durable et un modèle pour les pays du Sud ? Afr. Contemp. 2007, 222, 149. [Google Scholar] [CrossRef]
- Forman, R.T.T. Urban Regions: Ecology and Planning beyond the City; Harvard University: Cambridge, MA, USA, 2008; ISBN 10.1017/CBO9780511754982. [Google Scholar]
- Jarosz, L. The City in the Country: Growing Alternative Food Networks in Metropolitan Areas. J. Rural Stud. 2008, 24, 231–244. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- FiBL. Engraissement Au Pâturage; FiBL: Frick, Switzerland, 2001. [Google Scholar]
- Von Thünen, J.H. Von Thunen’s Isolated State; Pergarmon Press: Glasgow, UK, 1826. [Google Scholar]
- Sanz, E.S.; Napoléone, C.; Hubert, B. A Systemic Methodology to Characterize Peri-Urban Agriculture for a Better Integration of Agricultural Stakes in Urban Planning. L’espace Géographique 2017, 46, 174–190. [Google Scholar]
- Sanz, E.S.; Napoléone, C.; Mouléry, M. Agroecological Transitions and Local Food Self-Sufficiency Assessment. From the Isotropic Circle to the Archipelago Foodshed. Agroecol. Transform. Sustain. Food Syst. Insight Fr. CGIAR Res. 2021, 98, 23708. [Google Scholar]
- Sanz, E.S. Public procurement as a booster of midscale food supply chains. In Public Food Procurement for Sustainable Food Systems and Healthy Diets; Swenson, L., Hunter, D., Schneider, S., Eds.; FAO: Rome, Italy, 2022. [Google Scholar]
- Gugerell, C.; Sato, T.; Hvitsand, C.; Toriyama, D.; Suzuki, N.; Penker, M. Know the Farmer That Feeds You: A Cross-Country Analysis of Spatial-Relational Proximities and the Attractiveness of Community Supported Agriculture. Agriculture 2021, 11, 1006. [Google Scholar] [CrossRef]
Category | Description | RPG Code |
---|---|---|
Mountain pastures, moors | Wood-pasture | BOP |
Pastoral area—predominantly grass and fodder resources. Woody resources present | SPH | |
Pastoral area—predominantly woody fodder resources | SPL | |
Permanent grassland | Permanent grassland—predominantly grass (fodder resources; woody resources absent or little present) | PPH |
grassland in long rotation (6 years or more) | PRL | |
Temporary grassland | Other temporary grassland 5 years old or less | PTR |
Surface (ha) | K (SSC) | K (LSC) |
---|---|---|
<50 | 1.22 | 1.21 |
>50 | 2.19 | 2.10 |
>100 | 2.45 | 2.32 |
>300 | 3.02 | 2.82 |
>500 | 3.36 | 3.01 |
>700 | 3.59 | 3.29 |
>1000 | 3.36 | 3.01 |
Area (Hectares) | Density SSC (Percentage) | Density LSC (Percentage) | Area SSC (Hectares) | Area LSC (Hectares) |
---|---|---|---|---|
<50 | 31.15 | 31.04 | 3.33 | 3.26 |
>50 | 68.71 | 69.48 | 246.25 | 174.43 |
>100 | 73.32 | 74.63 | 410.33 | 278.06 |
>300 | 77.93 | 79.93 | 975.01 | 602.63 |
>500 | 78.86 | 82.67 | 1389.48 | 801.39 |
>700 | 77.87 | 80.91 | 1791.04 | 973.05 |
>1000 | 77.71 | 82.67 | 2289.74 | 1208.73 |
SSC Beef Feeding Areas (Hectares) | LSC Beef Feeding Areas (Hectares) | Ratio SSC/LSC Areas | |
---|---|---|---|
Within a nature park in the study area | 119,160 | 38,236 | 3.11 |
Total study area | 264,953 | 107,058 | 2.5 |
Province | Beef Area (Hectares) | Estimated Beef Production (Tons) a | Estimated Beef Consumption, by Year (Tons) a | Population | Estimated Beef Self- Sufficiency b |
---|---|---|---|---|---|
Alpes de Haute Provence | 714 | 528 | 2286 | 110,466 | 23% |
Hautes Alpes | 306 | 226 | 381 | 18,437 | 59% |
Ardèche | 6892 | 5100 | 3674 | 177,552 | 139% |
Bouche du Rhone | 12,161 | 8999 | 40,768 | 1,970,436 | 22% |
Drôme | 4385 | 3245 | 4343 | 209,911 | 75% |
Gard | 4581 | 3390 | 15,163 | 732,863 | 22% |
Hérault | 642 | 475 | 13,085 | 632,437 | 444% |
Lozère | 2733 | 2022 | 150 | 7231 | 1352% |
Var | 0 | 0 | 1258 | 60,793 | 0% |
Vaucluse | 282 | 209 | 11,470 | 554,393 | 2% |
Total | 32,696 | 24,194 | 82,255 | 4,474,519 |
IMPACT | FACTOR |
---|---|
++ | Rugosity |
+++ | Dominance |
++ | Location within Nature Park |
+ | Distance from Slaughterhouse |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouléry, M.; Sanz Sanz, E.; Debolini, M.; Napoléone, C.; Josselin, D.; Mabire, L.; Vicente-Vicente, J.L. Self-Sufficiency Assessment: Defining the Foodshed Spatial Signature of Supply Chains for Beef in Avignon, France. Agriculture 2022, 12, 419. https://doi.org/10.3390/agriculture12030419
Mouléry M, Sanz Sanz E, Debolini M, Napoléone C, Josselin D, Mabire L, Vicente-Vicente JL. Self-Sufficiency Assessment: Defining the Foodshed Spatial Signature of Supply Chains for Beef in Avignon, France. Agriculture. 2022; 12(3):419. https://doi.org/10.3390/agriculture12030419
Chicago/Turabian StyleMouléry, Michel, Esther Sanz Sanz, Marta Debolini, Claude Napoléone, Didier Josselin, Luc Mabire, and José Luis Vicente-Vicente. 2022. "Self-Sufficiency Assessment: Defining the Foodshed Spatial Signature of Supply Chains for Beef in Avignon, France" Agriculture 12, no. 3: 419. https://doi.org/10.3390/agriculture12030419
APA StyleMouléry, M., Sanz Sanz, E., Debolini, M., Napoléone, C., Josselin, D., Mabire, L., & Vicente-Vicente, J. L. (2022). Self-Sufficiency Assessment: Defining the Foodshed Spatial Signature of Supply Chains for Beef in Avignon, France. Agriculture, 12(3), 419. https://doi.org/10.3390/agriculture12030419